// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements signed multi-precision integers. package big import ( "fmt" "io" "math/rand" "strings" ) // An Int represents a signed multi-precision integer. // The zero value for an Int represents the value 0. type Int struct { neg bool // sign abs nat // absolute value of the integer } var intOne = &Int{false, natOne} // Sign returns: // // -1 if x < 0 // 0 if x == 0 // +1 if x > 0 // func (x *Int) Sign() int { if len(x.abs) == 0 { return 0 } if x.neg { return -1 } return 1 } // SetInt64 sets z to x and returns z. func (z *Int) SetInt64(x int64) *Int { neg := false if x < 0 { neg = true x = -x } z.abs = z.abs.setUint64(uint64(x)) z.neg = neg return z } // SetUint64 sets z to x and returns z. func (z *Int) SetUint64(x uint64) *Int { z.abs = z.abs.setUint64(x) z.neg = false return z } // NewInt allocates and returns a new Int set to x. func NewInt(x int64) *Int { return new(Int).SetInt64(x) } // Set sets z to x and returns z. func (z *Int) Set(x *Int) *Int { if z != x { z.abs = z.abs.set(x.abs) z.neg = x.neg } return z } // Bits provides raw (unchecked but fast) access to x by returning its // absolute value as a little-endian Word slice. The result and x share // the same underlying array. // Bits is intended to support implementation of missing low-level Int // functionality outside this package; it should be avoided otherwise. func (x *Int) Bits() []Word { return x.abs } // SetBits provides raw (unchecked but fast) access to z by setting its // value to abs, interpreted as a little-endian Word slice, and returning // z. The result and abs share the same underlying array. // SetBits is intended to support implementation of missing low-level Int // functionality outside this package; it should be avoided otherwise. func (z *Int) SetBits(abs []Word) *Int { z.abs = nat(abs).norm() z.neg = false return z } // Abs sets z to |x| (the absolute value of x) and returns z. func (z *Int) Abs(x *Int) *Int { z.Set(x) z.neg = false return z } // Neg sets z to -x and returns z. func (z *Int) Neg(x *Int) *Int { z.Set(x) z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign return z } // Add sets z to the sum x+y and returns z. func (z *Int) Add(x, y *Int) *Int { neg := x.neg if x.neg == y.neg { // x + y == x + y // (-x) + (-y) == -(x + y) z.abs = z.abs.add(x.abs, y.abs) } else { // x + (-y) == x - y == -(y - x) // (-x) + y == y - x == -(x - y) if x.abs.cmp(y.abs) >= 0 { z.abs = z.abs.sub(x.abs, y.abs) } else { neg = !neg z.abs = z.abs.sub(y.abs, x.abs) } } z.neg = len(z.abs) > 0 && neg // 0 has no sign return z } // Sub sets z to the difference x-y and returns z. func (z *Int) Sub(x, y *Int) *Int { neg := x.neg if x.neg != y.neg { // x - (-y) == x + y // (-x) - y == -(x + y) z.abs = z.abs.add(x.abs, y.abs) } else { // x - y == x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if x.abs.cmp(y.abs) >= 0 { z.abs = z.abs.sub(x.abs, y.abs) } else { neg = !neg z.abs = z.abs.sub(y.abs, x.abs) } } z.neg = len(z.abs) > 0 && neg // 0 has no sign return z } // Mul sets z to the product x*y and returns z. func (z *Int) Mul(x, y *Int) *Int { // x * y == x * y // x * (-y) == -(x * y) // (-x) * y == -(x * y) // (-x) * (-y) == x * y if x == y { z.abs = z.abs.sqr(x.abs) z.neg = false return z } z.abs = z.abs.mul(x.abs, y.abs) z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign return z } // MulRange sets z to the product of all integers // in the range [a, b] inclusively and returns z. // If a > b (empty range), the result is 1. func (z *Int) MulRange(a, b int64) *Int { switch { case a > b: return z.SetInt64(1) // empty range case a <= 0 && b >= 0: return z.SetInt64(0) // range includes 0 } // a <= b && (b < 0 || a > 0) neg := false if a < 0 { neg = (b-a)&1 == 0 a, b = -b, -a } z.abs = z.abs.mulRange(uint64(a), uint64(b)) z.neg = neg return z } // Binomial sets z to the binomial coefficient of (n, k) and returns z. func (z *Int) Binomial(n, k int64) *Int { // reduce the number of multiplications by reducing k if n/2 < k && k <= n { k = n - k // Binomial(n, k) == Binomial(n, n-k) } var a, b Int a.MulRange(n-k+1, n) b.MulRange(1, k) return z.Quo(&a, &b) } // Quo sets z to the quotient x/y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Quo implements truncated division (like Go); see QuoRem for more details. func (z *Int) Quo(x, y *Int) *Int { z.abs, _ = z.abs.div(nil, x.abs, y.abs) z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign return z } // Rem sets z to the remainder x%y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Rem implements truncated modulus (like Go); see QuoRem for more details. func (z *Int) Rem(x, y *Int) *Int { _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) z.neg = len(z.abs) > 0 && x.neg // 0 has no sign return z } // QuoRem sets z to the quotient x/y and r to the remainder x%y // and returns the pair (z, r) for y != 0. // If y == 0, a division-by-zero run-time panic occurs. // // QuoRem implements T-division and modulus (like Go): // // q = x/y with the result truncated to zero // r = x - y*q // // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) // See DivMod for Euclidean division and modulus (unlike Go). // func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign return z, r } // Div sets z to the quotient x/y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Div implements Euclidean division (unlike Go); see DivMod for more details. func (z *Int) Div(x, y *Int) *Int { y_neg := y.neg // z may be an alias for y var r Int z.QuoRem(x, y, &r) if r.neg { if y_neg { z.Add(z, intOne) } else { z.Sub(z, intOne) } } return z } // Mod sets z to the modulus x%y for y != 0 and returns z. // If y == 0, a division-by-zero run-time panic occurs. // Mod implements Euclidean modulus (unlike Go); see DivMod for more details. func (z *Int) Mod(x, y *Int) *Int { y0 := y // save y if z == y || alias(z.abs, y.abs) { y0 = new(Int).Set(y) } var q Int q.QuoRem(x, y, z) if z.neg { if y0.neg { z.Sub(z, y0) } else { z.Add(z, y0) } } return z } // DivMod sets z to the quotient x div y and m to the modulus x mod y // and returns the pair (z, m) for y != 0. // If y == 0, a division-by-zero run-time panic occurs. // // DivMod implements Euclidean division and modulus (unlike Go): // // q = x div y such that // m = x - y*q with 0 <= m < |y| // // (See Raymond T. Boute, ``The Euclidean definition of the functions // div and mod''. ACM Transactions on Programming Languages and // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. // ACM press.) // See QuoRem for T-division and modulus (like Go). // func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { y0 := y // save y if z == y || alias(z.abs, y.abs) { y0 = new(Int).Set(y) } z.QuoRem(x, y, m) if m.neg { if y0.neg { z.Add(z, intOne) m.Sub(m, y0) } else { z.Sub(z, intOne) m.Add(m, y0) } } return z, m } // Cmp compares x and y and returns: // // -1 if x < y // 0 if x == y // +1 if x > y // func (x *Int) Cmp(y *Int) (r int) { // x cmp y == x cmp y // x cmp (-y) == x // (-x) cmp y == y // (-x) cmp (-y) == -(x cmp y) switch { case x.neg == y.neg: r = x.abs.cmp(y.abs) if x.neg { r = -r } case x.neg: r = -1 default: r = 1 } return } // CmpAbs compares the absolute values of x and y and returns: // // -1 if |x| < |y| // 0 if |x| == |y| // +1 if |x| > |y| // func (x *Int) CmpAbs(y *Int) int { return x.abs.cmp(y.abs) } // low32 returns the least significant 32 bits of x. func low32(x nat) uint32 { if len(x) == 0 { return 0 } return uint32(x[0]) } // low64 returns the least significant 64 bits of x. func low64(x nat) uint64 { if len(x) == 0 { return 0 } v := uint64(x[0]) if _W == 32 && len(x) > 1 { return uint64(x[1])<<32 | v } return v } // Int64 returns the int64 representation of x. // If x cannot be represented in an int64, the result is undefined. func (x *Int) Int64() int64 { v := int64(low64(x.abs)) if x.neg { v = -v } return v } // Uint64 returns the uint64 representation of x. // If x cannot be represented in a uint64, the result is undefined. func (x *Int) Uint64() uint64 { return low64(x.abs) } // IsInt64 reports whether x can be represented as an int64. func (x *Int) IsInt64() bool { if len(x.abs) <= 64/_W { w := int64(low64(x.abs)) return w >= 0 || x.neg && w == -w } return false } // IsUint64 reports whether x can be represented as a uint64. func (x *Int) IsUint64() bool { return !x.neg && len(x.abs) <= 64/_W } // SetString sets z to the value of s, interpreted in the given base, // and returns z and a boolean indicating success. The entire string // (not just a prefix) must be valid for success. If SetString fails, // the value of z is undefined but the returned value is nil. // // The base argument must be 0 or a value between 2 and MaxBase. If the base // is 0, the string prefix determines the actual conversion base. A prefix of // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. // // For bases <= 36, lower and upper case letters are considered the same: // The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35. // For bases > 36, the upper case letters 'A' to 'Z' represent the digit // values 36 to 61. // func (z *Int) SetString(s string, base int) (*Int, bool) { return z.setFromScanner(strings.NewReader(s), base) } // setFromScanner implements SetString given an io.BytesScanner. // For documentation see comments of SetString. func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) { if _, _, err := z.scan(r, base); err != nil { return nil, false } // entire content must have been consumed if _, err := r.ReadByte(); err != io.EOF { return nil, false } return z, true // err == io.EOF => scan consumed all content of r } // SetBytes interprets buf as the bytes of a big-endian unsigned // integer, sets z to that value, and returns z. func (z *Int) SetBytes(buf []byte) *Int { z.abs = z.abs.setBytes(buf) z.neg = false return z } // Bytes returns the absolute value of x as a big-endian byte slice. func (x *Int) Bytes() []byte { buf := make([]byte, len(x.abs)*_S) return buf[x.abs.bytes(buf):] } // BitLen returns the length of the absolute value of x in bits. // The bit length of 0 is 0. func (x *Int) BitLen() int { return x.abs.bitLen() } // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y. // // Modular exponentation of inputs of a particular size is not a // cryptographically constant-time operation. func (z *Int) Exp(x, y, m *Int) *Int { // See Knuth, volume 2, section 4.6.3. var yWords nat if !y.neg { yWords = y.abs } // y >= 0 var mWords nat if m != nil { mWords = m.abs // m.abs may be nil for m == 0 } z.abs = z.abs.expNN(x.abs, yWords, mWords) z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign if z.neg && len(mWords) > 0 { // make modulus result positive z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| z.neg = false } return z } // GCD sets z to the greatest common divisor of a and b, which both must // be > 0, and returns z. // If x or y are not nil, GCD sets their value such that z = a*x + b*y. // If either a or b is <= 0, GCD sets z = x = y = 0. func (z *Int) GCD(x, y, a, b *Int) *Int { if a.Sign() <= 0 || b.Sign() <= 0 { z.SetInt64(0) if x != nil { x.SetInt64(0) } if y != nil { y.SetInt64(0) } return z } if x == nil && y == nil { return z.lehmerGCD(a, b) } A := new(Int).Set(a) B := new(Int).Set(b) X := new(Int) lastX := new(Int).SetInt64(1) q := new(Int) temp := new(Int) r := new(Int) for len(B.abs) > 0 { q, r = q.QuoRem(A, B, r) A, B, r = B, r, A temp.Set(X) X.Mul(X, q) X.Sub(lastX, X) lastX.Set(temp) } if x != nil { *x = *lastX } if y != nil { // y = (z - a*x)/b y.Mul(a, lastX) y.Sub(A, y) y.Div(y, b) } *z = *A return z } // lehmerGCD sets z to the greatest common divisor of a and b, // which both must be > 0, and returns z. // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L. // This implementation uses the improved condition by Collins requiring only one // quotient and avoiding the possibility of single Word overflow. // See Jebelean, "Improving the multiprecision Euclidean algorithm", // Design and Implementation of Symbolic Computation Systems, pp 45-58. func (z *Int) lehmerGCD(a, b *Int) *Int { // ensure a >= b if a.abs.cmp(b.abs) < 0 { a, b = b, a } // don't destroy incoming values of a and b B := new(Int).Set(b) // must be set first in case b is an alias of z A := z.Set(a) // temp variables for multiprecision update t := new(Int) r := new(Int) s := new(Int) w := new(Int) // loop invariant A >= B for len(B.abs) > 1 { // initialize the digits var a1, a2, u0, u1, u2, v0, v1, v2 Word m := len(B.abs) // m >= 2 n := len(A.abs) // n >= m >= 2 // extract the top Word of bits from A and B h := nlz(A.abs[n-1]) a1 = (A.abs[n-1] << h) | (A.abs[n-2] >> (_W - h)) // B may have implicit zero words in the high bits if the lengths differ switch { case n == m: a2 = (B.abs[n-1] << h) | (B.abs[n-2] >> (_W - h)) case n == m+1: a2 = (B.abs[n-2] >> (_W - h)) default: a2 = 0 } // Since we are calculating with full words to avoid overflow, // we use 'even' to track the sign of the cosequences. // For even iterations: u0, v1 >= 0 && u1, v0 <= 0 // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0 // The first iteration starts with k=1 (odd). even := false // variables to track the cosequences u0, u1, u2 = 0, 1, 0 v0, v1, v2 = 0, 0, 1 // Calculate the quotient and cosequences using Collins' stopping condition. // Note that overflow of a Word is not possible when computing the remainder // sequence and cosequences since the cosequence size is bounded by the input size. // See section 4.2 of Jebelean for details. for a2 >= v2 && a1-a2 >= v1+v2 { q := a1 / a2 a1, a2 = a2, a1-q*a2 u0, u1, u2 = u1, u2, u1+q*u2 v0, v1, v2 = v1, v2, v1+q*v2 even = !even } // multiprecision step if v0 != 0 { // simulate the effect of the single precision steps using the cosequences // A = u0*A + v0*B // B = u1*A + v1*B t.abs = t.abs.setWord(u0) s.abs = s.abs.setWord(v0) t.neg = !even s.neg = even t.Mul(A, t) s.Mul(B, s) r.abs = r.abs.setWord(u1) w.abs = w.abs.setWord(v1) r.neg = even w.neg = !even r.Mul(A, r) w.Mul(B, w) A.Add(t, s) B.Add(r, w) } else { // single-digit calculations failed to simluate any quotients // do a standard Euclidean step t.Rem(A, B) A, B, t = B, t, A } } if len(B.abs) > 0 { // standard Euclidean algorithm base case for B a single Word if len(A.abs) > 1 { // A is longer than a single Word t.Rem(A, B) A, B, t = B, t, A } if len(B.abs) > 0 { // A and B are both a single Word a1, a2 := A.abs[0], B.abs[0] for a2 != 0 { a1, a2 = a2, a1%a2 } A.abs[0] = a1 } } *z = *A return z } // Rand sets z to a pseudo-random number in [0, n) and returns z. // // As this uses the math/rand package, it must not be used for // security-sensitive work. Use crypto/rand.Int instead. func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { z.neg = false if n.neg || len(n.abs) == 0 { z.abs = nil return z } z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) return z } // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ // and returns z. If g and n are not relatively prime, the result is undefined. func (z *Int) ModInverse(g, n *Int) *Int { if g.neg { // GCD expects parameters a and b to be > 0. var g2 Int g = g2.Mod(g, n) } var d Int d.GCD(z, nil, g, n) // x and y are such that g*x + n*y = d. Since g and n are // relatively prime, d = 1. Taking that modulo n results in // g*x = 1, therefore x is the inverse element. if z.neg { z.Add(z, n) } return z } // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. // The y argument must be an odd integer. func Jacobi(x, y *Int) int { if len(y.abs) == 0 || y.abs[0]&1 == 0 { panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y)) } // We use the formulation described in chapter 2, section 2.4, // "The Yacas Book of Algorithms": // http://yacas.sourceforge.net/Algo.book.pdf var a, b, c Int a.Set(x) b.Set(y) j := 1 if b.neg { if a.neg { j = -1 } b.neg = false } for { if b.Cmp(intOne) == 0 { return j } if len(a.abs) == 0 { return 0 } a.Mod(&a, &b) if len(a.abs) == 0 { return 0 } // a > 0 // handle factors of 2 in 'a' s := a.abs.trailingZeroBits() if s&1 != 0 { bmod8 := b.abs[0] & 7 if bmod8 == 3 || bmod8 == 5 { j = -j } } c.Rsh(&a, s) // a = 2^s*c // swap numerator and denominator if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 { j = -j } a.Set(&b) b.Set(&c) } } // modSqrt3Mod4 uses the identity // (a^((p+1)/4))^2 mod p // == u^(p+1) mod p // == u^2 mod p // to calculate the square root of any quadratic residue mod p quickly for 3 // mod 4 primes. func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int { e := new(Int).Add(p, intOne) // e = p + 1 e.Rsh(e, 2) // e = (p + 1) / 4 z.Exp(x, e, p) // z = x^e mod p return z } // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square // root of a quadratic residue modulo any prime. func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int { // Break p-1 into s*2^e such that s is odd. var s Int s.Sub(p, intOne) e := s.abs.trailingZeroBits() s.Rsh(&s, e) // find some non-square n var n Int n.SetInt64(2) for Jacobi(&n, p) != -1 { n.Add(&n, intOne) } // Core of the Tonelli-Shanks algorithm. Follows the description in // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra // Brown: // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf var y, b, g, t Int y.Add(&s, intOne) y.Rsh(&y, 1) y.Exp(x, &y, p) // y = x^((s+1)/2) b.Exp(x, &s, p) // b = x^s g.Exp(&n, &s, p) // g = n^s r := e for { // find the least m such that ord_p(b) = 2^m var m uint t.Set(&b) for t.Cmp(intOne) != 0 { t.Mul(&t, &t).Mod(&t, p) m++ } if m == 0 { return z.Set(&y) } t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p) // t = g^(2^(r-m-1)) mod p g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p y.Mul(&y, &t).Mod(&y, p) b.Mul(&b, &g).Mod(&b, p) r = m } } // ModSqrt sets z to a square root of x mod p if such a square root exists, and // returns z. The modulus p must be an odd prime. If x is not a square mod p, // ModSqrt leaves z unchanged and returns nil. This function panics if p is // not an odd integer. func (z *Int) ModSqrt(x, p *Int) *Int { switch Jacobi(x, p) { case -1: return nil // x is not a square mod p case 0: return z.SetInt64(0) // sqrt(0) mod p = 0 case 1: break } if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p x = new(Int).Mod(x, p) } // Check whether p is 3 mod 4, and if so, use the faster algorithm. if len(p.abs) > 0 && p.abs[0]%4 == 3 { return z.modSqrt3Mod4Prime(x, p) } // Otherwise, use Tonelli-Shanks. return z.modSqrtTonelliShanks(x, p) } // Lsh sets z = x << n and returns z. func (z *Int) Lsh(x *Int, n uint) *Int { z.abs = z.abs.shl(x.abs, n) z.neg = x.neg return z } // Rsh sets z = x >> n and returns z. func (z *Int) Rsh(x *Int, n uint) *Int { if x.neg { // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 t = t.shr(t, n) z.abs = t.add(t, natOne) z.neg = true // z cannot be zero if x is negative return z } z.abs = z.abs.shr(x.abs, n) z.neg = false return z } // Bit returns the value of the i'th bit of x. That is, it // returns (x>>i)&1. The bit index i must be >= 0. func (x *Int) Bit(i int) uint { if i == 0 { // optimization for common case: odd/even test of x if len(x.abs) > 0 { return uint(x.abs[0] & 1) // bit 0 is same for -x } return 0 } if i < 0 { panic("negative bit index") } if x.neg { t := nat(nil).sub(x.abs, natOne) return t.bit(uint(i)) ^ 1 } return x.abs.bit(uint(i)) } // SetBit sets z to x, with x's i'th bit set to b (0 or 1). // That is, if b is 1 SetBit sets z = x | (1 << i); // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, // SetBit will panic. func (z *Int) SetBit(x *Int, i int, b uint) *Int { if i < 0 { panic("negative bit index") } if x.neg { t := z.abs.sub(x.abs, natOne) t = t.setBit(t, uint(i), b^1) z.abs = t.add(t, natOne) z.neg = len(z.abs) > 0 return z } z.abs = z.abs.setBit(x.abs, uint(i), b) z.neg = false return z } // And sets z = x & y and returns z. func (z *Int) And(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) x1 := nat(nil).sub(x.abs, natOne) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.add(z.abs.or(x1, y1), natOne) z.neg = true // z cannot be zero if x and y are negative return z } // x & y == x & y z.abs = z.abs.and(x.abs, y.abs) z.neg = false return z } // x.neg != y.neg if x.neg { x, y = y, x // & is symmetric } // x & (-y) == x & ^(y-1) == x &^ (y-1) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.andNot(x.abs, y1) z.neg = false return z } // AndNot sets z = x &^ y and returns z. func (z *Int) AndNot(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) x1 := nat(nil).sub(x.abs, natOne) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.andNot(y1, x1) z.neg = false return z } // x &^ y == x &^ y z.abs = z.abs.andNot(x.abs, y.abs) z.neg = false return z } if x.neg { // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) x1 := nat(nil).sub(x.abs, natOne) z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) z.neg = true // z cannot be zero if x is negative and y is positive return z } // x &^ (-y) == x &^ ^(y-1) == x & (y-1) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.and(x.abs, y1) z.neg = false return z } // Or sets z = x | y and returns z. func (z *Int) Or(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) x1 := nat(nil).sub(x.abs, natOne) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.add(z.abs.and(x1, y1), natOne) z.neg = true // z cannot be zero if x and y are negative return z } // x | y == x | y z.abs = z.abs.or(x.abs, y.abs) z.neg = false return z } // x.neg != y.neg if x.neg { x, y = y, x // | is symmetric } // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) z.neg = true // z cannot be zero if one of x or y is negative return z } // Xor sets z = x ^ y and returns z. func (z *Int) Xor(x, y *Int) *Int { if x.neg == y.neg { if x.neg { // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) x1 := nat(nil).sub(x.abs, natOne) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.xor(x1, y1) z.neg = false return z } // x ^ y == x ^ y z.abs = z.abs.xor(x.abs, y.abs) z.neg = false return z } // x.neg != y.neg if x.neg { x, y = y, x // ^ is symmetric } // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) y1 := nat(nil).sub(y.abs, natOne) z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) z.neg = true // z cannot be zero if only one of x or y is negative return z } // Not sets z = ^x and returns z. func (z *Int) Not(x *Int) *Int { if x.neg { // ^(-x) == ^(^(x-1)) == x-1 z.abs = z.abs.sub(x.abs, natOne) z.neg = false return z } // ^x == -x-1 == -(x+1) z.abs = z.abs.add(x.abs, natOne) z.neg = true // z cannot be zero if x is positive return z } // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. // It panics if x is negative. func (z *Int) Sqrt(x *Int) *Int { if x.neg { panic("square root of negative number") } z.neg = false z.abs = z.abs.sqrt(x.abs) return z }