//===- IRSymtab.h - data definitions for IR symbol tables -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains data definitions and a reader and builder for a symbol // table for LLVM IR. Its purpose is to allow linkers and other consumers of // bitcode files to efficiently read the symbol table for symbol resolution // purposes without needing to construct a module in memory. // // As with most object files the symbol table has two parts: the symbol table // itself and a string table which is referenced by the symbol table. // // A symbol table corresponds to a single bitcode file, which may consist of // multiple modules, so symbol tables may likewise contain symbols for multiple // modules. // //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECT_IRSYMTAB_H #define LLVM_OBJECT_IRSYMTAB_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include <cassert> #include <cstdint> #include <vector> namespace llvm { struct BitcodeFileContents; class StringTableBuilder; namespace irsymtab { namespace storage { // The data structures in this namespace define the low-level serialization // format. Clients that just want to read a symbol table should use the // irsymtab::Reader class. using Word = support::ulittle32_t; /// A reference to a string in the string table. struct Str { Word Offset, Size; StringRef get(StringRef Strtab) const { return {Strtab.data() + Offset, Size}; } }; /// A reference to a range of objects in the symbol table. template <typename T> struct Range { Word Offset, Size; ArrayRef<T> get(StringRef Symtab) const { return {reinterpret_cast<const T *>(Symtab.data() + Offset), Size}; } }; /// Describes the range of a particular module's symbols within the symbol /// table. struct Module { Word Begin, End; /// The index of the first Uncommon for this Module. Word UncBegin; }; /// This is equivalent to an IR comdat. struct Comdat { Str Name; }; /// Contains the information needed by linkers for symbol resolution, as well as /// by the LTO implementation itself. struct Symbol { /// The mangled symbol name. Str Name; /// The unmangled symbol name, or the empty string if this is not an IR /// symbol. Str IRName; /// The index into Header::Comdats, or -1 if not a comdat member. Word ComdatIndex; Word Flags; enum FlagBits { FB_visibility, // 2 bits FB_has_uncommon = FB_visibility + 2, FB_undefined, FB_weak, FB_common, FB_indirect, FB_used, FB_tls, FB_may_omit, FB_global, FB_format_specific, FB_unnamed_addr, FB_executable, }; }; /// This data structure contains rarely used symbol fields and is optionally /// referenced by a Symbol. struct Uncommon { Word CommonSize, CommonAlign; /// COFF-specific: the name of the symbol that a weak external resolves to /// if not defined. Str COFFWeakExternFallbackName; /// Specified section name, if any. Str SectionName; }; struct Header { /// Version number of the symtab format. This number should be incremented /// when the format changes, but it does not need to be incremented if a /// change to LLVM would cause it to create a different symbol table. Word Version; enum { kCurrentVersion = 1 }; /// The producer's version string (LLVM_VERSION_STRING " " LLVM_REVISION). /// Consumers should rebuild the symbol table from IR if the producer's /// version does not match the consumer's version due to potential differences /// in symbol table format, symbol enumeration order and so on. Str Producer; Range<Module> Modules; Range<Comdat> Comdats; Range<Symbol> Symbols; Range<Uncommon> Uncommons; Str TargetTriple, SourceFileName; /// COFF-specific: linker directives. Str COFFLinkerOpts; }; } // end namespace storage /// Fills in Symtab and StrtabBuilder with a valid symbol and string table for /// Mods. Error build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, BumpPtrAllocator &Alloc); /// This represents a symbol that has been read from a storage::Symbol and /// possibly a storage::Uncommon. struct Symbol { // Copied from storage::Symbol. StringRef Name, IRName; int ComdatIndex; uint32_t Flags; // Copied from storage::Uncommon. uint32_t CommonSize, CommonAlign; StringRef COFFWeakExternFallbackName; StringRef SectionName; /// Returns the mangled symbol name. StringRef getName() const { return Name; } /// Returns the unmangled symbol name, or the empty string if this is not an /// IR symbol. StringRef getIRName() const { return IRName; } /// Returns the index into the comdat table (see Reader::getComdatTable()), or /// -1 if not a comdat member. int getComdatIndex() const { return ComdatIndex; } using S = storage::Symbol; GlobalValue::VisibilityTypes getVisibility() const { return GlobalValue::VisibilityTypes((Flags >> S::FB_visibility) & 3); } bool isUndefined() const { return (Flags >> S::FB_undefined) & 1; } bool isWeak() const { return (Flags >> S::FB_weak) & 1; } bool isCommon() const { return (Flags >> S::FB_common) & 1; } bool isIndirect() const { return (Flags >> S::FB_indirect) & 1; } bool isUsed() const { return (Flags >> S::FB_used) & 1; } bool isTLS() const { return (Flags >> S::FB_tls) & 1; } bool canBeOmittedFromSymbolTable() const { return (Flags >> S::FB_may_omit) & 1; } bool isGlobal() const { return (Flags >> S::FB_global) & 1; } bool isFormatSpecific() const { return (Flags >> S::FB_format_specific) & 1; } bool isUnnamedAddr() const { return (Flags >> S::FB_unnamed_addr) & 1; } bool isExecutable() const { return (Flags >> S::FB_executable) & 1; } uint64_t getCommonSize() const { assert(isCommon()); return CommonSize; } uint32_t getCommonAlignment() const { assert(isCommon()); return CommonAlign; } /// COFF-specific: for weak externals, returns the name of the symbol that is /// used as a fallback if the weak external remains undefined. StringRef getCOFFWeakExternalFallback() const { assert(isWeak() && isIndirect()); return COFFWeakExternFallbackName; } StringRef getSectionName() const { return SectionName; } }; /// This class can be used to read a Symtab and Strtab produced by /// irsymtab::build. class Reader { StringRef Symtab, Strtab; ArrayRef<storage::Module> Modules; ArrayRef<storage::Comdat> Comdats; ArrayRef<storage::Symbol> Symbols; ArrayRef<storage::Uncommon> Uncommons; StringRef str(storage::Str S) const { return S.get(Strtab); } template <typename T> ArrayRef<T> range(storage::Range<T> R) const { return R.get(Symtab); } const storage::Header &header() const { return *reinterpret_cast<const storage::Header *>(Symtab.data()); } public: class SymbolRef; Reader() = default; Reader(StringRef Symtab, StringRef Strtab) : Symtab(Symtab), Strtab(Strtab) { Modules = range(header().Modules); Comdats = range(header().Comdats); Symbols = range(header().Symbols); Uncommons = range(header().Uncommons); } using symbol_range = iterator_range<object::content_iterator<SymbolRef>>; /// Returns the symbol table for the entire bitcode file. /// The symbols enumerated by this method are ephemeral, but they can be /// copied into an irsymtab::Symbol object. symbol_range symbols() const; size_t getNumModules() const { return Modules.size(); } /// Returns a slice of the symbol table for the I'th module in the file. /// The symbols enumerated by this method are ephemeral, but they can be /// copied into an irsymtab::Symbol object. symbol_range module_symbols(unsigned I) const; StringRef getTargetTriple() const { return str(header().TargetTriple); } /// Returns the source file path specified at compile time. StringRef getSourceFileName() const { return str(header().SourceFileName); } /// Returns a table with all the comdats used by this file. std::vector<StringRef> getComdatTable() const { std::vector<StringRef> ComdatTable; ComdatTable.reserve(Comdats.size()); for (auto C : Comdats) ComdatTable.push_back(str(C.Name)); return ComdatTable; } /// COFF-specific: returns linker options specified in the input file. StringRef getCOFFLinkerOpts() const { return str(header().COFFLinkerOpts); } }; /// Ephemeral symbols produced by Reader::symbols() and /// Reader::module_symbols(). class Reader::SymbolRef : public Symbol { const storage::Symbol *SymI, *SymE; const storage::Uncommon *UncI; const Reader *R; void read() { if (SymI == SymE) return; Name = R->str(SymI->Name); IRName = R->str(SymI->IRName); ComdatIndex = SymI->ComdatIndex; Flags = SymI->Flags; if (Flags & (1 << storage::Symbol::FB_has_uncommon)) { CommonSize = UncI->CommonSize; CommonAlign = UncI->CommonAlign; COFFWeakExternFallbackName = R->str(UncI->COFFWeakExternFallbackName); SectionName = R->str(UncI->SectionName); } else // Reset this field so it can be queried unconditionally for all symbols. SectionName = ""; } public: SymbolRef(const storage::Symbol *SymI, const storage::Symbol *SymE, const storage::Uncommon *UncI, const Reader *R) : SymI(SymI), SymE(SymE), UncI(UncI), R(R) { read(); } void moveNext() { ++SymI; if (Flags & (1 << storage::Symbol::FB_has_uncommon)) ++UncI; read(); } bool operator==(const SymbolRef &Other) const { return SymI == Other.SymI; } }; inline Reader::symbol_range Reader::symbols() const { return {SymbolRef(Symbols.begin(), Symbols.end(), Uncommons.begin(), this), SymbolRef(Symbols.end(), Symbols.end(), nullptr, this)}; } inline Reader::symbol_range Reader::module_symbols(unsigned I) const { const storage::Module &M = Modules[I]; const storage::Symbol *MBegin = Symbols.begin() + M.Begin, *MEnd = Symbols.begin() + M.End; return {SymbolRef(MBegin, MEnd, Uncommons.begin() + M.UncBegin, this), SymbolRef(MEnd, MEnd, nullptr, this)}; } /// The contents of the irsymtab in a bitcode file. Any underlying data for the /// irsymtab are owned by Symtab and Strtab. struct FileContents { SmallVector<char, 0> Symtab, Strtab; Reader TheReader; }; /// Reads the contents of a bitcode file, creating its irsymtab if necessary. Expected<FileContents> readBitcode(const BitcodeFileContents &BFC); } // end namespace irsymtab } // end namespace llvm #endif // LLVM_OBJECT_IRSYMTAB_H