//===- PassManager internal APIs and implementation details -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This header provides internal APIs and implementation details used by the /// pass management interfaces exposed in PassManager.h. To understand more /// context of why these particular interfaces are needed, see that header /// file. None of these APIs should be used elsewhere. /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_PASSMANAGERINTERNAL_H #define LLVM_IR_PASSMANAGERINTERNAL_H #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include <memory> #include <utility> namespace llvm { template <typename IRUnitT> class AllAnalysesOn; template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager; class PreservedAnalyses; /// \brief Implementation details of the pass manager interfaces. namespace detail { /// \brief Template for the abstract base class used to dispatch /// polymorphically over pass objects. template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> struct PassConcept { // Boiler plate necessary for the container of derived classes. virtual ~PassConcept() = default; /// \brief The polymorphic API which runs the pass over a given IR entity. /// /// Note that actual pass object can omit the analysis manager argument if /// desired. Also that the analysis manager may be null if there is no /// analysis manager in the pass pipeline. virtual PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) = 0; /// \brief Polymorphic method to access the name of a pass. virtual StringRef name() = 0; }; /// \brief A template wrapper used to implement the polymorphic API. /// /// Can be instantiated for any object which provides a \c run method accepting /// an \c IRUnitT& and an \c AnalysisManager<IRUnit>&. It requires the pass to /// be a copyable object. template <typename IRUnitT, typename PassT, typename PreservedAnalysesT, typename AnalysisManagerT, typename... ExtraArgTs> struct PassModel : PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...> { explicit PassModel(PassT Pass) : Pass(std::move(Pass)) {} // We have to explicitly define all the special member functions because MSVC // refuses to generate them. PassModel(const PassModel &Arg) : Pass(Arg.Pass) {} PassModel(PassModel &&Arg) : Pass(std::move(Arg.Pass)) {} friend void swap(PassModel &LHS, PassModel &RHS) { using std::swap; swap(LHS.Pass, RHS.Pass); } PassModel &operator=(PassModel RHS) { swap(*this, RHS); return *this; } PreservedAnalysesT run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) override { return Pass.run(IR, AM, ExtraArgs...); } StringRef name() override { return PassT::name(); } PassT Pass; }; /// \brief Abstract concept of an analysis result. /// /// This concept is parameterized over the IR unit that this result pertains /// to. template <typename IRUnitT, typename PreservedAnalysesT, typename InvalidatorT> struct AnalysisResultConcept { virtual ~AnalysisResultConcept() = default; /// \brief Method to try and mark a result as invalid. /// /// When the outer analysis manager detects a change in some underlying /// unit of the IR, it will call this method on all of the results cached. /// /// \p PA is a set of preserved analyses which can be used to avoid /// invalidation because the pass which changed the underlying IR took care /// to update or preserve the analysis result in some way. /// /// \p Inv is typically a \c AnalysisManager::Invalidator object that can be /// used by a particular analysis result to discover if other analyses /// results are also invalidated in the event that this result depends on /// them. See the documentation in the \c AnalysisManager for more details. /// /// \returns true if the result is indeed invalid (the default). virtual bool invalidate(IRUnitT &IR, const PreservedAnalysesT &PA, InvalidatorT &Inv) = 0; }; /// \brief SFINAE metafunction for computing whether \c ResultT provides an /// \c invalidate member function. template <typename IRUnitT, typename ResultT> class ResultHasInvalidateMethod { using EnabledType = char; struct DisabledType { char a, b; }; // Purely to help out MSVC which fails to disable the below specialization, // explicitly enable using the result type's invalidate routine if we can // successfully call that routine. template <typename T> struct Nonce { using Type = EnabledType; }; template <typename T> static typename Nonce<decltype(std::declval<T>().invalidate( std::declval<IRUnitT &>(), std::declval<PreservedAnalyses>()))>::Type check(rank<2>); // First we define an overload that can only be taken if there is no // invalidate member. We do this by taking the address of an invalidate // member in an adjacent base class of a derived class. This would be // ambiguous if there were an invalidate member in the result type. template <typename T, typename U> static DisabledType NonceFunction(T U::*); struct CheckerBase { int invalidate; }; template <typename T> struct Checker : CheckerBase, T {}; template <typename T> static decltype(NonceFunction(&Checker<T>::invalidate)) check(rank<1>); // Now we have the fallback that will only be reached when there is an // invalidate member, and enables the trait. template <typename T> static EnabledType check(rank<0>); public: enum { Value = sizeof(check<ResultT>(rank<2>())) == sizeof(EnabledType) }; }; /// \brief Wrapper to model the analysis result concept. /// /// By default, this will implement the invalidate method with a trivial /// implementation so that the actual analysis result doesn't need to provide /// an invalidation handler. It is only selected when the invalidation handler /// is not part of the ResultT's interface. template <typename IRUnitT, typename PassT, typename ResultT, typename PreservedAnalysesT, typename InvalidatorT, bool HasInvalidateHandler = ResultHasInvalidateMethod<IRUnitT, ResultT>::Value> struct AnalysisResultModel; /// \brief Specialization of \c AnalysisResultModel which provides the default /// invalidate functionality. template <typename IRUnitT, typename PassT, typename ResultT, typename PreservedAnalysesT, typename InvalidatorT> struct AnalysisResultModel<IRUnitT, PassT, ResultT, PreservedAnalysesT, InvalidatorT, false> : AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT> { explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {} // We have to explicitly define all the special member functions because MSVC // refuses to generate them. AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {} AnalysisResultModel(AnalysisResultModel &&Arg) : Result(std::move(Arg.Result)) {} friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) { using std::swap; swap(LHS.Result, RHS.Result); } AnalysisResultModel &operator=(AnalysisResultModel RHS) { swap(*this, RHS); return *this; } /// \brief The model bases invalidation solely on being in the preserved set. // // FIXME: We should actually use two different concepts for analysis results // rather than two different models, and avoid the indirect function call for // ones that use the trivial behavior. bool invalidate(IRUnitT &, const PreservedAnalysesT &PA, InvalidatorT &) override { auto PAC = PA.template getChecker<PassT>(); return !PAC.preserved() && !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>(); } ResultT Result; }; /// \brief Specialization of \c AnalysisResultModel which delegates invalidate /// handling to \c ResultT. template <typename IRUnitT, typename PassT, typename ResultT, typename PreservedAnalysesT, typename InvalidatorT> struct AnalysisResultModel<IRUnitT, PassT, ResultT, PreservedAnalysesT, InvalidatorT, true> : AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT> { explicit AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {} // We have to explicitly define all the special member functions because MSVC // refuses to generate them. AnalysisResultModel(const AnalysisResultModel &Arg) : Result(Arg.Result) {} AnalysisResultModel(AnalysisResultModel &&Arg) : Result(std::move(Arg.Result)) {} friend void swap(AnalysisResultModel &LHS, AnalysisResultModel &RHS) { using std::swap; swap(LHS.Result, RHS.Result); } AnalysisResultModel &operator=(AnalysisResultModel RHS) { swap(*this, RHS); return *this; } /// \brief The model delegates to the \c ResultT method. bool invalidate(IRUnitT &IR, const PreservedAnalysesT &PA, InvalidatorT &Inv) override { return Result.invalidate(IR, PA, Inv); } ResultT Result; }; /// \brief Abstract concept of an analysis pass. /// /// This concept is parameterized over the IR unit that it can run over and /// produce an analysis result. template <typename IRUnitT, typename PreservedAnalysesT, typename InvalidatorT, typename... ExtraArgTs> struct AnalysisPassConcept { virtual ~AnalysisPassConcept() = default; /// \brief Method to run this analysis over a unit of IR. /// \returns A unique_ptr to the analysis result object to be queried by /// users. virtual std::unique_ptr< AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT>> run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM, ExtraArgTs... ExtraArgs) = 0; /// \brief Polymorphic method to access the name of a pass. virtual StringRef name() = 0; }; /// \brief Wrapper to model the analysis pass concept. /// /// Can wrap any type which implements a suitable \c run method. The method /// must accept an \c IRUnitT& and an \c AnalysisManager<IRUnitT>& as arguments /// and produce an object which can be wrapped in a \c AnalysisResultModel. template <typename IRUnitT, typename PassT, typename PreservedAnalysesT, typename InvalidatorT, typename... ExtraArgTs> struct AnalysisPassModel : AnalysisPassConcept<IRUnitT, PreservedAnalysesT, InvalidatorT, ExtraArgTs...> { explicit AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {} // We have to explicitly define all the special member functions because MSVC // refuses to generate them. AnalysisPassModel(const AnalysisPassModel &Arg) : Pass(Arg.Pass) {} AnalysisPassModel(AnalysisPassModel &&Arg) : Pass(std::move(Arg.Pass)) {} friend void swap(AnalysisPassModel &LHS, AnalysisPassModel &RHS) { using std::swap; swap(LHS.Pass, RHS.Pass); } AnalysisPassModel &operator=(AnalysisPassModel RHS) { swap(*this, RHS); return *this; } // FIXME: Replace PassT::Result with type traits when we use C++11. using ResultModelT = AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, PreservedAnalysesT, InvalidatorT>; /// \brief The model delegates to the \c PassT::run method. /// /// The return is wrapped in an \c AnalysisResultModel. std::unique_ptr< AnalysisResultConcept<IRUnitT, PreservedAnalysesT, InvalidatorT>> run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM, ExtraArgTs... ExtraArgs) override { return llvm::make_unique<ResultModelT>(Pass.run(IR, AM, ExtraArgs...)); } /// \brief The model delegates to a static \c PassT::name method. /// /// The returned string ref must point to constant immutable data! StringRef name() override { return PassT::name(); } PassT Pass; }; } // end namespace detail } // end namespace llvm #endif // LLVM_IR_PASSMANAGERINTERNAL_H