//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file declares the MachineIRBuilder class. /// This is a helper class to build MachineInstr. //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H #define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H #include "llvm/CodeGen/GlobalISel/Types.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugLoc.h" #include <queue> namespace llvm { // Forward declarations. class MachineFunction; class MachineInstr; class TargetInstrInfo; /// Helper class to build MachineInstr. /// It keeps internally the insertion point and debug location for all /// the new instructions we want to create. /// This information can be modify via the related setters. class MachineIRBuilder { /// MachineFunction under construction. MachineFunction *MF; /// Information used to access the description of the opcodes. const TargetInstrInfo *TII; /// Information used to verify types are consistent and to create virtual registers. MachineRegisterInfo *MRI; /// Debug location to be set to any instruction we create. DebugLoc DL; /// \name Fields describing the insertion point. /// @{ MachineBasicBlock *MBB; MachineBasicBlock::iterator II; /// @} std::function<void(MachineInstr *)> InsertedInstr; const TargetInstrInfo &getTII() { assert(TII && "TargetInstrInfo is not set"); return *TII; } void validateTruncExt(unsigned Dst, unsigned Src, bool IsExtend); MachineInstrBuilder buildBinaryOp(unsigned Opcode, unsigned Res, unsigned Op0, unsigned Op1); unsigned getDestFromArg(unsigned Reg) { return Reg; } unsigned getDestFromArg(LLT Ty) { return getMF().getRegInfo().createGenericVirtualRegister(Ty); } unsigned getDestFromArg(const TargetRegisterClass *RC) { return getMF().getRegInfo().createVirtualRegister(RC); } void addUseFromArg(MachineInstrBuilder &MIB, unsigned Reg) { MIB.addUse(Reg); } void addUseFromArg(MachineInstrBuilder &MIB, const MachineInstrBuilder &UseMIB) { MIB.addUse(UseMIB->getOperand(0).getReg()); } void addUsesFromArgs(MachineInstrBuilder &MIB) { } template<typename UseArgTy, typename ... UseArgsTy> void addUsesFromArgs(MachineInstrBuilder &MIB, UseArgTy &&Arg1, UseArgsTy &&... Args) { addUseFromArg(MIB, Arg1); addUsesFromArgs(MIB, std::forward<UseArgsTy>(Args)...); } unsigned getRegFromArg(unsigned Reg) { return Reg; } unsigned getRegFromArg(const MachineInstrBuilder &MIB) { return MIB->getOperand(0).getReg(); } public: /// Some constructors for easy use. MachineIRBuilder() = default; MachineIRBuilder(MachineFunction &MF) { setMF(MF); } MachineIRBuilder(MachineInstr &MI) : MachineIRBuilder(*MI.getMF()) { setInstr(MI); } /// Getter for the function we currently build. MachineFunction &getMF() { assert(MF && "MachineFunction is not set"); return *MF; } /// Getter for the basic block we currently build. MachineBasicBlock &getMBB() { assert(MBB && "MachineBasicBlock is not set"); return *MBB; } /// Current insertion point for new instructions. MachineBasicBlock::iterator getInsertPt() { return II; } /// Set the insertion point before the specified position. /// \pre MBB must be in getMF(). /// \pre II must be a valid iterator in MBB. void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II); /// @} /// \name Setters for the insertion point. /// @{ /// Set the MachineFunction where to build instructions. void setMF(MachineFunction &); /// Set the insertion point to the end of \p MBB. /// \pre \p MBB must be contained by getMF(). void setMBB(MachineBasicBlock &MBB); /// Set the insertion point to before MI. /// \pre MI must be in getMF(). void setInstr(MachineInstr &MI); /// @} /// \name Control where instructions we create are recorded (typically for /// visiting again later during legalization). /// @{ void recordInsertions(std::function<void(MachineInstr *)> InsertedInstr); void stopRecordingInsertions(); /// @} /// Set the debug location to \p DL for all the next build instructions. void setDebugLoc(const DebugLoc &DL) { this->DL = DL; } /// Get the current instruction's debug location. DebugLoc getDebugLoc() { return DL; } /// Build and insert <empty> = \p Opcode <empty>. /// The insertion point is the one set by the last call of either /// setBasicBlock or setMI. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildInstr(unsigned Opcode); /// DAG like Generic method for building arbitrary instructions as above. /// \Opc opcode for the instruction. /// \Ty Either LLT/TargetRegisterClass/unsigned types for Dst /// \Args Variadic list of uses of types(unsigned/MachineInstrBuilder) /// Uses of type MachineInstrBuilder will perform /// getOperand(0).getReg() to convert to register. template <typename DstTy, typename... UseArgsTy> MachineInstrBuilder buildInstr(unsigned Opc, DstTy &&Ty, UseArgsTy &&... Args) { auto MIB = buildInstr(Opc).addDef(getDestFromArg(Ty)); addUsesFromArgs(MIB, std::forward<UseArgsTy>(Args)...); return MIB; } /// Build but don't insert <empty> = \p Opcode <empty>. /// /// \pre setMF, setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildInstrNoInsert(unsigned Opcode); /// Insert an existing instruction at the insertion point. MachineInstrBuilder insertInstr(MachineInstrBuilder MIB); /// Build and insert a DBG_VALUE instruction expressing the fact that the /// associated \p Variable lives in \p Reg (suitably modified by \p Expr). MachineInstrBuilder buildDirectDbgValue(unsigned Reg, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_VALUE instruction expressing the fact that the /// associated \p Variable lives in memory at \p Reg (suitably modified by \p /// Expr). MachineInstrBuilder buildIndirectDbgValue(unsigned Reg, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_VALUE instruction expressing the fact that the /// associated \p Variable lives in the stack slot specified by \p FI /// (suitably modified by \p Expr). MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable, const MDNode *Expr); /// Build and insert a DBG_VALUE instructions specifying that \p Variable is /// given by \p C (suitably modified by \p Expr). MachineInstrBuilder buildConstDbgValue(const Constant &C, const MDNode *Variable, const MDNode *Expr); /// Build and insert \p Res<def> = G_FRAME_INDEX \p Idx /// /// G_FRAME_INDEX materializes the address of an alloca value or other /// stack-based object. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildFrameIndex(unsigned Res, int Idx); /// Build and insert \p Res<def> = G_GLOBAL_VALUE \p GV /// /// G_GLOBAL_VALUE materializes the address of the specified global /// into \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with pointer type /// in the same address space as \p GV. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildGlobalValue(unsigned Res, const GlobalValue *GV); /// Build and insert \p Res<def> = G_ADD \p Op0, \p Op1 /// /// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1, /// truncated to their width. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildAdd(unsigned Res, unsigned Op0, unsigned Op1); template <typename DstTy, typename... UseArgsTy> MachineInstrBuilder buildAdd(DstTy &&Ty, UseArgsTy &&... UseArgs) { unsigned Res = getDestFromArg(Ty); return buildAdd(Res, (getRegFromArg(UseArgs))...); } /// Build and insert \p Res<def> = G_SUB \p Op0, \p Op1 /// /// G_SUB sets \p Res to the sum of integer parameters \p Op0 and \p Op1, /// truncated to their width. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildSub(unsigned Res, unsigned Op0, unsigned Op1); /// Build and insert \p Res<def> = G_MUL \p Op0, \p Op1 /// /// G_MUL sets \p Res to the sum of integer parameters \p Op0 and \p Op1, /// truncated to their width. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildMul(unsigned Res, unsigned Op0, unsigned Op1); /// Build and insert \p Res<def> = G_GEP \p Op0, \p Op1 /// /// G_GEP adds \p Op1 bytes to the pointer specified by \p Op0, /// storing the resulting pointer in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Op0 must be generic virtual registers with pointer /// type. /// \pre \p Op1 must be a generic virtual register with scalar type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildGEP(unsigned Res, unsigned Op0, unsigned Op1); /// Materialize and insert \p Res<def> = G_GEP \p Op0, (G_CONSTANT \p Value) /// /// G_GEP adds \p Value bytes to the pointer specified by \p Op0, /// storing the resulting pointer in \p Res. If \p Value is zero then no /// G_GEP or G_CONSTANT will be created and \pre Op0 will be assigned to /// \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Op0 must be a generic virtual register with pointer type. /// \pre \p ValueTy must be a scalar type. /// \pre \p Res must be 0. This is to detect confusion between /// materializeGEP() and buildGEP(). /// \post \p Res will either be a new generic virtual register of the same /// type as \p Op0 or \p Op0 itself. /// /// \return a MachineInstrBuilder for the newly created instruction. Optional<MachineInstrBuilder> materializeGEP(unsigned &Res, unsigned Op0, const LLT &ValueTy, uint64_t Value); /// Build and insert \p Res<def> = G_PTR_MASK \p Op0, \p NumBits /// /// G_PTR_MASK clears the low bits of a pointer operand without destroying its /// pointer properties. This has the effect of rounding the address *down* to /// a specified alignment in bits. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Op0 must be generic virtual registers with pointer /// type. /// \pre \p NumBits must be an integer representing the number of low bits to /// be cleared in \p Op0. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildPtrMask(unsigned Res, unsigned Op0, uint32_t NumBits); /// Build and insert \p Res<def>, \p CarryOut<def> = G_UADDE \p Op0, /// \p Op1, \p CarryIn /// /// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit /// width) and sets \p CarryOut to 1 if the result overflowed in unsigned /// arithmetic. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same scalar type. /// \pre \p CarryOut and \p CarryIn must be generic virtual /// registers with the same scalar type (typically s1) /// /// \return The newly created instruction. MachineInstrBuilder buildUAdde(unsigned Res, unsigned CarryOut, unsigned Op0, unsigned Op1, unsigned CarryIn); /// Build and insert \p Res<def> = G_AND \p Op0, \p Op1 /// /// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p /// Op1. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. template <typename DstTy, typename... UseArgsTy> MachineInstrBuilder buildAnd(DstTy &&Dst, UseArgsTy &&... UseArgs) { return buildAnd(getDestFromArg(Dst), getRegFromArg(UseArgs)...); } MachineInstrBuilder buildAnd(unsigned Res, unsigned Op0, unsigned Op1); /// Build and insert \p Res<def> = G_OR \p Op0, \p Op1 /// /// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p /// Op1. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same (scalar or vector) type). /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildOr(unsigned Res, unsigned Op0, unsigned Op1); /// Build and insert \p Res<def> = G_ANYEXT \p Op0 /// /// G_ANYEXT produces a register of the specified width, with bits 0 to /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified /// (i.e. this is neither zero nor sign-extension). For a vector register, /// each element is extended individually. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Op must be smaller than \p Res /// /// \return The newly created instruction. MachineInstrBuilder buildAnyExt(unsigned Res, unsigned Op); template <typename DstType, typename ArgType> MachineInstrBuilder buildAnyExt(DstType &&Res, ArgType &&Arg) { return buildAnyExt(getDestFromArg(Res), getRegFromArg(Arg)); } /// Build and insert \p Res<def> = G_SEXT \p Op /// /// G_SEXT produces a register of the specified width, with bits 0 to /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the /// high bit of \p Op (i.e. 2s-complement sign extended). /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Op must be smaller than \p Res /// /// \return The newly created instruction. MachineInstrBuilder buildSExt(unsigned Res, unsigned Op); /// Build and insert \p Res<def> = G_ZEXT \p Op /// /// G_ZEXT produces a register of the specified width, with bits 0 to /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector /// register, each element is extended individually. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Op must be smaller than \p Res /// /// \return The newly created instruction. MachineInstrBuilder buildZExt(unsigned Res, unsigned Op); /// Build and insert \p Res<def> = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildSExtOrTrunc(unsigned Res, unsigned Op); /// Build and insert \p Res<def> = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildZExtOrTrunc(unsigned Res, unsigned Op); // Build and insert \p Res<def> = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. template <typename DstTy, typename UseArgTy> MachineInstrBuilder buildAnyExtOrTrunc(DstTy &&Dst, UseArgTy &&Use) { return buildAnyExtOrTrunc(getDestFromArg(Dst), getRegFromArg(Use)); } MachineInstrBuilder buildAnyExtOrTrunc(unsigned Res, unsigned Op); /// Build and insert \p Res<def> = \p ExtOpc, \p Res = G_TRUNC \p /// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and /// \p Op. /// /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// /// \return The newly created instruction. MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, unsigned Res, unsigned Op); /// Build and insert an appropriate cast between two registers of equal size. MachineInstrBuilder buildCast(unsigned Dst, unsigned Src); /// Build and insert G_BR \p Dest /// /// G_BR is an unconditional branch to \p Dest. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBr(MachineBasicBlock &BB); /// Build and insert G_BRCOND \p Tst, \p Dest /// /// G_BRCOND is a conditional branch to \p Dest. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Tst must be a generic virtual register with scalar /// type. At the beginning of legalization, this will be a single /// bit (s1). Targets with interesting flags registers may change /// this. For a wider type, whether the branch is taken must only /// depend on bit 0 (for now). /// /// \return The newly created instruction. MachineInstrBuilder buildBrCond(unsigned Tst, MachineBasicBlock &BB); /// Build and insert G_BRINDIRECT \p Tgt /// /// G_BRINDIRECT is an indirect branch to \p Tgt. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Tgt must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildBrIndirect(unsigned Tgt); /// Build and insert \p Res = G_CONSTANT \p Val /// /// G_CONSTANT is an integer constant with the specified size and value. \p /// Val will be extended or truncated to the size of \p Reg. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or pointer /// type. /// /// \return The newly created instruction. MachineInstrBuilder buildConstant(unsigned Res, const ConstantInt &Val); /// Build and insert \p Res = G_CONSTANT \p Val /// /// G_CONSTANT is an integer constant with the specified size and value. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildConstant(unsigned Res, int64_t Val); template <typename DstType> MachineInstrBuilder buildConstant(DstType &&Res, int64_t Val) { return buildConstant(getDestFromArg(Res), Val); } /// Build and insert \p Res = G_FCONSTANT \p Val /// /// G_FCONSTANT is a floating-point constant with the specified size and /// value. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildFConstant(unsigned Res, const ConstantFP &Val); /// Build and insert \p Res<def> = COPY Op /// /// Register-to-register COPY sets \p Res to \p Op. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildCopy(unsigned Res, unsigned Op); template <typename DstType, typename SrcType> MachineInstrBuilder buildCopy(DstType &&Res, SrcType &&Src) { return buildCopy(getDestFromArg(Res), getRegFromArg(Src)); } /// Build and insert `Res<def> = G_LOAD Addr, MMO`. /// /// Loads the value stored at \p Addr. Puts the result in \p Res. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildLoad(unsigned Res, unsigned Addr, MachineMemOperand &MMO); /// Build and insert `G_STORE Val, Addr, MMO`. /// /// Stores the value \p Val to \p Addr. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Val must be a generic virtual register. /// \pre \p Addr must be a generic virtual register with pointer type. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildStore(unsigned Val, unsigned Addr, MachineMemOperand &MMO); /// Build and insert `Res0<def>, ... = G_EXTRACT Src, Idx0`. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Src must be generic virtual registers. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildExtract(unsigned Res, unsigned Src, uint64_t Index); /// Build and insert \p Res = IMPLICIT_DEF. MachineInstrBuilder buildUndef(unsigned Dst); /// Build and insert instructions to put \p Ops together at the specified p /// Indices to form a larger register. /// /// If the types of the input registers are uniform and cover the entirity of /// \p Res then a G_MERGE_VALUES will be produced. Otherwise an IMPLICIT_DEF /// followed by a sequence of G_INSERT instructions. /// /// \pre setBasicBlock or setMI must have been called. /// \pre The final element of the sequence must not extend past the end of the /// destination register. /// \pre The bits defined by each Op (derived from index and scalar size) must /// not overlap. /// \pre \p Indices must be in ascending order of bit position. void buildSequence(unsigned Res, ArrayRef<unsigned> Ops, ArrayRef<uint64_t> Indices); /// Build and insert \p Res<def> = G_MERGE_VALUES \p Op0, ... /// /// G_MERGE_VALUES combines the input elements contiguously into a larger /// register. /// /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the input /// registers. /// \pre The type of all \p Ops registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildMerge(unsigned Res, ArrayRef<unsigned> Ops); /// Build and insert \p Res0<def>, ... = G_UNMERGE_VALUES \p Op /// /// G_UNMERGE_VALUES splits contiguous bits of the input into multiple /// /// \pre setBasicBlock or setMI must have been called. /// \pre The entire register \p Res (and no more) must be covered by the input /// registers. /// \pre The type of all \p Res registers must be identical. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildUnmerge(ArrayRef<unsigned> Res, unsigned Op); MachineInstrBuilder buildInsert(unsigned Res, unsigned Src, unsigned Op, unsigned Index); /// Build and insert either a G_INTRINSIC (if \p HasSideEffects is false) or /// G_INTRINSIC_W_SIDE_EFFECTS instruction. Its first operand will be the /// result register definition unless \p Reg is NoReg (== 0). The second /// operand will be the intrinsic's ID. /// /// Callers are expected to add the required definitions and uses afterwards. /// /// \pre setBasicBlock or setMI must have been called. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, unsigned Res, bool HasSideEffects); /// Build and insert \p Res<def> = G_FPTRUNC \p Op /// /// G_FPTRUNC converts a floating-point value into one with a smaller type. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Res must be smaller than \p Op /// /// \return The newly created instruction. MachineInstrBuilder buildFPTrunc(unsigned Res, unsigned Op); /// Build and insert \p Res<def> = G_TRUNC \p Op /// /// G_TRUNC extracts the low bits of a type. For a vector type each element is /// truncated independently before being packed into the destination. /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or vector type. /// \pre \p Op must be a generic virtual register with scalar or vector type. /// \pre \p Res must be smaller than \p Op /// /// \return The newly created instruction. MachineInstrBuilder buildTrunc(unsigned Res, unsigned Op); template <typename DstType, typename SrcType> MachineInstrBuilder buildTrunc(DstType &&Res, SrcType &&Src) { return buildTrunc(getDestFromArg(Res), getRegFromArg(Src)); } /// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1 /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or /// vector type. Typically this starts as s1 or <N x s1>. /// \pre \p Op0 and Op1 must be generic virtual registers with the /// same number of elements as \p Res. If \p Res is a scalar, /// \p Op0 must be either a scalar or pointer. /// \pre \p Pred must be an integer predicate. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, unsigned Res, unsigned Op0, unsigned Op1); /// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1 /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar or /// vector type. Typically this starts as s1 or <N x s1>. /// \pre \p Op0 and Op1 must be generic virtual registers with the /// same number of elements as \p Res (or scalar, if \p Res is /// scalar). /// \pre \p Pred must be a floating-point predicate. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, unsigned Res, unsigned Op0, unsigned Op1); /// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1 /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers /// with the same type. /// \pre \p Tst must be a generic virtual register with scalar, pointer or /// vector type. If vector then it must have the same number of /// elements as the other parameters. /// /// \return a MachineInstrBuilder for the newly created instruction. MachineInstrBuilder buildSelect(unsigned Res, unsigned Tst, unsigned Op0, unsigned Op1); /// Build and insert \p Res<def> = G_INSERT_VECTOR_ELT \p Val, /// \p Elt, \p Idx /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res and \p Val must be a generic virtual register // with the same vector type. /// \pre \p Elt and \p Idx must be a generic virtual register /// with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildInsertVectorElement(unsigned Res, unsigned Val, unsigned Elt, unsigned Idx); /// Build and insert \p Res<def> = G_EXTRACT_VECTOR_ELT \p Val, \p Idx /// /// \pre setBasicBlock or setMI must have been called. /// \pre \p Res must be a generic virtual register with scalar type. /// \pre \p Val must be a generic virtual register with vector type. /// \pre \p Idx must be a generic virtual register with scalar type. /// /// \return The newly created instruction. MachineInstrBuilder buildExtractVectorElement(unsigned Res, unsigned Val, unsigned Idx); }; } // End namespace llvm. #endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H