//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains functions (and a class) useful for working with scaled // numbers -- in particular, pairs of integers where one represents digits and // another represents a scale. The functions are helpers and live in the // namespace ScaledNumbers. The class ScaledNumber is useful for modelling // certain cost metrics that need simple, integer-like semantics that are easy // to reason about. // // These might remind you of soft-floats. If you want one of those, you're in // the wrong place. Look at include/llvm/ADT/APFloat.h instead. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_SCALEDNUMBER_H #define LLVM_SUPPORT_SCALEDNUMBER_H #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cstdint> #include <limits> #include <string> #include <tuple> #include <utility> namespace llvm { namespace ScaledNumbers { /// \brief Maximum scale; same as APFloat for easy debug printing. const int32_t MaxScale = 16383; /// \brief Maximum scale; same as APFloat for easy debug printing. const int32_t MinScale = -16382; /// \brief Get the width of a number. template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; } /// \brief Conditionally round up a scaled number. /// /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true. /// Always returns \c Scale unless there's an overflow, in which case it /// returns \c 1+Scale. /// /// \pre adding 1 to \c Scale will not overflow INT16_MAX. template <class DigitsT> inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale, bool ShouldRound) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); if (ShouldRound) if (!++Digits) // Overflow. return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1); return std::make_pair(Digits, Scale); } /// \brief Convenience helper for 32-bit rounding. inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale, bool ShouldRound) { return getRounded(Digits, Scale, ShouldRound); } /// \brief Convenience helper for 64-bit rounding. inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale, bool ShouldRound) { return getRounded(Digits, Scale, ShouldRound); } /// \brief Adjust a 64-bit scaled number down to the appropriate width. /// /// \pre Adding 64 to \c Scale will not overflow INT16_MAX. template <class DigitsT> inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits, int16_t Scale = 0) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); const int Width = getWidth<DigitsT>(); if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max()) return std::make_pair(Digits, Scale); // Shift right and round. int Shift = 64 - Width - countLeadingZeros(Digits); return getRounded<DigitsT>(Digits >> Shift, Scale + Shift, Digits & (UINT64_C(1) << (Shift - 1))); } /// \brief Convenience helper for adjusting to 32 bits. inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits, int16_t Scale = 0) { return getAdjusted<uint32_t>(Digits, Scale); } /// \brief Convenience helper for adjusting to 64 bits. inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits, int16_t Scale = 0) { return getAdjusted<uint64_t>(Digits, Scale); } /// \brief Multiply two 64-bit integers to create a 64-bit scaled number. /// /// Implemented with four 64-bit integer multiplies. std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS); /// \brief Multiply two 32-bit integers to create a 32-bit scaled number. /// /// Implemented with one 64-bit integer multiply. template <class DigitsT> inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX)) return getAdjusted<DigitsT>(uint64_t(LHS) * RHS); return multiply64(LHS, RHS); } /// \brief Convenience helper for 32-bit product. inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) { return getProduct(LHS, RHS); } /// \brief Convenience helper for 64-bit product. inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) { return getProduct(LHS, RHS); } /// \brief Divide two 64-bit integers to create a 64-bit scaled number. /// /// Implemented with long division. /// /// \pre \c Dividend and \c Divisor are non-zero. std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor); /// \brief Divide two 32-bit integers to create a 32-bit scaled number. /// /// Implemented with one 64-bit integer divide/remainder pair. /// /// \pre \c Dividend and \c Divisor are non-zero. std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor); /// \brief Divide two 32-bit numbers to create a 32-bit scaled number. /// /// Implemented with one 64-bit integer divide/remainder pair. /// /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0). template <class DigitsT> std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8, "expected 32-bit or 64-bit digits"); // Check for zero. if (!Dividend) return std::make_pair(0, 0); if (!Divisor) return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale); if (getWidth<DigitsT>() == 64) return divide64(Dividend, Divisor); return divide32(Dividend, Divisor); } /// \brief Convenience helper for 32-bit quotient. inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend, uint32_t Divisor) { return getQuotient(Dividend, Divisor); } /// \brief Convenience helper for 64-bit quotient. inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend, uint64_t Divisor) { return getQuotient(Dividend, Divisor); } /// \brief Implementation of getLg() and friends. /// /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether /// this was rounded up (1), down (-1), or exact (0). /// /// Returns \c INT32_MIN when \c Digits is zero. template <class DigitsT> inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); if (!Digits) return std::make_pair(INT32_MIN, 0); // Get the floor of the lg of Digits. int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1; // Get the actual floor. int32_t Floor = Scale + LocalFloor; if (Digits == UINT64_C(1) << LocalFloor) return std::make_pair(Floor, 0); // Round based on the next digit. assert(LocalFloor >= 1); bool Round = Digits & UINT64_C(1) << (LocalFloor - 1); return std::make_pair(Floor + Round, Round ? 1 : -1); } /// \brief Get the lg (rounded) of a scaled number. /// /// Get the lg of \c Digits*2^Scale. /// /// Returns \c INT32_MIN when \c Digits is zero. template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) { return getLgImpl(Digits, Scale).first; } /// \brief Get the lg floor of a scaled number. /// /// Get the floor of the lg of \c Digits*2^Scale. /// /// Returns \c INT32_MIN when \c Digits is zero. template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) { auto Lg = getLgImpl(Digits, Scale); return Lg.first - (Lg.second > 0); } /// \brief Get the lg ceiling of a scaled number. /// /// Get the ceiling of the lg of \c Digits*2^Scale. /// /// Returns \c INT32_MIN when \c Digits is zero. template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) { auto Lg = getLgImpl(Digits, Scale); return Lg.first + (Lg.second < 0); } /// \brief Implementation for comparing scaled numbers. /// /// Compare two 64-bit numbers with different scales. Given that the scale of /// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1, /// 1, and 0 for less than, greater than, and equal, respectively. /// /// \pre 0 <= ScaleDiff < 64. int compareImpl(uint64_t L, uint64_t R, int ScaleDiff); /// \brief Compare two scaled numbers. /// /// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1 /// for greater than. template <class DigitsT> int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); // Check for zero. if (!LDigits) return RDigits ? -1 : 0; if (!RDigits) return 1; // Check for the scale. Use getLgFloor to be sure that the scale difference // is always lower than 64. int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale); if (lgL != lgR) return lgL < lgR ? -1 : 1; // Compare digits. if (LScale < RScale) return compareImpl(LDigits, RDigits, RScale - LScale); return -compareImpl(RDigits, LDigits, LScale - RScale); } /// \brief Match scales of two numbers. /// /// Given two scaled numbers, match up their scales. Change the digits and /// scales in place. Shift the digits as necessary to form equivalent numbers, /// losing precision only when necessary. /// /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of /// \c LScale (\c RScale) is unspecified. /// /// As a convenience, returns the matching scale. If the output value of one /// number is zero, returns the scale of the other. If both are zero, which /// scale is returned is unspecified. template <class DigitsT> int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits, int16_t &RScale) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); if (LScale < RScale) // Swap arguments. return matchScales(RDigits, RScale, LDigits, LScale); if (!LDigits) return RScale; if (!RDigits || LScale == RScale) return LScale; // Now LScale > RScale. Get the difference. int32_t ScaleDiff = int32_t(LScale) - RScale; if (ScaleDiff >= 2 * getWidth<DigitsT>()) { // Don't bother shifting. RDigits will get zero-ed out anyway. RDigits = 0; return LScale; } // Shift LDigits left as much as possible, then shift RDigits right. int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff); assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width"); int32_t ShiftR = ScaleDiff - ShiftL; if (ShiftR >= getWidth<DigitsT>()) { // Don't bother shifting. RDigits will get zero-ed out anyway. RDigits = 0; return LScale; } LDigits <<= ShiftL; RDigits >>= ShiftR; LScale -= ShiftL; RScale += ShiftR; assert(LScale == RScale && "scales should match"); return LScale; } /// \brief Get the sum of two scaled numbers. /// /// Get the sum of two scaled numbers with as much precision as possible. /// /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX. template <class DigitsT> std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); // Check inputs up front. This is only relevant if addition overflows, but // testing here should catch more bugs. assert(LScale < INT16_MAX && "scale too large"); assert(RScale < INT16_MAX && "scale too large"); // Normalize digits to match scales. int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale); // Compute sum. DigitsT Sum = LDigits + RDigits; if (Sum >= RDigits) return std::make_pair(Sum, Scale); // Adjust sum after arithmetic overflow. DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1); return std::make_pair(HighBit | Sum >> 1, Scale + 1); } /// \brief Convenience helper for 32-bit sum. inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale, uint32_t RDigits, int16_t RScale) { return getSum(LDigits, LScale, RDigits, RScale); } /// \brief Convenience helper for 64-bit sum. inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale, uint64_t RDigits, int16_t RScale) { return getSum(LDigits, LScale, RDigits, RScale); } /// \brief Get the difference of two scaled numbers. /// /// Get LHS minus RHS with as much precision as possible. /// /// Returns \c (0, 0) if the RHS is larger than the LHS. template <class DigitsT> std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) { static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); // Normalize digits to match scales. const DigitsT SavedRDigits = RDigits; const int16_t SavedRScale = RScale; matchScales(LDigits, LScale, RDigits, RScale); // Compute difference. if (LDigits <= RDigits) return std::make_pair(0, 0); if (RDigits || !SavedRDigits) return std::make_pair(LDigits - RDigits, LScale); // Check if RDigits just barely lost its last bit. E.g., for 32-bit: // // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32 const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale); if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>())) return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor); return std::make_pair(LDigits, LScale); } /// \brief Convenience helper for 32-bit difference. inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits, int16_t LScale, uint32_t RDigits, int16_t RScale) { return getDifference(LDigits, LScale, RDigits, RScale); } /// \brief Convenience helper for 64-bit difference. inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits, int16_t LScale, uint64_t RDigits, int16_t RScale) { return getDifference(LDigits, LScale, RDigits, RScale); } } // end namespace ScaledNumbers } // end namespace llvm namespace llvm { class raw_ostream; class ScaledNumberBase { public: static const int DefaultPrecision = 10; static void dump(uint64_t D, int16_t E, int Width); static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width, unsigned Precision); static std::string toString(uint64_t D, int16_t E, int Width, unsigned Precision); static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); } static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); } static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } static std::pair<uint64_t, bool> splitSigned(int64_t N) { if (N >= 0) return std::make_pair(N, false); uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N); return std::make_pair(Unsigned, true); } static int64_t joinSigned(uint64_t U, bool IsNeg) { if (U > uint64_t(INT64_MAX)) return IsNeg ? INT64_MIN : INT64_MAX; return IsNeg ? -int64_t(U) : int64_t(U); } }; /// \brief Simple representation of a scaled number. /// /// ScaledNumber is a number represented by digits and a scale. It uses simple /// saturation arithmetic and every operation is well-defined for every value. /// It's somewhat similar in behaviour to a soft-float, but is *not* a /// replacement for one. If you're doing numerics, look at \a APFloat instead. /// Nevertheless, we've found these semantics useful for modelling certain cost /// metrics. /// /// The number is split into a signed scale and unsigned digits. The number /// represented is \c getDigits()*2^getScale(). In this way, the digits are /// much like the mantissa in the x87 long double, but there is no canonical /// form so the same number can be represented by many bit representations. /// /// ScaledNumber is templated on the underlying integer type for digits, which /// is expected to be unsigned. /// /// Unlike APFloat, ScaledNumber does not model architecture floating point /// behaviour -- while this might make it a little faster and easier to reason /// about, it certainly makes it more dangerous for general numerics. /// /// ScaledNumber is totally ordered. However, there is no canonical form, so /// there are multiple representations of most scalars. E.g.: /// /// ScaledNumber(8u, 0) == ScaledNumber(4u, 1) /// ScaledNumber(4u, 1) == ScaledNumber(2u, 2) /// ScaledNumber(2u, 2) == ScaledNumber(1u, 3) /// /// ScaledNumber implements most arithmetic operations. Precision is kept /// where possible. Uses simple saturation arithmetic, so that operations /// saturate to 0.0 or getLargest() rather than under or overflowing. It has /// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0. /// Any other division by 0.0 is defined to be getLargest(). /// /// As a convenience for modifying the exponent, left and right shifting are /// both implemented, and both interpret negative shifts as positive shifts in /// the opposite direction. /// /// Scales are limited to the range accepted by x87 long double. This makes /// it trivial to add functionality to convert to APFloat (this is already /// relied on for the implementation of printing). /// /// Possible (and conflicting) future directions: /// /// 1. Turn this into a wrapper around \a APFloat. /// 2. Share the algorithm implementations with \a APFloat. /// 3. Allow \a ScaledNumber to represent a signed number. template <class DigitsT> class ScaledNumber : ScaledNumberBase { public: static_assert(!std::numeric_limits<DigitsT>::is_signed, "only unsigned floats supported"); typedef DigitsT DigitsType; private: typedef std::numeric_limits<DigitsType> DigitsLimits; static const int Width = sizeof(DigitsType) * 8; static_assert(Width <= 64, "invalid integer width for digits"); private: DigitsType Digits = 0; int16_t Scale = 0; public: ScaledNumber() = default; constexpr ScaledNumber(DigitsType Digits, int16_t Scale) : Digits(Digits), Scale(Scale) {} private: ScaledNumber(const std::pair<DigitsT, int16_t> &X) : Digits(X.first), Scale(X.second) {} public: static ScaledNumber getZero() { return ScaledNumber(0, 0); } static ScaledNumber getOne() { return ScaledNumber(1, 0); } static ScaledNumber getLargest() { return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale); } static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); } static ScaledNumber getInverse(uint64_t N) { return get(N).invert(); } static ScaledNumber getFraction(DigitsType N, DigitsType D) { return getQuotient(N, D); } int16_t getScale() const { return Scale; } DigitsType getDigits() const { return Digits; } /// \brief Convert to the given integer type. /// /// Convert to \c IntT using simple saturating arithmetic, truncating if /// necessary. template <class IntT> IntT toInt() const; bool isZero() const { return !Digits; } bool isLargest() const { return *this == getLargest(); } bool isOne() const { if (Scale > 0 || Scale <= -Width) return false; return Digits == DigitsType(1) << -Scale; } /// \brief The log base 2, rounded. /// /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN. int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); } /// \brief The log base 2, rounded towards INT32_MIN. /// /// Get the lg floor. lg 0 is defined to be INT32_MIN. int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); } /// \brief The log base 2, rounded towards INT32_MAX. /// /// Get the lg ceiling. lg 0 is defined to be INT32_MIN. int32_t lgCeiling() const { return ScaledNumbers::getLgCeiling(Digits, Scale); } bool operator==(const ScaledNumber &X) const { return compare(X) == 0; } bool operator<(const ScaledNumber &X) const { return compare(X) < 0; } bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; } bool operator>(const ScaledNumber &X) const { return compare(X) > 0; } bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; } bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; } bool operator!() const { return isZero(); } /// \brief Convert to a decimal representation in a string. /// /// Convert to a string. Uses scientific notation for very large/small /// numbers. Scientific notation is used roughly for numbers outside of the /// range 2^-64 through 2^64. /// /// \c Precision indicates the number of decimal digits of precision to use; /// 0 requests the maximum available. /// /// As a special case to make debugging easier, if the number is small enough /// to convert without scientific notation and has more than \c Precision /// digits before the decimal place, it's printed accurately to the first /// digit past zero. E.g., assuming 10 digits of precision: /// /// 98765432198.7654... => 98765432198.8 /// 8765432198.7654... => 8765432198.8 /// 765432198.7654... => 765432198.8 /// 65432198.7654... => 65432198.77 /// 5432198.7654... => 5432198.765 std::string toString(unsigned Precision = DefaultPrecision) { return ScaledNumberBase::toString(Digits, Scale, Width, Precision); } /// \brief Print a decimal representation. /// /// Print a string. See toString for documentation. raw_ostream &print(raw_ostream &OS, unsigned Precision = DefaultPrecision) const { return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision); } void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); } ScaledNumber &operator+=(const ScaledNumber &X) { std::tie(Digits, Scale) = ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale); // Check for exponent past MaxScale. if (Scale > ScaledNumbers::MaxScale) *this = getLargest(); return *this; } ScaledNumber &operator-=(const ScaledNumber &X) { std::tie(Digits, Scale) = ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale); return *this; } ScaledNumber &operator*=(const ScaledNumber &X); ScaledNumber &operator/=(const ScaledNumber &X); ScaledNumber &operator<<=(int16_t Shift) { shiftLeft(Shift); return *this; } ScaledNumber &operator>>=(int16_t Shift) { shiftRight(Shift); return *this; } private: void shiftLeft(int32_t Shift); void shiftRight(int32_t Shift); /// \brief Adjust two floats to have matching exponents. /// /// Adjust \c this and \c X to have matching exponents. Returns the new \c X /// by value. Does nothing if \a isZero() for either. /// /// The value that compares smaller will lose precision, and possibly become /// \a isZero(). ScaledNumber matchScales(ScaledNumber X) { ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale); return X; } public: /// \brief Scale a large number accurately. /// /// Scale N (multiply it by this). Uses full precision multiplication, even /// if Width is smaller than 64, so information is not lost. uint64_t scale(uint64_t N) const; uint64_t scaleByInverse(uint64_t N) const { // TODO: implement directly, rather than relying on inverse. Inverse is // expensive. return inverse().scale(N); } int64_t scale(int64_t N) const { std::pair<uint64_t, bool> Unsigned = splitSigned(N); return joinSigned(scale(Unsigned.first), Unsigned.second); } int64_t scaleByInverse(int64_t N) const { std::pair<uint64_t, bool> Unsigned = splitSigned(N); return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second); } int compare(const ScaledNumber &X) const { return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale); } int compareTo(uint64_t N) const { return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0); } int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); } ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; } ScaledNumber inverse() const { return ScaledNumber(*this).invert(); } private: static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) { return ScaledNumbers::getProduct(LHS, RHS); } static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) { return ScaledNumbers::getQuotient(Dividend, Divisor); } static int countLeadingZerosWidth(DigitsType Digits) { if (Width == 64) return countLeadingZeros64(Digits); if (Width == 32) return countLeadingZeros32(Digits); return countLeadingZeros32(Digits) + Width - 32; } /// \brief Adjust a number to width, rounding up if necessary. /// /// Should only be called for \c Shift close to zero. /// /// \pre Shift >= MinScale && Shift + 64 <= MaxScale. static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) { assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0"); assert(Shift <= ScaledNumbers::MaxScale - 64 && "Shift should be close to 0"); auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift); return Adjusted; } static ScaledNumber getRounded(ScaledNumber P, bool Round) { // Saturate. if (P.isLargest()) return P; return ScaledNumbers::getRounded(P.Digits, P.Scale, Round); } }; #define SCALED_NUMBER_BOP(op, base) \ template <class DigitsT> \ ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \ const ScaledNumber<DigitsT> &R) { \ return ScaledNumber<DigitsT>(L) base R; \ } SCALED_NUMBER_BOP(+, += ) SCALED_NUMBER_BOP(-, -= ) SCALED_NUMBER_BOP(*, *= ) SCALED_NUMBER_BOP(/, /= ) #undef SCALED_NUMBER_BOP template <class DigitsT> ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L, int16_t Shift) { return ScaledNumber<DigitsT>(L) <<= Shift; } template <class DigitsT> ScaledNumber<DigitsT> operator>>(const ScaledNumber<DigitsT> &L, int16_t Shift) { return ScaledNumber<DigitsT>(L) >>= Shift; } template <class DigitsT> raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) { return X.print(OS, 10); } #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \ template <class DigitsT> \ bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \ return L.compareTo(T2(R)) op 0; \ } \ template <class DigitsT> \ bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \ return 0 op R.compareTo(T2(L)); \ } #define SCALED_NUMBER_COMPARE_TO(op) \ SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \ SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \ SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \ SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t) SCALED_NUMBER_COMPARE_TO(< ) SCALED_NUMBER_COMPARE_TO(> ) SCALED_NUMBER_COMPARE_TO(== ) SCALED_NUMBER_COMPARE_TO(!= ) SCALED_NUMBER_COMPARE_TO(<= ) SCALED_NUMBER_COMPARE_TO(>= ) #undef SCALED_NUMBER_COMPARE_TO #undef SCALED_NUMBER_COMPARE_TO_TYPE template <class DigitsT> uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const { if (Width == 64 || N <= DigitsLimits::max()) return (get(N) * *this).template toInt<uint64_t>(); // Defer to the 64-bit version. return ScaledNumber<uint64_t>(Digits, Scale).scale(N); } template <class DigitsT> template <class IntT> IntT ScaledNumber<DigitsT>::toInt() const { typedef std::numeric_limits<IntT> Limits; if (*this < 1) return 0; if (*this >= Limits::max()) return Limits::max(); IntT N = Digits; if (Scale > 0) { assert(size_t(Scale) < sizeof(IntT) * 8); return N << Scale; } if (Scale < 0) { assert(size_t(-Scale) < sizeof(IntT) * 8); return N >> -Scale; } return N; } template <class DigitsT> ScaledNumber<DigitsT> &ScaledNumber<DigitsT>:: operator*=(const ScaledNumber &X) { if (isZero()) return *this; if (X.isZero()) return *this = X; // Save the exponents. int32_t Scales = int32_t(Scale) + int32_t(X.Scale); // Get the raw product. *this = getProduct(Digits, X.Digits); // Combine with exponents. return *this <<= Scales; } template <class DigitsT> ScaledNumber<DigitsT> &ScaledNumber<DigitsT>:: operator/=(const ScaledNumber &X) { if (isZero()) return *this; if (X.isZero()) return *this = getLargest(); // Save the exponents. int32_t Scales = int32_t(Scale) - int32_t(X.Scale); // Get the raw quotient. *this = getQuotient(Digits, X.Digits); // Combine with exponents. return *this <<= Scales; } template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) { if (!Shift || isZero()) return; assert(Shift != INT32_MIN); if (Shift < 0) { shiftRight(-Shift); return; } // Shift as much as we can in the exponent. int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale); Scale += ScaleShift; if (ScaleShift == Shift) return; // Check this late, since it's rare. if (isLargest()) return; // Shift the digits themselves. Shift -= ScaleShift; if (Shift > countLeadingZerosWidth(Digits)) { // Saturate. *this = getLargest(); return; } Digits <<= Shift; } template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) { if (!Shift || isZero()) return; assert(Shift != INT32_MIN); if (Shift < 0) { shiftLeft(-Shift); return; } // Shift as much as we can in the exponent. int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale); Scale -= ScaleShift; if (ScaleShift == Shift) return; // Shift the digits themselves. Shift -= ScaleShift; if (Shift >= Width) { // Saturate. *this = getZero(); return; } Digits >>= Shift; } template <typename T> struct isPodLike; template <typename T> struct isPodLike<ScaledNumber<T>> { static const bool value = true; }; } // end namespace llvm #endif // LLVM_SUPPORT_SCALEDNUMBER_H