//===- llvm/Use.h - Definition of the Use class -----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This defines the Use class. The Use class represents the operand of an /// instruction or some other User instance which refers to a Value. The Use /// class keeps the "use list" of the referenced value up to date. /// /// Pointer tagging is used to efficiently find the User corresponding to a Use /// without having to store a User pointer in every Use. A User is preceded in /// memory by all the Uses corresponding to its operands, and the low bits of /// one of the fields (Prev) of the Use class are used to encode offsets to be /// able to find that User given a pointer to any Use. For details, see: /// /// http://www.llvm.org/docs/ProgrammersManual.html#UserLayout /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_USE_H #define LLVM_IR_USE_H #include "llvm-c/Types.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Compiler.h" namespace llvm { template <typename> struct simplify_type; class User; class Value; /// \brief A Use represents the edge between a Value definition and its users. /// /// This is notionally a two-dimensional linked list. It supports traversing /// all of the uses for a particular value definition. It also supports jumping /// directly to the used value when we arrive from the User's operands, and /// jumping directly to the User when we arrive from the Value's uses. /// /// The pointer to the used Value is explicit, and the pointer to the User is /// implicit. The implicit pointer is found via a waymarking algorithm /// described in the programmer's manual: /// /// http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm /// /// This is essentially the single most memory intensive object in LLVM because /// of the number of uses in the system. At the same time, the constant time /// operations it allows are essential to many optimizations having reasonable /// time complexity. class Use { public: Use(const Use &U) = delete; /// \brief Provide a fast substitute to std::swap<Use> /// that also works with less standard-compliant compilers void swap(Use &RHS); /// Pointer traits for the UserRef PointerIntPair. This ensures we always /// use the LSB regardless of pointer alignment on different targets. struct UserRefPointerTraits { static inline void *getAsVoidPointer(User *P) { return P; } static inline User *getFromVoidPointer(void *P) { return (User *)P; } enum { NumLowBitsAvailable = 1 }; }; // A type for the word following an array of hung-off Uses in memory, which is // a pointer back to their User with the bottom bit set. using UserRef = PointerIntPair<User *, 1, unsigned, UserRefPointerTraits>; /// Pointer traits for the Prev PointerIntPair. This ensures we always use /// the two LSBs regardless of pointer alignment on different targets. struct PrevPointerTraits { static inline void *getAsVoidPointer(Use **P) { return P; } static inline Use **getFromVoidPointer(void *P) { return (Use **)P; } enum { NumLowBitsAvailable = 2 }; }; private: /// Destructor - Only for zap() ~Use() { if (Val) removeFromList(); } enum PrevPtrTag { zeroDigitTag, oneDigitTag, stopTag, fullStopTag }; /// Constructor Use(PrevPtrTag tag) { Prev.setInt(tag); } public: friend class Value; operator Value *() const { return Val; } Value *get() const { return Val; } /// \brief Returns the User that contains this Use. /// /// For an instruction operand, for example, this will return the /// instruction. User *getUser() const LLVM_READONLY; inline void set(Value *Val); inline Value *operator=(Value *RHS); inline const Use &operator=(const Use &RHS); Value *operator->() { return Val; } const Value *operator->() const { return Val; } Use *getNext() const { return Next; } /// \brief Return the operand # of this use in its User. unsigned getOperandNo() const; /// \brief Initializes the waymarking tags on an array of Uses. /// /// This sets up the array of Uses such that getUser() can find the User from /// any of those Uses. static Use *initTags(Use *Start, Use *Stop); /// \brief Destroys Use operands when the number of operands of /// a User changes. static void zap(Use *Start, const Use *Stop, bool del = false); private: const Use *getImpliedUser() const LLVM_READONLY; Value *Val = nullptr; Use *Next; PointerIntPair<Use **, 2, PrevPtrTag, PrevPointerTraits> Prev; void setPrev(Use **NewPrev) { Prev.setPointer(NewPrev); } void addToList(Use **List) { Next = *List; if (Next) Next->setPrev(&Next); setPrev(List); *List = this; } void removeFromList() { Use **StrippedPrev = Prev.getPointer(); *StrippedPrev = Next; if (Next) Next->setPrev(StrippedPrev); } }; /// \brief Allow clients to treat uses just like values when using /// casting operators. template <> struct simplify_type<Use> { using SimpleType = Value *; static SimpleType getSimplifiedValue(Use &Val) { return Val.get(); } }; template <> struct simplify_type<const Use> { using SimpleType = /*const*/ Value *; static SimpleType getSimplifiedValue(const Use &Val) { return Val.get(); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Use, LLVMUseRef) } // end namespace llvm #endif // LLVM_IR_USE_H