// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // The inlining facility makes 2 passes: first caninl determines which // functions are suitable for inlining, and for those that are it // saves a copy of the body. Then inlcalls walks each function body to // expand calls to inlinable functions. // // The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1, // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and // are not supported. // 0: disabled // 1: 80-nodes leaf functions, oneliners, lazy typechecking (default) // 2: (unassigned) // 3: allow variadic functions // 4: allow non-leaf functions // // At some point this may get another default and become switch-offable with -N. // // The -d typcheckinl flag enables early typechecking of all imported bodies, // which is useful to flush out bugs. // // The debug['m'] flag enables diagnostic output. a single -m is useful for verifying // which calls get inlined or not, more is for debugging, and may go away at any point. // // TODO: // - inline functions with ... args package gc import ( "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/src" "fmt" "strings" ) // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods // the ->sym can be re-used in the local package, so peel it off the receiver's type. func fnpkg(fn *Node) *types.Pkg { if fn.IsMethod() { // method rcvr := fn.Type.Recv().Type if rcvr.IsPtr() { rcvr = rcvr.Elem() } if rcvr.Sym == nil { Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr) } return rcvr.Sym.Pkg } // non-method return fn.Sym.Pkg } // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck // because they're a copy of an already checked body. func typecheckinl(fn *Node) { lno := setlineno(fn) // typecheckinl is only for imported functions; // their bodies may refer to unsafe as long as the package // was marked safe during import (which was checked then). // the ->inl of a local function has been typechecked before caninl copied it. pkg := fnpkg(fn) if pkg == localpkg || pkg == nil { return // typecheckinl on local function } if Debug['m'] > 2 || Debug_export != 0 { fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl) } save_safemode := safemode safemode = false savefn := Curfn Curfn = fn typecheckslice(fn.Func.Inl.Slice(), Etop) Curfn = savefn safemode = save_safemode lineno = lno } // Caninl determines whether fn is inlineable. // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. // fn and ->nbody will already have been typechecked. func caninl(fn *Node) { if fn.Op != ODCLFUNC { Fatalf("caninl %v", fn) } if fn.Func.Nname == nil { Fatalf("caninl no nname %+v", fn) } var reason string // reason, if any, that the function was not inlined if Debug['m'] > 1 { defer func() { if reason != "" { fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason) } }() } // If marked "go:noinline", don't inline if fn.Func.Pragma&Noinline != 0 { reason = "marked go:noinline" return } // If marked "go:cgo_unsafe_args", don't inline, since the // function makes assumptions about its argument frame layout. if fn.Func.Pragma&CgoUnsafeArgs != 0 { reason = "marked go:cgo_unsafe_args" return } // The nowritebarrierrec checker currently works at function // granularity, so inlining yeswritebarrierrec functions can // confuse it (#22342). As a workaround, disallow inlining // them for now. if fn.Func.Pragma&Yeswritebarrierrec != 0 { reason = "marked go:yeswritebarrierrec" return } // If fn has no body (is defined outside of Go), cannot inline it. if fn.Nbody.Len() == 0 { reason = "no function body" return } if fn.Typecheck() == 0 { Fatalf("caninl on non-typechecked function %v", fn) } // can't handle ... args yet if Debug['l'] < 3 { f := fn.Type.Params().Fields() if len := f.Len(); len > 0 { if t := f.Index(len - 1); t.Isddd() { reason = "has ... args" return } } } // Runtime package must not be instrumented. // Instrument skips runtime package. However, some runtime code can be // inlined into other packages and instrumented there. To avoid this, // we disable inlining of runtime functions when instrumenting. // The example that we observed is inlining of LockOSThread, // which lead to false race reports on m contents. if instrumenting && myimportpath == "runtime" { reason = "instrumenting and is runtime function" return } n := fn.Func.Nname if n.Func.InlinabilityChecked() { return } defer n.Func.SetInlinabilityChecked(true) const maxBudget = 80 visitor := hairyVisitor{budget: maxBudget} if visitor.visitList(fn.Nbody) { reason = visitor.reason return } if visitor.budget < 0 { reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", maxBudget-visitor.budget, maxBudget) return } savefn := Curfn Curfn = fn n.Func.Inl.Set(fn.Nbody.Slice()) fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice())) inldcl := inlcopylist(n.Name.Defn.Func.Dcl) n.Func.Inldcl.Set(inldcl) n.Func.InlCost = maxBudget - visitor.budget // hack, TODO, check for better way to link method nodes back to the thing with the ->inl // this is so export can find the body of a method fn.Type.FuncType().Nname = asTypesNode(n) if Debug['m'] > 1 { fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl) } else if Debug['m'] != 0 { fmt.Printf("%v: can inline %v\n", fn.Line(), n) } Curfn = savefn } // inlFlood marks n's inline body for export and recursively ensures // all called functions are marked too. func inlFlood(n *Node) { if n == nil { return } if n.Op != ONAME || n.Class() != PFUNC { Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class()) } if n.Func == nil { // TODO(mdempsky): Should init have a Func too? if n.Sym.Name == "init" { return } Fatalf("inlFlood: missing Func on %v", n) } if n.Func.Inl.Len() == 0 { return } if n.Func.ExportInline() { return } n.Func.SetExportInline(true) typecheckinl(n) // Recursively flood any functions called by this one. inspectList(n.Func.Inl, func(n *Node) bool { switch n.Op { case OCALLFUNC, OCALLMETH: inlFlood(asNode(n.Left.Type.Nname())) } return true }) } // hairyVisitor visits a function body to determine its inlining // hairiness and whether or not it can be inlined. type hairyVisitor struct { budget int32 reason string } // Look for anything we want to punt on. func (v *hairyVisitor) visitList(ll Nodes) bool { for _, n := range ll.Slice() { if v.visit(n) { return true } } return false } func (v *hairyVisitor) visit(n *Node) bool { if n == nil { return false } switch n.Op { // Call is okay if inlinable and we have the budget for the body. case OCALLFUNC: if isIntrinsicCall(n) { v.budget-- break } // Functions that call runtime.getcaller{pc,sp} can not be inlined // because getcaller{pc,sp} expect a pointer to the caller's first argument. if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) { fn := n.Left.Sym.Name if fn == "getcallerpc" || fn == "getcallersp" { v.reason = "call to " + fn return true } } if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 { v.budget -= fn.InlCost break } if n.Left.isMethodExpression() { if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl.Len() != 0 { v.budget -= d.Func.InlCost break } } // TODO(mdempsky): Budget for OCLOSURE calls if we // ever allow that. See #15561 and #23093. if Debug['l'] < 4 { v.reason = "non-leaf function" return true } // Call is okay if inlinable and we have the budget for the body. case OCALLMETH: t := n.Left.Type if t == nil { Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) } if t.Nname() == nil { Fatalf("no function definition for [%p] %+v\n", t, t) } if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl.Len() != 0 { v.budget -= inlfn.InlCost break } if Debug['l'] < 4 { v.reason = "non-leaf method" return true } // Things that are too hairy, irrespective of the budget case OCALL, OCALLINTER, OPANIC: if Debug['l'] < 4 { v.reason = "non-leaf op " + n.Op.String() return true } case ORECOVER: // recover matches the argument frame pointer to find // the right panic value, so it needs an argument frame. v.reason = "call to recover" return true case OCLOSURE, OCALLPART, ORANGE, OFOR, OFORUNTIL, OSELECT, OTYPESW, OPROC, ODEFER, ODCLTYPE, // can't print yet OBREAK, ORETJMP: v.reason = "unhandled op " + n.Op.String() return true case ODCLCONST, OEMPTY, OFALL, OLABEL: // These nodes don't produce code; omit from inlining budget. return false } v.budget-- // TODO(mdempsky/josharian): Hacks to appease toolstash; remove. // See issue 17566 and CL 31674 for discussion. switch n.Op { case OSTRUCTKEY: v.budget-- case OSLICE, OSLICEARR, OSLICESTR: v.budget-- case OSLICE3, OSLICE3ARR: v.budget -= 2 } // When debugging, don't stop early, to get full cost of inlining this function if v.budget < 0 && Debug['m'] < 2 { return true } return v.visit(n.Left) || v.visit(n.Right) || v.visitList(n.List) || v.visitList(n.Rlist) || v.visitList(n.Ninit) || v.visitList(n.Nbody) } // Inlcopy and inlcopylist recursively copy the body of a function. // Any name-like node of non-local class is marked for re-export by adding it to // the exportlist. func inlcopylist(ll []*Node) []*Node { s := make([]*Node, 0, len(ll)) for _, n := range ll { s = append(s, inlcopy(n)) } return s } func inlcopy(n *Node) *Node { if n == nil { return nil } switch n.Op { case ONAME, OTYPE, OLITERAL: return n } m := *n if m.Func != nil { m.Func.Inl.Set(nil) } m.Left = inlcopy(n.Left) m.Right = inlcopy(n.Right) m.List.Set(inlcopylist(n.List.Slice())) m.Rlist.Set(inlcopylist(n.Rlist.Slice())) m.Ninit.Set(inlcopylist(n.Ninit.Slice())) m.Nbody.Set(inlcopylist(n.Nbody.Slice())) return &m } // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any // calls made to inlineable functions. This is the external entry point. func inlcalls(fn *Node) { savefn := Curfn Curfn = fn fn = inlnode(fn) if fn != Curfn { Fatalf("inlnode replaced curfn") } Curfn = savefn } // Turn an OINLCALL into a statement. func inlconv2stmt(n *Node) { n.Op = OBLOCK // n->ninit stays n.List.Set(n.Nbody.Slice()) n.Nbody.Set(nil) n.Rlist.Set(nil) } // Turn an OINLCALL into a single valued expression. // The result of inlconv2expr MUST be assigned back to n, e.g. // n.Left = inlconv2expr(n.Left) func inlconv2expr(n *Node) *Node { r := n.Rlist.First() return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...)) } // Turn the rlist (with the return values) of the OINLCALL in // n into an expression list lumping the ninit and body // containing the inlined statements on the first list element so // order will be preserved Used in return, oas2func and call // statements. func inlconv2list(n *Node) []*Node { if n.Op != OINLCALL || n.Rlist.Len() == 0 { Fatalf("inlconv2list %+v\n", n) } s := n.Rlist.Slice() s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...)) return s } func inlnodelist(l Nodes) { s := l.Slice() for i := range s { s[i] = inlnode(s[i]) } } // inlnode recurses over the tree to find inlineable calls, which will // be turned into OINLCALLs by mkinlcall. When the recursion comes // back up will examine left, right, list, rlist, ninit, ntest, nincr, // nbody and nelse and use one of the 4 inlconv/glue functions above // to turn the OINLCALL into an expression, a statement, or patch it // in to this nodes list or rlist as appropriate. // NOTE it makes no sense to pass the glue functions down the // recursion to the level where the OINLCALL gets created because they // have to edit /this/ n, so you'd have to push that one down as well, // but then you may as well do it here. so this is cleaner and // shorter and less complicated. // The result of inlnode MUST be assigned back to n, e.g. // n.Left = inlnode(n.Left) func inlnode(n *Node) *Node { if n == nil { return n } switch n.Op { // inhibit inlining of their argument case ODEFER, OPROC: switch n.Left.Op { case OCALLFUNC, OCALLMETH: n.Left.SetNoInline(true) } return n // TODO do them here (or earlier), // so escape analysis can avoid more heapmoves. case OCLOSURE: return n } lno := setlineno(n) inlnodelist(n.Ninit) for _, n1 := range n.Ninit.Slice() { if n1.Op == OINLCALL { inlconv2stmt(n1) } } n.Left = inlnode(n.Left) if n.Left != nil && n.Left.Op == OINLCALL { n.Left = inlconv2expr(n.Left) } n.Right = inlnode(n.Right) if n.Right != nil && n.Right.Op == OINLCALL { if n.Op == OFOR || n.Op == OFORUNTIL { inlconv2stmt(n.Right) } else { n.Right = inlconv2expr(n.Right) } } inlnodelist(n.List) switch n.Op { case OBLOCK: for _, n2 := range n.List.Slice() { if n2.Op == OINLCALL { inlconv2stmt(n2) } } case ORETURN, OCALLFUNC, OCALLMETH, OCALLINTER, OAPPEND, OCOMPLEX: // if we just replaced arg in f(arg()) or return arg with an inlined call // and arg returns multiple values, glue as list if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 { n.List.Set(inlconv2list(n.List.First())) break } fallthrough default: s := n.List.Slice() for i1, n1 := range s { if n1 != nil && n1.Op == OINLCALL { s[i1] = inlconv2expr(s[i1]) } } } inlnodelist(n.Rlist) if n.Op == OAS2FUNC && n.Rlist.First().Op == OINLCALL { n.Rlist.Set(inlconv2list(n.Rlist.First())) n.Op = OAS2 n.SetTypecheck(0) n = typecheck(n, Etop) } else { s := n.Rlist.Slice() for i1, n1 := range s { if n1.Op == OINLCALL { if n.Op == OIF { inlconv2stmt(n1) } else { s[i1] = inlconv2expr(s[i1]) } } } } inlnodelist(n.Nbody) for _, n := range n.Nbody.Slice() { if n.Op == OINLCALL { inlconv2stmt(n) } } // with all the branches out of the way, it is now time to // transmogrify this node itself unless inhibited by the // switch at the top of this function. switch n.Op { case OCALLFUNC, OCALLMETH: if n.NoInline() { return n } } switch n.Op { case OCALLFUNC: if Debug['m'] > 3 { fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left) } if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case n = mkinlcall(n, n.Left, n.Isddd()) } else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil { n = mkinlcall(n, asNode(n.Left.Sym.Def), n.Isddd()) } else if n.Left.Op == OCLOSURE { if f := inlinableClosure(n.Left); f != nil { n = mkinlcall(n, f, n.Isddd()) } } else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil { if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE { if f := inlinableClosure(d.Right); f != nil { // NB: this check is necessary to prevent indirect re-assignment of the variable // having the address taken after the invocation or only used for reads is actually fine // but we have no easy way to distinguish the safe cases if d.Left.Addrtaken() { if Debug['m'] > 1 { fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left) } break } // ensure the variable is never re-assigned if unsafe, a := reassigned(n.Left); unsafe { if Debug['m'] > 1 { if a != nil { fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a) } else { fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left) } } break } n = mkinlcall(n, f, n.Isddd()) } } } case OCALLMETH: if Debug['m'] > 3 { fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right) } // typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. if n.Left.Type == nil { Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) } if n.Left.Type.Nname() == nil { Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type) } n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), n.Isddd()) } lineno = lno return n } // inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with // the inlinable body. Returns nil if the function is not inlinable. func inlinableClosure(n *Node) *Node { c := n.Func.Closure caninl(c) f := c.Func.Nname if f == nil || f.Func.Inl.Len() == 0 { return nil } return f } // reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean // indicating whether the name has any assignments other than its declaration. // The second return value is the first such assignment encountered in the walk, if any. It is mostly // useful for -m output documenting the reason for inhibited optimizations. // NB: global variables are always considered to be re-assigned. // TODO: handle initial declaration not including an assignment and followed by a single assignment? func reassigned(n *Node) (bool, *Node) { if n.Op != ONAME { Fatalf("reassigned %v", n) } // no way to reliably check for no-reassignment of globals, assume it can be if n.Name.Curfn == nil { return true, nil } f := n.Name.Curfn // There just might be a good reason for this although this can be pretty surprising: // local variables inside a closure have Curfn pointing to the OCLOSURE node instead // of the corresponding ODCLFUNC. // We need to walk the function body to check for reassignments so we follow the // linkage to the ODCLFUNC node as that is where body is held. if f.Op == OCLOSURE { f = f.Func.Closure } v := reassignVisitor{name: n} a := v.visitList(f.Nbody) return a != nil, a } type reassignVisitor struct { name *Node } func (v *reassignVisitor) visit(n *Node) *Node { if n == nil { return nil } switch n.Op { case OAS: if n.Left == v.name && n != v.name.Name.Defn { return n } return nil case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE: for _, p := range n.List.Slice() { if p == v.name && n != v.name.Name.Defn { return n } } return nil } if a := v.visit(n.Left); a != nil { return a } if a := v.visit(n.Right); a != nil { return a } if a := v.visitList(n.List); a != nil { return a } if a := v.visitList(n.Rlist); a != nil { return a } if a := v.visitList(n.Ninit); a != nil { return a } if a := v.visitList(n.Nbody); a != nil { return a } return nil } func (v *reassignVisitor) visitList(l Nodes) *Node { for _, n := range l.Slice() { if a := v.visit(n); a != nil { return a } } return nil } // The result of mkinlcall MUST be assigned back to n, e.g. // n.Left = mkinlcall(n.Left, fn, isddd) func mkinlcall(n *Node, fn *Node, isddd bool) *Node { save_safemode := safemode // imported functions may refer to unsafe as long as the // package was marked safe during import (already checked). pkg := fnpkg(fn) if pkg != localpkg && pkg != nil { safemode = false } n = mkinlcall1(n, fn, isddd) safemode = save_safemode return n } func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node { if asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { inlvar := inlvars[asNode(t.Nname)] if inlvar == nil { Fatalf("missing inlvar for %v\n", asNode(t.Nname)) } return inlvar } return typecheck(nblank, Erv|Easgn) } var inlgen int // If n is a call, and fn is a function with an inlinable body, // return an OINLCALL. // On return ninit has the parameter assignments, the nbody is the // inlined function body and list, rlist contain the input, output // parameters. // The result of mkinlcall1 MUST be assigned back to n, e.g. // n.Left = mkinlcall1(n.Left, fn, isddd) func mkinlcall1(n, fn *Node, isddd bool) *Node { if fn.Func.Inl.Len() == 0 { // No inlinable body. return n } if fn == Curfn || fn.Name.Defn == Curfn { // Can't recursively inline a function into itself. return n } if Debug_typecheckinl == 0 { typecheckinl(fn) } // We have a function node, and it has an inlineable body. if Debug['m'] > 1 { fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl) } else if Debug['m'] != 0 { fmt.Printf("%v: inlining call to %v\n", n.Line(), fn) } if Debug['m'] > 2 { fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n) } ninit := n.Ninit // Make temp names to use instead of the originals. inlvars := make(map[*Node]*Node) // record formals/locals for later post-processing var inlfvars []*Node // Find declarations corresponding to inlineable body. var dcl []*Node if fn.Name.Defn != nil { dcl = fn.Func.Inldcl.Slice() // local function // handle captured variables when inlining closures if c := fn.Name.Defn.Func.Closure; c != nil { for _, v := range c.Func.Cvars.Slice() { if v.Op == OXXX { continue } o := v.Name.Param.Outer // make sure the outer param matches the inlining location // NB: if we enabled inlining of functions containing OCLOSURE or refined // the reassigned check via some sort of copy propagation this would most // likely need to be changed to a loop to walk up to the correct Param if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) { Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v) } if v.Name.Byval() { iv := typecheck(inlvar(v), Erv) ninit.Append(nod(ODCL, iv, nil)) ninit.Append(typecheck(nod(OAS, iv, o), Etop)) inlvars[v] = iv } else { addr := newname(lookup("&" + v.Sym.Name)) addr.Type = types.NewPtr(v.Type) ia := typecheck(inlvar(addr), Erv) ninit.Append(nod(ODCL, ia, nil)) ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), Etop)) inlvars[addr] = ia // When capturing by reference, all occurrence of the captured var // must be substituted with dereference of the temporary address inlvars[v] = typecheck(nod(OIND, ia, nil), Erv) } } } } else { dcl = fn.Func.Dcl // imported function } for _, ln := range dcl { if ln.Op != ONAME { continue } if ln.Class() == PPARAMOUT { // return values handled below. continue } if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap continue } inlvars[ln] = typecheck(inlvar(ln), Erv) if ln.Class() == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class() == PPARAM { ninit.Append(nod(ODCL, inlvars[ln], nil)) } if genDwarfInline > 0 { inlf := inlvars[ln] if ln.Class() == PPARAM { inlf.SetInlFormal(true) } else { inlf.SetInlLocal(true) } inlf.Pos = ln.Pos inlfvars = append(inlfvars, inlf) } } // temporaries for return values. var retvars []*Node for i, t := range fn.Type.Results().Fields().Slice() { var m *Node var mpos src.XPos if t != nil && asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { mpos = asNode(t.Nname).Pos m = inlvar(asNode(t.Nname)) m = typecheck(m, Erv) inlvars[asNode(t.Nname)] = m } else { // anonymous return values, synthesize names for use in assignment that replaces return m = retvar(t, i) } if genDwarfInline > 0 { // Don't update the src.Pos on a return variable if it // was manufactured by the inliner (e.g. "~R2"); such vars // were not part of the original callee. if !strings.HasPrefix(m.Sym.Name, "~R") { m.SetInlFormal(true) m.Pos = mpos inlfvars = append(inlfvars, m) } } ninit.Append(nod(ODCL, m, nil)) retvars = append(retvars, m) } // Assign arguments to the parameters' temp names. as := nod(OAS2, nil, nil) as.Rlist.Set(n.List.Slice()) // For non-dotted calls to variadic functions, we assign the // variadic parameter's temp name separately. var vas *Node if fn.IsMethod() { rcv := fn.Type.Recv() if n.Left.Op == ODOTMETH { // For x.M(...), assign x directly to the // receiver parameter. if n.Left.Left == nil { Fatalf("method call without receiver: %+v", n) } ras := nod(OAS, tinlvar(rcv, inlvars), n.Left.Left) ras = typecheck(ras, Etop) ninit.Append(ras) } else { // For T.M(...), add the receiver parameter to // as.List, so it's assigned by the normal // arguments. if as.Rlist.Len() == 0 { Fatalf("non-method call to method without first arg: %+v", n) } as.List.Append(tinlvar(rcv, inlvars)) } } for _, param := range fn.Type.Params().Fields().Slice() { // For ordinary parameters or variadic parameters in // dotted calls, just add the variable to the // assignment list, and we're done. if !param.Isddd() || isddd { as.List.Append(tinlvar(param, inlvars)) continue } // Otherwise, we need to collect the remaining values // to pass as a slice. numvals := n.List.Len() if numvals == 1 && n.List.First().Type.IsFuncArgStruct() { numvals = n.List.First().Type.NumFields() } x := as.List.Len() for as.List.Len() < numvals { as.List.Append(argvar(param.Type, as.List.Len())) } varargs := as.List.Slice()[x:] vas = nod(OAS, tinlvar(param, inlvars), nil) if len(varargs) == 0 { vas.Right = nodnil() vas.Right.Type = param.Type } else { vas.Right = nod(OCOMPLIT, nil, typenod(param.Type)) vas.Right.List.Set(varargs) } } if as.Rlist.Len() != 0 { as = typecheck(as, Etop) ninit.Append(as) } if vas != nil { vas = typecheck(vas, Etop) ninit.Append(vas) } // Zero the return parameters. for _, n := range retvars { ras := nod(OAS, n, nil) ras = typecheck(ras, Etop) ninit.Append(ras) } retlabel := autolabel(".i") retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps) inlgen++ parent := -1 if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil { parent = b.InliningIndex() } newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym()) if genDwarfInline > 0 { if !fn.Sym.Linksym().WasInlined() { Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn) fn.Sym.Linksym().Set(obj.AttrWasInlined, true) } } subst := inlsubst{ retlabel: retlabel, retvars: retvars, inlvars: inlvars, bases: make(map[*src.PosBase]*src.PosBase), newInlIndex: newIndex, } body := subst.list(fn.Func.Inl) lab := nod(OLABEL, retlabel, nil) body = append(body, lab) typecheckslice(body, Etop) if genDwarfInline > 0 { for _, v := range inlfvars { v.Pos = subst.updatedPos(v.Pos) } } //dumplist("ninit post", ninit); call := nod(OINLCALL, nil, nil) call.Ninit.Set(ninit.Slice()) call.Nbody.Set(body) call.Rlist.Set(retvars) call.Type = n.Type call.SetTypecheck(1) // transitive inlining // might be nice to do this before exporting the body, // but can't emit the body with inlining expanded. // instead we emit the things that the body needs // and each use must redo the inlining. // luckily these are small. inlnodelist(call.Nbody) for _, n := range call.Nbody.Slice() { if n.Op == OINLCALL { inlconv2stmt(n) } } if Debug['m'] > 2 { fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call) } return call } // Every time we expand a function we generate a new set of tmpnames, // PAUTO's in the calling functions, and link them off of the // PPARAM's, PAUTOS and PPARAMOUTs of the called function. func inlvar(var_ *Node) *Node { if Debug['m'] > 3 { fmt.Printf("inlvar %+v\n", var_) } n := newname(var_.Sym) n.Type = var_.Type n.SetClass(PAUTO) n.Name.SetUsed(true) n.Name.Curfn = Curfn // the calling function, not the called one n.SetAddrtaken(var_.Addrtaken()) Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) return n } // Synthesize a variable to store the inlined function's results in. func retvar(t *types.Field, i int) *Node { n := newname(lookupN("~R", i)) n.Type = t.Type n.SetClass(PAUTO) n.Name.SetUsed(true) n.Name.Curfn = Curfn // the calling function, not the called one Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) return n } // Synthesize a variable to store the inlined function's arguments // when they come from a multiple return call. func argvar(t *types.Type, i int) *Node { n := newname(lookupN("~arg", i)) n.Type = t.Elem() n.SetClass(PAUTO) n.Name.SetUsed(true) n.Name.Curfn = Curfn // the calling function, not the called one Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) return n } // The inlsubst type implements the actual inlining of a single // function call. type inlsubst struct { // Target of the goto substituted in place of a return. retlabel *Node // Temporary result variables. retvars []*Node inlvars map[*Node]*Node // bases maps from original PosBase to PosBase with an extra // inlined call frame. bases map[*src.PosBase]*src.PosBase // newInlIndex is the index of the inlined call frame to // insert for inlined nodes. newInlIndex int } // list inlines a list of nodes. func (subst *inlsubst) list(ll Nodes) []*Node { s := make([]*Node, 0, ll.Len()) for _, n := range ll.Slice() { s = append(s, subst.node(n)) } return s } // node recursively copies a node from the saved pristine body of the // inlined function, substituting references to input/output // parameters with ones to the tmpnames, and substituting returns with // assignments to the output. func (subst *inlsubst) node(n *Node) *Node { if n == nil { return nil } switch n.Op { case ONAME: if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode if Debug['m'] > 2 { fmt.Printf("substituting name %+v -> %+v\n", n, inlvar) } return inlvar } if Debug['m'] > 2 { fmt.Printf("not substituting name %+v\n", n) } return n case OLITERAL, OTYPE: // If n is a named constant or type, we can continue // using it in the inline copy. Otherwise, make a copy // so we can update the line number. if n.Sym != nil { return n } // Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. // dump("Return before substitution", n); case ORETURN: m := nod(OGOTO, subst.retlabel, nil) m.Ninit.Set(subst.list(n.Ninit)) if len(subst.retvars) != 0 && n.List.Len() != 0 { as := nod(OAS2, nil, nil) // Make a shallow copy of retvars. // Otherwise OINLCALL.Rlist will be the same list, // and later walk and typecheck may clobber it. for _, n := range subst.retvars { as.List.Append(n) } as.Rlist.Set(subst.list(n.List)) as = typecheck(as, Etop) m.Ninit.Append(as) } typecheckslice(m.Ninit.Slice(), Etop) m = typecheck(m, Etop) // dump("Return after substitution", m); return m case OGOTO, OLABEL: m := nod(OXXX, nil, nil) *m = *n m.Pos = subst.updatedPos(m.Pos) m.Ninit.Set(nil) p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen) m.Left = newname(lookup(p)) return m } m := nod(OXXX, nil, nil) *m = *n m.Pos = subst.updatedPos(m.Pos) m.Ninit.Set(nil) if n.Op == OCLOSURE { Fatalf("cannot inline function containing closure: %+v", n) } m.Left = subst.node(n.Left) m.Right = subst.node(n.Right) m.List.Set(subst.list(n.List)) m.Rlist.Set(subst.list(n.Rlist)) m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...)) m.Nbody.Set(subst.list(n.Nbody)) return m } func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos { pos := Ctxt.PosTable.Pos(xpos) oldbase := pos.Base() // can be nil newbase := subst.bases[oldbase] if newbase == nil { newbase = src.NewInliningBase(oldbase, subst.newInlIndex) subst.bases[oldbase] = newbase } pos.SetBase(newbase) return Ctxt.PosTable.XPos(pos) }