// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Simplifications that apply to all backend architectures. As an example, this // Go source code // // y := 0 * x // // can be translated into y := 0 without losing any information, which saves a // pointless multiplication instruction. Other .rules files in this directory // (for example AMD64.rules) contain rules specific to the architecture in the // filename. The rules here apply to every architecture. // // The code for parsing this file lives in rulegen.go; this file generates // ssa/rewritegeneric.go. // values are specified using the following format: // (op <type> [auxint] {aux} arg0 arg1 ...) // the type, aux, and auxint fields are optional // on the matching side // - the type, aux, and auxint fields must match if they are specified. // - the first occurrence of a variable defines that variable. Subsequent // uses must match (be == to) the first use. // - v is defined to be the value matched. // - an additional conditional can be provided after the match pattern with "&&". // on the generated side // - the type of the top-level expression is the same as the one on the left-hand side. // - the type of any subexpressions must be specified explicitly (or // be specified in the op's type field). // - auxint will be 0 if not specified. // - aux will be nil if not specified. // blocks are specified using the following format: // (kind controlvalue succ0 succ1 ...) // controlvalue must be "nil" or a value expression // succ* fields must be variables // For now, the generated successors must be a permutation of the matched successors. // constant folding (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))]) (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float (Cvt32to32F (Const32 [c])) -> (Const32F [f2i(float64(float32(int32(c))))]) (Cvt32to64F (Const32 [c])) -> (Const64F [f2i(float64(int32(c)))]) (Cvt64to32F (Const64 [c])) -> (Const32F [f2i(float64(float32(c)))]) (Cvt64to64F (Const64 [c])) -> (Const64F [f2i(float64(c))]) (Cvt32Fto32 (Const32F [c])) -> (Const32 [int64(int32(i2f(c)))]) (Cvt32Fto64 (Const32F [c])) -> (Const64 [int64(i2f(c))]) (Cvt64Fto32 (Const64F [c])) -> (Const32 [int64(int32(i2f(c)))]) (Cvt64Fto64 (Const64F [c])) -> (Const64 [int64(i2f(c))]) (Round32F x:(Const32F)) -> x (Round64F x:(Const64F)) -> x (Trunc16to8 (ZeroExt8to16 x)) -> x (Trunc32to8 (ZeroExt8to32 x)) -> x (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) (Trunc32to16 (ZeroExt16to32 x)) -> x (Trunc64to8 (ZeroExt8to64 x)) -> x (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) (Trunc64to16 (ZeroExt16to64 x)) -> x (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) (Trunc64to32 (ZeroExt32to64 x)) -> x (Trunc16to8 (SignExt8to16 x)) -> x (Trunc32to8 (SignExt8to32 x)) -> x (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) (Trunc32to16 (SignExt16to32 x)) -> x (Trunc64to8 (SignExt8to64 x)) -> x (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) (Trunc64to16 (SignExt16to64 x)) -> x (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) (Trunc64to32 (SignExt32to64 x)) -> x (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) (Neg64 (Const64 [c])) -> (Const64 [-c]) (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))]) (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))]) (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) (Add32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))]) (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c]) (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c]) (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) (Sub32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) - i2f32(d)))]) (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))]) (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) (Mul32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) * i2f32(d)))]) (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))]) (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))]) (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))]) // Convert x * 1 to x. (Mul8 (Const8 [1]) x) -> x (Mul16 (Const16 [1]) x) -> x (Mul32 (Const32 [1]) x) -> x (Mul64 (Const64 [1]) x) -> x // Convert x * -1 to -x. (Mul8 (Const8 [-1]) x) -> (Neg8 x) (Mul16 (Const16 [-1]) x) -> (Neg16 x) (Mul32 (Const32 [-1]) x) -> (Neg32 x) (Mul64 (Const64 [-1]) x) -> (Neg64 x) // Convert multiplication by a power of two to a shift. (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(c)])) (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)])) (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)])) (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)])) (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) // Fold IsInBounds when the range of the index cannot exceed the limit. (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) (IsInBounds x x) -> (ConstBool [0]) (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) // Right shifting a unsigned number limits its value. (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d -> (ConstBool [1]) (IsSliceInBounds x x) -> (ConstBool [1]) (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) (Eq64 x x) -> (ConstBool [1]) (Eq32 x x) -> (ConstBool [1]) (Eq16 x x) -> (ConstBool [1]) (Eq8 x x) -> (ConstBool [1]) (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) (EqB (ConstBool [0]) x) -> (Not x) (EqB (ConstBool [1]) x) -> x (Neq64 x x) -> (ConstBool [0]) (Neq32 x x) -> (ConstBool [0]) (Neq16 x x) -> (ConstBool [0]) (Neq8 x x) -> (ConstBool [0]) (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) (NeqB (ConstBool [0]) x) -> x (NeqB (ConstBool [1]) x) -> (Not x) (NeqB (Not x) (Not y)) -> (NeqB x y) (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x) (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x) (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x) (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Eq8 (Const8 <t> [int64(int8(c-d))]) x) (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x) (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x) (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x) (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x) // Canonicalize x-const to x+(-const) (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x) (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x) (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x) (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 -> (Add8 (Const8 <t> [int64(int8(-c))]) x) // fold negation into comparison operators (Not (Eq64 x y)) -> (Neq64 x y) (Not (Eq32 x y)) -> (Neq32 x y) (Not (Eq16 x y)) -> (Neq16 x y) (Not (Eq8 x y)) -> (Neq8 x y) (Not (EqB x y)) -> (NeqB x y) (Not (Neq64 x y)) -> (Eq64 x y) (Not (Neq32 x y)) -> (Eq32 x y) (Not (Neq16 x y)) -> (Eq16 x y) (Not (Neq8 x y)) -> (Eq8 x y) (Not (NeqB x y)) -> (EqB x y) (Not (Greater64 x y)) -> (Leq64 x y) (Not (Greater32 x y)) -> (Leq32 x y) (Not (Greater16 x y)) -> (Leq16 x y) (Not (Greater8 x y)) -> (Leq8 x y) (Not (Greater64U x y)) -> (Leq64U x y) (Not (Greater32U x y)) -> (Leq32U x y) (Not (Greater16U x y)) -> (Leq16U x y) (Not (Greater8U x y)) -> (Leq8U x y) (Not (Geq64 x y)) -> (Less64 x y) (Not (Geq32 x y)) -> (Less32 x y) (Not (Geq16 x y)) -> (Less16 x y) (Not (Geq8 x y)) -> (Less8 x y) (Not (Geq64U x y)) -> (Less64U x y) (Not (Geq32U x y)) -> (Less32U x y) (Not (Geq16U x y)) -> (Less16U x y) (Not (Geq8U x y)) -> (Less8U x y) (Not (Less64 x y)) -> (Geq64 x y) (Not (Less32 x y)) -> (Geq32 x y) (Not (Less16 x y)) -> (Geq16 x y) (Not (Less8 x y)) -> (Geq8 x y) (Not (Less64U x y)) -> (Geq64U x y) (Not (Less32U x y)) -> (Geq32U x y) (Not (Less16U x y)) -> (Geq16U x y) (Not (Less8U x y)) -> (Geq8U x y) (Not (Leq64 x y)) -> (Greater64 x y) (Not (Leq32 x y)) -> (Greater32 x y) (Not (Leq16 x y)) -> (Greater16 x y) (Not (Leq8 x y)) -> (Greater8 x y) (Not (Leq64U x y)) -> (Greater64U x y) (Not (Leq32U x y)) -> (Greater32U x y) (Not (Leq16U x y)) -> (Greater16U x y) (Not (Leq8U x y)) -> (Greater8U x y) // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: // a[i].b = ...; a[i+1].b = ... (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x)) // Rewrite x*y + x*z to x*(y+z) (Add64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Add64 <t> y z)) (Add32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Add32 <t> y z)) (Add16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Add16 <t> y z)) (Add8 <t> (Mul8 x y) (Mul8 x z)) -> (Mul8 x (Add8 <t> y z)) // Rewrite x*y - x*z to x*(y-z) (Sub64 <t> (Mul64 x y) (Mul64 x z)) -> (Mul64 x (Sub64 <t> y z)) (Sub32 <t> (Mul32 x y) (Mul32 x z)) -> (Mul32 x (Sub32 <t> y z)) (Sub16 <t> (Mul16 x y) (Mul16 x z)) -> (Mul16 x (Sub16 <t> y z)) (Sub8 <t> (Mul8 x y) (Mul8 x z)) -> (Mul8 x (Sub8 <t> y z)) // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce // the number of the other rewrite rules for const shifts (Lsh64x32 <t> x (Const32 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) (Lsh64x16 <t> x (Const16 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) (Lsh64x8 <t> x (Const8 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) (Rsh64x32 <t> x (Const32 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) (Rsh64x16 <t> x (Const16 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) (Rsh64x8 <t> x (Const8 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) (Rsh64Ux8 <t> x (Const8 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) (Lsh32x32 <t> x (Const32 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) (Lsh32x16 <t> x (Const16 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) (Lsh32x8 <t> x (Const8 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) (Rsh32x32 <t> x (Const32 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) (Rsh32x16 <t> x (Const16 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) (Rsh32x8 <t> x (Const8 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) (Rsh32Ux8 <t> x (Const8 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) (Lsh16x32 <t> x (Const32 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) (Lsh16x16 <t> x (Const16 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) (Lsh16x8 <t> x (Const8 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) (Rsh16x32 <t> x (Const32 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) (Rsh16x16 <t> x (Const16 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) (Rsh16x8 <t> x (Const8 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) (Rsh16Ux8 <t> x (Const8 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) (Lsh8x32 <t> x (Const32 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) (Lsh8x16 <t> x (Const16 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) (Lsh8x8 <t> x (Const8 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) (Rsh8x32 <t> x (Const32 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) (Rsh8x16 <t> x (Const16 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) (Rsh8x8 <t> x (Const8 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) (Rsh8Ux8 <t> x (Const8 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) // shifts by zero (Lsh64x64 x (Const64 [0])) -> x (Rsh64x64 x (Const64 [0])) -> x (Rsh64Ux64 x (Const64 [0])) -> x (Lsh32x64 x (Const64 [0])) -> x (Rsh32x64 x (Const64 [0])) -> x (Rsh32Ux64 x (Const64 [0])) -> x (Lsh16x64 x (Const64 [0])) -> x (Rsh16x64 x (Const64 [0])) -> x (Rsh16Ux64 x (Const64 [0])) -> x (Lsh8x64 x (Const64 [0])) -> x (Rsh8x64 x (Const64 [0])) -> x (Rsh8Ux64 x (Const64 [0])) -> x // zero shifted. (Lsh64x64 (Const64 [0]) _) -> (Const64 [0]) (Lsh64x32 (Const64 [0]) _) -> (Const64 [0]) (Lsh64x16 (Const64 [0]) _) -> (Const64 [0]) (Lsh64x8 (Const64 [0]) _) -> (Const64 [0]) (Rsh64x64 (Const64 [0]) _) -> (Const64 [0]) (Rsh64x32 (Const64 [0]) _) -> (Const64 [0]) (Rsh64x16 (Const64 [0]) _) -> (Const64 [0]) (Rsh64x8 (Const64 [0]) _) -> (Const64 [0]) (Rsh64Ux64 (Const64 [0]) _) -> (Const64 [0]) (Rsh64Ux32 (Const64 [0]) _) -> (Const64 [0]) (Rsh64Ux16 (Const64 [0]) _) -> (Const64 [0]) (Rsh64Ux8 (Const64 [0]) _) -> (Const64 [0]) (Lsh32x64 (Const32 [0]) _) -> (Const32 [0]) (Lsh32x32 (Const32 [0]) _) -> (Const32 [0]) (Lsh32x16 (Const32 [0]) _) -> (Const32 [0]) (Lsh32x8 (Const32 [0]) _) -> (Const32 [0]) (Rsh32x64 (Const32 [0]) _) -> (Const32 [0]) (Rsh32x32 (Const32 [0]) _) -> (Const32 [0]) (Rsh32x16 (Const32 [0]) _) -> (Const32 [0]) (Rsh32x8 (Const32 [0]) _) -> (Const32 [0]) (Rsh32Ux64 (Const32 [0]) _) -> (Const32 [0]) (Rsh32Ux32 (Const32 [0]) _) -> (Const32 [0]) (Rsh32Ux16 (Const32 [0]) _) -> (Const32 [0]) (Rsh32Ux8 (Const32 [0]) _) -> (Const32 [0]) (Lsh16x64 (Const16 [0]) _) -> (Const16 [0]) (Lsh16x32 (Const16 [0]) _) -> (Const16 [0]) (Lsh16x16 (Const16 [0]) _) -> (Const16 [0]) (Lsh16x8 (Const16 [0]) _) -> (Const16 [0]) (Rsh16x64 (Const16 [0]) _) -> (Const16 [0]) (Rsh16x32 (Const16 [0]) _) -> (Const16 [0]) (Rsh16x16 (Const16 [0]) _) -> (Const16 [0]) (Rsh16x8 (Const16 [0]) _) -> (Const16 [0]) (Rsh16Ux64 (Const16 [0]) _) -> (Const16 [0]) (Rsh16Ux32 (Const16 [0]) _) -> (Const16 [0]) (Rsh16Ux16 (Const16 [0]) _) -> (Const16 [0]) (Rsh16Ux8 (Const16 [0]) _) -> (Const16 [0]) (Lsh8x64 (Const8 [0]) _) -> (Const8 [0]) (Lsh8x32 (Const8 [0]) _) -> (Const8 [0]) (Lsh8x16 (Const8 [0]) _) -> (Const8 [0]) (Lsh8x8 (Const8 [0]) _) -> (Const8 [0]) (Rsh8x64 (Const8 [0]) _) -> (Const8 [0]) (Rsh8x32 (Const8 [0]) _) -> (Const8 [0]) (Rsh8x16 (Const8 [0]) _) -> (Const8 [0]) (Rsh8x8 (Const8 [0]) _) -> (Const8 [0]) (Rsh8Ux64 (Const8 [0]) _) -> (Const8 [0]) (Rsh8Ux32 (Const8 [0]) _) -> (Const8 [0]) (Rsh8Ux16 (Const8 [0]) _) -> (Const8 [0]) (Rsh8Ux8 (Const8 [0]) _) -> (Const8 [0]) // large left shifts of all values, and right shifts of unsigned values (Lsh64x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) (Rsh64Ux64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) // combine const shifts (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d])) (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d])) (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d])) (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 <t> [c+d])) (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d])) (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d])) (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d])) (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 <t> [c+d])) (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d])) (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d])) (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d])) (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 <t> [c+d])) // ((x >> c1) << c2) >> c3 (Rsh64Ux64 (Lsh64x64 (Rsh64Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Rsh64Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) (Rsh32Ux64 (Lsh32x64 (Rsh32Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Rsh32Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) (Rsh16Ux64 (Lsh16x64 (Rsh16Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Rsh16Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) (Rsh8Ux64 (Lsh8x64 (Rsh8Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Rsh8Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) // ((x << c1) >> c2) << c3 (Lsh64x64 (Rsh64Ux64 (Lsh64x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Lsh64x64 x (Const64 <typ.UInt64> [c1-c2+c3])) (Lsh32x64 (Rsh32Ux64 (Lsh32x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Lsh32x64 x (Const64 <typ.UInt64> [c1-c2+c3])) (Lsh16x64 (Rsh16Ux64 (Lsh16x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Lsh16x64 x (Const64 <typ.UInt64> [c1-c2+c3])) (Lsh8x64 (Rsh8Ux64 (Lsh8x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Lsh8x64 x (Const64 <typ.UInt64> [c1-c2+c3])) // replace shifts with zero extensions (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) // replace shifts with sign extensions (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 <typ.Int8> x)) (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 <typ.Int8> x)) (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 <typ.Int8> x)) (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x)) (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x)) (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x)) // constant comparisons (Eq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c == d)]) (Eq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c == d)]) (Eq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c == d)]) (Eq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c == d)]) (Neq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c != d)]) (Neq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c != d)]) (Neq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c != d)]) (Neq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c != d)]) (Greater64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c > d)]) (Greater32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c > d)]) (Greater16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c > d)]) (Greater8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c > d)]) (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) (Geq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c >= d)]) (Geq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c >= d)]) (Geq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c >= d)]) (Geq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c >= d)]) (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) (Less64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c < d)]) (Less32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c < d)]) (Less16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c < d)]) (Less8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c < d)]) (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) (Leq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c <= d)]) (Leq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c <= d)]) (Leq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c <= d)]) (Leq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c <= d)]) (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) // constant floating point comparisons (Eq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))]) (Eq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))]) (Neq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))]) (Neq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))]) (Greater64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))]) (Greater32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))]) (Geq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))]) (Geq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))]) (Less64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))]) (Less32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))]) (Leq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))]) (Leq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))]) // simplifications (Or64 x x) -> x (Or32 x x) -> x (Or16 x x) -> x (Or8 x x) -> x (Or64 (Const64 [0]) x) -> x (Or32 (Const32 [0]) x) -> x (Or16 (Const16 [0]) x) -> x (Or8 (Const8 [0]) x) -> x (Or64 (Const64 [-1]) _) -> (Const64 [-1]) (Or32 (Const32 [-1]) _) -> (Const32 [-1]) (Or16 (Const16 [-1]) _) -> (Const16 [-1]) (Or8 (Const8 [-1]) _) -> (Const8 [-1]) (And64 x x) -> x (And32 x x) -> x (And16 x x) -> x (And8 x x) -> x (And64 (Const64 [-1]) x) -> x (And32 (Const32 [-1]) x) -> x (And16 (Const16 [-1]) x) -> x (And8 (Const8 [-1]) x) -> x (And64 (Const64 [0]) _) -> (Const64 [0]) (And32 (Const32 [0]) _) -> (Const32 [0]) (And16 (Const16 [0]) _) -> (Const16 [0]) (And8 (Const8 [0]) _) -> (Const8 [0]) (Xor64 x x) -> (Const64 [0]) (Xor32 x x) -> (Const32 [0]) (Xor16 x x) -> (Const16 [0]) (Xor8 x x) -> (Const8 [0]) (Xor64 (Const64 [0]) x) -> x (Xor32 (Const32 [0]) x) -> x (Xor16 (Const16 [0]) x) -> x (Xor8 (Const8 [0]) x) -> x (Add64 (Const64 [0]) x) -> x (Add32 (Const32 [0]) x) -> x (Add16 (Const16 [0]) x) -> x (Add8 (Const8 [0]) x) -> x (Sub64 x x) -> (Const64 [0]) (Sub32 x x) -> (Const32 [0]) (Sub16 x x) -> (Const16 [0]) (Sub8 x x) -> (Const8 [0]) (Mul64 (Const64 [0]) _) -> (Const64 [0]) (Mul32 (Const32 [0]) _) -> (Const32 [0]) (Mul16 (Const16 [0]) _) -> (Const16 [0]) (Mul8 (Const8 [0]) _) -> (Const8 [0]) (Com8 (Com8 x)) -> x (Com16 (Com16 x)) -> x (Com32 (Com32 x)) -> x (Com64 (Com64 x)) -> x (Com8 (Const8 [c])) -> (Const8 [^c]) (Com16 (Const16 [c])) -> (Const16 [^c]) (Com32 (Const32 [c])) -> (Const32 [^c]) (Com64 (Const64 [c])) -> (Const64 [^c]) (Neg8 (Sub8 x y)) -> (Sub8 y x) (Neg16 (Sub16 x y)) -> (Sub16 y x) (Neg32 (Sub32 x y)) -> (Sub32 y x) (Neg64 (Sub64 x y)) -> (Sub64 y x) (Add8 (Const8 [1]) (Com8 x)) -> (Neg8 x) (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x) (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x) (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x) (And64 x (And64 x y)) -> (And64 x y) (And32 x (And32 x y)) -> (And32 x y) (And16 x (And16 x y)) -> (And16 x y) (And8 x (And8 x y)) -> (And8 x y) (Or64 x (Or64 x y)) -> (Or64 x y) (Or32 x (Or32 x y)) -> (Or32 x y) (Or16 x (Or16 x y)) -> (Or16 x y) (Or8 x (Or8 x y)) -> (Or8 x y) (Xor64 x (Xor64 x y)) -> y (Xor32 x (Xor32 x y)) -> y (Xor16 x (Xor16 x y)) -> y (Xor8 x (Xor8 x y)) -> y // Ands clear bits. Ors set bits. // If a subsequent Or will set all the bits // that an And cleared, we can skip the And. // This happens in bitmasking code like: // x &^= 3 << shift // clear two old bits // x |= v << shift // set two new bits // when shift is a small constant and v ends up a constant 3. (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 -> (Or8 (Const8 <t> [c1]) x) (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x) (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x) (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x) (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) (Slicemask (Const32 [0])) -> (Const32 [0]) (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) (Slicemask (Const64 [0])) -> (Const64 [0]) // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands // leading zeros can be shifted left, then right (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32 -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)])) // trailing zeros can be shifted right, then left (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32 -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)])) // simplifications often used for lengths. e.g. len(s[i:i+5])==5 (Sub64 (Add64 x y) x) -> y (Sub64 (Add64 x y) y) -> x (Sub32 (Add32 x y) x) -> y (Sub32 (Add32 x y) y) -> x (Sub16 (Add16 x y) x) -> y (Sub16 (Add16 x y) y) -> x (Sub8 (Add8 x y) x) -> y (Sub8 (Add8 x y) y) -> x // basic phi simplifications (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) // user nil checks (NeqPtr p (ConstNil)) -> (IsNonNil p) (EqPtr p (ConstNil)) -> (Not (IsNonNil p)) (IsNonNil (ConstNil)) -> (ConstBool [0]) // slice and interface comparisons // The frontend ensures that we can only compare against nil, // so we need only compare the first word (interface type or slice ptr). (EqInter x y) -> (EqPtr (ITab x) (ITab y)) (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) // Load of store of same address, with compatibly typed value and same size (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == t2.(*types.Type).Size() -> x // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitFloat(t1) -> (Const64F [x]) (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitFloat(t1) -> (Const32F [f2i(float64(math.Float32frombits(uint32(x))))]) (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 8 && is64BitInt(t1) -> (Const64 [x]) (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.(*types.Type).Size() == 4 && is32BitInt(t1) -> (Const32 [int64(int32(math.Float32bits(float32(i2f(x)))))]) // Eliminate stores of values that have just been loaded from the same location. // We also handle the common case where there are some intermediate stores to non-overlapping struct fields. (Store {t1} p1 (Load <t2> p2 mem) mem) && isSamePtr(p1, p2) && t2.Size() == t1.(*types.Type).Size() -> mem (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ oldmem)) && isSamePtr(p1, p2) && isSamePtr(p1, p3) && t2.Size() == t1.(*types.Type).Size() && !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) -> mem (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ oldmem))) && isSamePtr(p1, p2) && isSamePtr(p1, p3) && isSamePtr(p1, p4) && t2.Size() == t1.(*types.Type).Size() && !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) -> mem (Store {t1} (OffPtr [o1] p1) (Load <t2> (OffPtr [o1] p2) oldmem) mem:(Store {t3} (OffPtr [o3] p3) _ (Store {t4} (OffPtr [o4] p4) _ (Store {t5} (OffPtr [o5] p5) _ oldmem)))) && isSamePtr(p1, p2) && isSamePtr(p1, p3) && isSamePtr(p1, p4) && isSamePtr(p1, p5) && t2.Size() == t1.(*types.Type).Size() && !overlap(o1, t2.Size(), o3, t3.(*types.Type).Size()) && !overlap(o1, t2.Size(), o4, t4.(*types.Type).Size()) && !overlap(o1, t2.Size(), o5, t5.(*types.Type).Size()) -> mem // Collapse OffPtr (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p // indexing operations // Note: bounds check has already been done (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.ElemType().Size()]))) (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.ElemType().Size()]))) // struct operations (StructSelect (StructMake1 x)) -> x (StructSelect [0] (StructMake2 x _)) -> x (StructSelect [1] (StructMake2 _ x)) -> x (StructSelect [0] (StructMake3 x _ _)) -> x (StructSelect [1] (StructMake3 _ x _)) -> x (StructSelect [2] (StructMake3 _ _ x)) -> x (StructSelect [0] (StructMake4 x _ _ _)) -> x (StructSelect [1] (StructMake4 _ x _ _)) -> x (StructSelect [2] (StructMake4 _ _ x _)) -> x (StructSelect [3] (StructMake4 _ _ _ x)) -> x (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> (StructMake0) (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> (StructMake1 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> (StructMake2 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> (StructMake3 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> (StructMake4 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) -> @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) (Store _ (StructMake0) mem) -> mem (Store dst (StructMake1 <t> f0) mem) -> (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) (Store dst (StructMake2 <t> f0 f1) mem) -> (Store {t.FieldType(1)} (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)) (Store dst (StructMake3 <t> f0 f1 f2) mem) -> (Store {t.FieldType(2)} (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) f2 (Store {t.FieldType(1)} (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem))) (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) -> (Store {t.FieldType(3)} (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) f3 (Store {t.FieldType(2)} (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) f2 (Store {t.FieldType(1)} (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)))) // Putting struct{*byte} and similar into direct interfaces. (IMake typ (StructMake1 val)) -> (IMake typ val) (StructSelect [0] x:(IData _)) -> x // un-SSAable values use mem->mem copies (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) -> (Move {t} [t.(*types.Type).Size()] dst src mem) (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) -> (Move {t} [t.(*types.Type).Size()] dst src (VarDef {x} mem)) // array ops (ArraySelect (ArrayMake1 x)) -> x (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 -> (ArrayMake0) (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> (ArrayMake1 (Load <t.ElemType()> ptr mem)) (Store _ (ArrayMake0) mem) -> mem (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) // Putting [1]{*byte} and similar into direct interfaces. (IMake typ (ArrayMake1 val)) -> (IMake typ val) (ArraySelect [0] x:(IData _)) -> x // string ops // Decomposing StringMake and lowering of StringPtr and StringLen // happens in a later pass, dec, so that these operations are available // to other passes for optimizations. (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c]) (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c]) (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> (StringMake (ConstNil) (Const32 <typ.Int> [0])) (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> (StringMake (ConstNil) (Const64 <typ.Int> [0])) (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> (StringMake (Addr <typ.BytePtr> {fe.StringData(s.(string))} (SB)) (Const32 <typ.Int> [int64(len(s.(string)))])) (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> (StringMake (Addr <typ.BytePtr> {fe.StringData(s.(string))} (SB)) (Const64 <typ.Int> [int64(len(s.(string)))])) // slice ops // Only a few slice rules are provided here. See dec.rules for // a more comprehensive set. (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c]) (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c]) (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c]) (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c]) (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) (ConstSlice) && config.PtrSize == 4 -> (SliceMake (ConstNil <v.Type.ElemType().PtrTo()>) (Const32 <typ.Int> [0]) (Const32 <typ.Int> [0])) (ConstSlice) && config.PtrSize == 8 -> (SliceMake (ConstNil <v.Type.ElemType().PtrTo()>) (Const64 <typ.Int> [0]) (Const64 <typ.Int> [0])) // interface ops (ConstInterface) -> (IMake (ConstNil <typ.BytePtr>) (ConstNil <typ.BytePtr>)) (NilCheck (GetG mem) mem) -> mem (If (Not cond) yes no) -> (If cond no yes) (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no) (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes) // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off) (Convert (Convert ptr mem) mem) -> ptr // Decompose compound argument values (Arg {n} [off]) && v.Type.IsString() -> (StringMake (Arg <typ.BytePtr> {n} [off]) (Arg <typ.Int> {n} [off+config.PtrSize])) (Arg {n} [off]) && v.Type.IsSlice() -> (SliceMake (Arg <v.Type.ElemType().PtrTo()> {n} [off]) (Arg <typ.Int> {n} [off+config.PtrSize]) (Arg <typ.Int> {n} [off+2*config.PtrSize])) (Arg {n} [off]) && v.Type.IsInterface() -> (IMake (Arg <typ.BytePtr> {n} [off]) (Arg <typ.BytePtr> {n} [off+config.PtrSize])) (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 -> (ComplexMake (Arg <typ.Float64> {n} [off]) (Arg <typ.Float64> {n} [off+8])) (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 -> (ComplexMake (Arg <typ.Float32> {n} [off]) (Arg <typ.Float32> {n} [off+4])) (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> (StructMake0) (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> (StructMake1 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])) (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> (StructMake2 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])) (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> (StructMake3 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])) (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> (StructMake4 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]) (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)])) (Arg <t>) && t.IsArray() && t.NumElem() == 0 -> (ArrayMake0) (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> (ArrayMake1 (Arg <t.ElemType()> {n} [off])) // strength reduction of divide by a constant. // See ../magic.go for a detailed description of these algorithms. // Unsigned divide by power of 2. Strength reduce to a shift. (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) (Div64u n (Const64 [-1<<63])) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) // Signed non-negative divide by power of 2. (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) (Div64 n (Const64 [-1<<63])) && isNonNegative(n) -> (Const64 [0]) // Unsigned divide, not a power of 2. Strength reduce to a multiply. // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. (Div8u x (Const8 [c])) && umagicOK(8, c) -> (Trunc32to8 (Rsh32Ux64 <typ.UInt32> (Mul32 <typ.UInt32> (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)]) (ZeroExt8to32 x)) (Const64 <typ.UInt64> [8+umagic(8,c).s]))) // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> (Trunc64to16 (Rsh64Ux64 <typ.UInt64> (Mul64 <typ.UInt64> (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)]) (ZeroExt16to64 x)) (Const64 <typ.UInt64> [16+umagic(16,c).s]))) // For 16-bit divides on 32-bit machines (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> (Trunc32to16 (Rsh32Ux64 <typ.UInt32> (Mul32 <typ.UInt32> (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)]) (ZeroExt16to32 x)) (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> (Trunc32to16 (Rsh32Ux64 <typ.UInt32> (Mul32 <typ.UInt32> (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)]) (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) (Const64 <typ.UInt64> [16+umagic(16,c).s-2]))) (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 -> (Trunc32to16 (Rsh32Ux64 <typ.UInt32> (Avg32u (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) (Mul32 <typ.UInt32> (Const32 <typ.UInt32> [int64(umagic(16,c).m)]) (ZeroExt16to32 x))) (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) // For 32-bit divides on 32-bit machines (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 -> (Rsh32Ux64 <typ.UInt32> (Hmul32u <typ.UInt32> (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))]) x) (Const64 <typ.UInt64> [umagic(32,c).s-1])) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 -> (Rsh32Ux64 <typ.UInt32> (Hmul32u <typ.UInt32> (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) (Const64 <typ.UInt64> [umagic(32,c).s-2])) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 -> (Rsh32Ux64 <typ.UInt32> (Avg32u x (Hmul32u <typ.UInt32> (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))]) x)) (Const64 <typ.UInt64> [umagic(32,c).s-1])) // For 32-bit divides on 64-bit machines // We'll use a regular (non-hi) multiply for this case. (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> (Trunc64to32 (Rsh64Ux64 <typ.UInt64> (Mul64 <typ.UInt64> (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)]) (ZeroExt32to64 x)) (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> (Trunc64to32 (Rsh64Ux64 <typ.UInt64> (Mul64 <typ.UInt64> (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)]) (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) (Const64 <typ.UInt64> [32+umagic(32,c).s-2]))) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 -> (Trunc64to32 (Rsh64Ux64 <typ.UInt64> (Avg64u (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) (Mul64 <typ.UInt64> (Const64 <typ.UInt32> [int64(umagic(32,c).m)]) (ZeroExt32to64 x))) (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) // For 64-bit divides on 64-bit machines // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 -> (Rsh64Ux64 <typ.UInt64> (Hmul64u <typ.UInt64> (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)]) x) (Const64 <typ.UInt64> [umagic(64,c).s-1])) (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 -> (Rsh64Ux64 <typ.UInt64> (Hmul64u <typ.UInt64> (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)]) (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) (Const64 <typ.UInt64> [umagic(64,c).s-2])) (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 -> (Rsh64Ux64 <typ.UInt64> (Avg64u x (Hmul64u <typ.UInt64> (Const64 <typ.UInt64> [int64(umagic(64,c).m)]) x)) (Const64 <typ.UInt64> [umagic(64,c).s-1])) // Signed divide by a negative constant. Rewrite to divide by a positive constant. (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 <t> n (Const8 <t> [-c]))) (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c]))) (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c]))) (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c]))) // Dividing by the most-negative number. Result is always 0 except // if the input is also the most-negative number. // We can detect that using the sign bit of x & -x. (Div8 <t> x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) // Signed divide by power of 2. // n / c = n >> log(c) if n >= 0 // = (n+c-1) >> log(c) if n < 0 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Rsh8x64 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)]))) (Const64 <typ.UInt64> [log2(c)])) (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Rsh16x64 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)]))) (Const64 <typ.UInt64> [log2(c)])) (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Rsh32x64 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)]))) (Const64 <typ.UInt64> [log2(c)])) (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64x64 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)]))) (Const64 <typ.UInt64> [log2(c)])) // Signed divide, not a power of 2. Strength reduce to a multiply. (Div8 <t> x (Const8 [c])) && smagicOK(8,c) -> (Sub8 <t> (Rsh32x64 <t> (Mul32 <typ.UInt32> (Const32 <typ.UInt32> [int64(smagic(8,c).m)]) (SignExt8to32 x)) (Const64 <typ.UInt64> [8+smagic(8,c).s])) (Rsh32x64 <t> (SignExt8to32 x) (Const64 <typ.UInt64> [31]))) (Div16 <t> x (Const16 [c])) && smagicOK(16,c) -> (Sub16 <t> (Rsh32x64 <t> (Mul32 <typ.UInt32> (Const32 <typ.UInt32> [int64(smagic(16,c).m)]) (SignExt16to32 x)) (Const64 <typ.UInt64> [16+smagic(16,c).s])) (Rsh32x64 <t> (SignExt16to32 x) (Const64 <typ.UInt64> [31]))) (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> (Sub32 <t> (Rsh64x64 <t> (Mul64 <typ.UInt64> (Const64 <typ.UInt64> [int64(smagic(32,c).m)]) (SignExt32to64 x)) (Const64 <typ.UInt64> [32+smagic(32,c).s])) (Rsh64x64 <t> (SignExt32to64 x) (Const64 <typ.UInt64> [63]))) (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 -> (Sub32 <t> (Rsh32x64 <t> (Hmul32 <t> (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))]) x) (Const64 <typ.UInt64> [smagic(32,c).s-1])) (Rsh32x64 <t> x (Const64 <typ.UInt64> [31]))) (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 -> (Sub32 <t> (Rsh32x64 <t> (Add32 <t> (Hmul32 <t> (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))]) x) x) (Const64 <typ.UInt64> [smagic(32,c).s])) (Rsh32x64 <t> x (Const64 <typ.UInt64> [31]))) (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 -> (Sub64 <t> (Rsh64x64 <t> (Hmul64 <t> (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)]) x) (Const64 <typ.UInt64> [smagic(64,c).s-1])) (Rsh64x64 <t> x (Const64 <typ.UInt64> [63]))) (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 -> (Sub64 <t> (Rsh64x64 <t> (Add64 <t> (Hmul64 <t> (Const64 <typ.UInt64> [int64(smagic(64,c).m)]) x) x) (Const64 <typ.UInt64> [smagic(64,c).s])) (Rsh64x64 <t> x (Const64 <typ.UInt64> [63]))) // Unsigned mod by power of 2 constant. (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) (Mod64u <t> n (Const64 [-1<<63])) -> (And64 n (Const64 <t> [1<<63-1])) // Signed non-negative mod by power of 2 constant. (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) -> n // Signed mod by negative constant. (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 <t> n (Const8 <t> [-c])) (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c])) (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c])) (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c])) // All other mods by constants, do A%B = A-(A/B*B). // This implements % with two * and a bunch of ancillary ops. // One of the * is free if the user's code also computes A/B. (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) -> (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) -> (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) -> (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) -> (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8 ,c) -> (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) // Reassociate expressions involving // constants such that constants come first, // exposing obvious constant-folding opportunities. // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C // is constant, which pushes constants to the outside // of the expression. At that point, any constant-folding // opportunities should be obvious. // x + (C + z) -> C + (x + z) (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x)) (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x)) (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x)) (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 <t> z x)) // x + (C - z) -> C + (x - z) (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) (Add8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) // x + (z - C) -> (x + z) - C (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) (Add8 (Sub8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) (Add8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) // x - (C - z) -> x + (z - C) -> (x + z) - C (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) // x - (z - C) -> x + (C - z) -> (x - z) + C (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) (Sub8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) // x & (C & z) -> C & (x & z) (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x)) (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x)) (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x)) (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 <t> z x)) // x | (C | z) -> C | (x | z) (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x)) (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x)) (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x)) (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 <t> z x)) // x ^ (C ^ z) -> C ^ (x ^ z) (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x)) (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x)) (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x)) (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 <t> z x)) // C + (D + x) -> (C + D) + x (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x) (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x) (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x) (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c+d))]) x) // C + (D - x) -> (C + D) - x (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x) (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) // C + (x - D) -> (C - D) + x (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x) (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) (Add8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) // C - (x - D) -> (C + D) - x (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x) (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) (Sub8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) // C - (D - x) -> (C - D) + x (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x) (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) // C & (D & x) -> (C & D) & x (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x) (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x) (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x) (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) -> (And8 (Const8 <t> [int64(int8(c&d))]) x) // C | (D | x) -> (C | D) | x (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x) (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x) (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x) (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) -> (Or8 (Const8 <t> [int64(int8(c|d))]) x) // C ^ (D ^ x) -> (C ^ D) ^ x (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x) (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x) (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x) (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) -> (Xor8 (Const8 <t> [int64(int8(c^d))]) x) // C * (D * x) = (C * D) * x (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x) (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x) (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x) (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) -> (Mul8 (Const8 <t> [int64(int8(c*d))]) x) // floating point optimizations (Add32F x (Const32F [0])) -> x (Add64F x (Const64F [0])) -> x (Sub32F x (Const32F [0])) -> x (Sub64F x (Const64F [0])) -> x (Mul32F x (Const32F [f2i(1)])) -> x (Mul64F x (Const64F [f2i(1)])) -> x (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x) (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x) (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x) (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x) (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))])) (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c)) -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))])) (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))]) // recognize runtime.newobject and don't Zero/Nilcheck it (Zero (Load (OffPtr [c] (SP)) mem) mem) && mem.Op == OpStaticCall && isSameSym(mem.Aux, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value -> mem (Store (Load (OffPtr [c] (SP)) mem) x mem) && isConstZero(x) && mem.Op == OpStaticCall && isSameSym(mem.Aux, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value -> mem (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) && isConstZero(x) && mem.Op == OpStaticCall && isSameSym(mem.Aux, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value -> mem // nil checks just need to rewrite to something useless. // they will be deadcode eliminated soon afterwards. (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _) && isSameSym(sym, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") -> (Invalid) (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _) && isSameSym(sym, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") -> (Invalid) // Address comparison shows up in type assertions. (EqPtr x x) -> (ConstBool [1]) (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)]) // Inline small runtime.memmove calls with constant length. (StaticCall {sym} s1:(Store _ (Const64 [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config) -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) (StaticCall {sym} s1:(Store _ (Const32 [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) && isSameSym(sym,"runtime.memmove") && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmoveSize(sz,config) -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) // De-virtualize interface calls into static calls. // Note that (ITab (IMake)) doesn't get // rewritten until after the first opt pass, // so this rule should trigger reliably. (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> (StaticCall [argsize] {devirt(v, itab, off)} mem)