//===- TargetCallingConv.td - Target Calling Conventions ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces with which targets // describe their calling conventions. // //===----------------------------------------------------------------------===// class CCAction; class CallingConv; /// CCCustom - Calls a custom arg handling function. class CCCustom<string fn> : CCAction { string FuncName = fn; } /// CCPredicateAction - Instances of this class check some predicate, then /// delegate to another action if the predicate is true. class CCPredicateAction<CCAction A> : CCAction { CCAction SubAction = A; } /// CCIfType - If the current argument is one of the specified types, apply /// Action A. class CCIfType<list<ValueType> vts, CCAction A> : CCPredicateAction<A> { list<ValueType> VTs = vts; } /// CCIf - If the predicate matches, apply A. class CCIf<string predicate, CCAction A> : CCPredicateAction<A> { string Predicate = predicate; } /// CCIfByVal - If the current argument has ByVal parameter attribute, apply /// Action A. class CCIfByVal<CCAction A> : CCIf<"ArgFlags.isByVal()", A> { } /// CCIfSwiftSelf - If the current argument has swiftself parameter attribute, /// apply Action A. class CCIfSwiftSelf<CCAction A> : CCIf<"ArgFlags.isSwiftSelf()", A> { } /// CCIfSwiftError - If the current argument has swifterror parameter attribute, /// apply Action A. class CCIfSwiftError<CCAction A> : CCIf<"ArgFlags.isSwiftError()", A> { } /// CCIfConsecutiveRegs - If the current argument has InConsecutiveRegs /// parameter attribute, apply Action A. class CCIfConsecutiveRegs<CCAction A> : CCIf<"ArgFlags.isInConsecutiveRegs()", A> { } /// CCIfCC - Match if the current calling convention is 'CC'. class CCIfCC<string CC, CCAction A> : CCIf<!strconcat("State.getCallingConv() == ", CC), A> {} /// CCIfInReg - If this argument is marked with the 'inreg' attribute, apply /// the specified action. class CCIfInReg<CCAction A> : CCIf<"ArgFlags.isInReg()", A> {} /// CCIfNest - If this argument is marked with the 'nest' attribute, apply /// the specified action. class CCIfNest<CCAction A> : CCIf<"ArgFlags.isNest()", A> {} /// CCIfSplit - If this argument is marked with the 'split' attribute, apply /// the specified action. class CCIfSplit<CCAction A> : CCIf<"ArgFlags.isSplit()", A> {} /// CCIfSRet - If this argument is marked with the 'sret' attribute, apply /// the specified action. class CCIfSRet<CCAction A> : CCIf<"ArgFlags.isSRet()", A> {} /// CCIfVarArg - If the current function is vararg - apply the action class CCIfVarArg<CCAction A> : CCIf<"State.isVarArg()", A> {} /// CCIfNotVarArg - If the current function is not vararg - apply the action class CCIfNotVarArg<CCAction A> : CCIf<"!State.isVarArg()", A> {} /// CCAssignToReg - This action matches if there is a register in the specified /// list that is still available. If so, it assigns the value to the first /// available register and succeeds. class CCAssignToReg<list<Register> regList> : CCAction { list<Register> RegList = regList; } /// CCAssignToRegWithShadow - Same as CCAssignToReg, but with list of registers /// which became shadowed, when some register is used. class CCAssignToRegWithShadow<list<Register> regList, list<Register> shadowList> : CCAction { list<Register> RegList = regList; list<Register> ShadowRegList = shadowList; } /// CCAssignToStack - This action always matches: it assigns the value to a /// stack slot of the specified size and alignment on the stack. If size is /// zero then the ABI size is used; if align is zero then the ABI alignment /// is used - these may depend on the target or subtarget. class CCAssignToStack<int size, int align> : CCAction { int Size = size; int Align = align; } /// CCAssignToStackWithShadow - Same as CCAssignToStack, but with a list of /// registers to be shadowed. Note that, unlike CCAssignToRegWithShadow, this /// shadows ALL of the registers in shadowList. class CCAssignToStackWithShadow<int size, int align, list<Register> shadowList> : CCAction { int Size = size; int Align = align; list<Register> ShadowRegList = shadowList; } /// CCPassByVal - This action always matches: it assigns the value to a stack /// slot to implement ByVal aggregate parameter passing. Size and alignment /// specify the minimum size and alignment for the stack slot. class CCPassByVal<int size, int align> : CCAction { int Size = size; int Align = align; } /// CCPromoteToType - If applied, this promotes the specified current value to /// the specified type. class CCPromoteToType<ValueType destTy> : CCAction { ValueType DestTy = destTy; } /// CCPromoteToUpperBitsInType - If applied, this promotes the specified current /// value to the specified type and shifts the value into the upper bits. class CCPromoteToUpperBitsInType<ValueType destTy> : CCAction { ValueType DestTy = destTy; } /// CCBitConvertToType - If applied, this bitconverts the specified current /// value to the specified type. class CCBitConvertToType<ValueType destTy> : CCAction { ValueType DestTy = destTy; } /// CCPassIndirect - If applied, this stores the value to stack and passes the pointer /// as normal argument. class CCPassIndirect<ValueType destTy> : CCAction { ValueType DestTy = destTy; } /// CCDelegateTo - This action invokes the specified sub-calling-convention. It /// is successful if the specified CC matches. class CCDelegateTo<CallingConv cc> : CCAction { CallingConv CC = cc; } /// CallingConv - An instance of this is used to define each calling convention /// that the target supports. class CallingConv<list<CCAction> actions> { list<CCAction> Actions = actions; bit Custom = 0; } /// CustomCallingConv - An instance of this is used to declare calling /// conventions that are implemented using a custom function of the same name. class CustomCallingConv : CallingConv<[]> { let Custom = 1; } /// CalleeSavedRegs - A list of callee saved registers for a given calling /// convention. The order of registers is used by PrologEpilogInsertion when /// allocation stack slots for saved registers. /// /// For each CalleeSavedRegs def, TableGen will emit a FOO_SaveList array for /// returning from getCalleeSavedRegs(), and a FOO_RegMask bit mask suitable for /// returning from getCallPreservedMask(). class CalleeSavedRegs<dag saves> { dag SaveList = saves; // Registers that are also preserved across function calls, but should not be // included in the generated FOO_SaveList array. These registers will be // included in the FOO_RegMask bit mask. This can be used for registers that // are saved automatically, like the SPARC register windows. dag OtherPreserved; }