//===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SparseSet class derived from the version described in // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. // // A sparse set holds a small number of objects identified by integer keys from // a moderately sized universe. The sparse set uses more memory than other // containers in order to provide faster operations. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SPARSESET_H #define LLVM_ADT_SPARSESET_H #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include <cassert> #include <cstdint> #include <cstdlib> #include <limits> #include <utility> namespace llvm { /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can /// be uniquely converted to a small integer less than the set's universe. This /// class allows the set to hold values that differ from the set's key type as /// long as an index can still be derived from the value. SparseSet never /// directly compares ValueT, only their indices, so it can map keys to /// arbitrary values. SparseSetValTraits computes the index from the value /// object. To compute the index from a key, SparseSet uses a separate /// KeyFunctorT template argument. /// /// A simple type declaration, SparseSet<Type>, handles these cases: /// - unsigned key, identity index, identity value /// - unsigned key, identity index, fat value providing getSparseSetIndex() /// /// The type declaration SparseSet<Type, UnaryFunction> handles: /// - unsigned key, remapped index, identity value (virtual registers) /// - pointer key, pointer-derived index, identity value (node+ID) /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() /// /// Only other, unexpected cases require specializing SparseSetValTraits. /// /// For best results, ValueT should not require a destructor. /// template<typename ValueT> struct SparseSetValTraits { static unsigned getValIndex(const ValueT &Val) { return Val.getSparseSetIndex(); } }; /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The /// generic implementation handles ValueT classes which either provide /// getSparseSetIndex() or specialize SparseSetValTraits<>. /// template<typename KeyT, typename ValueT, typename KeyFunctorT> struct SparseSetValFunctor { unsigned operator()(const ValueT &Val) const { return SparseSetValTraits<ValueT>::getValIndex(Val); } }; /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of /// identity key/value sets. template<typename KeyT, typename KeyFunctorT> struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { unsigned operator()(const KeyT &Key) const { return KeyFunctorT()(Key); } }; /// SparseSet - Fast set implmentation for objects that can be identified by /// small unsigned keys. /// /// SparseSet allocates memory proportional to the size of the key universe, so /// it is not recommended for building composite data structures. It is useful /// for algorithms that require a single set with fast operations. /// /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast /// clear() and iteration as fast as a vector. The find(), insert(), and /// erase() operations are all constant time, and typically faster than a hash /// table. The iteration order doesn't depend on numerical key values, it only /// depends on the order of insert() and erase() operations. When no elements /// have been erased, the iteration order is the insertion order. /// /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but /// offers constant-time clear() and size() operations as well as fast /// iteration independent on the size of the universe. /// /// SparseSet contains a dense vector holding all the objects and a sparse /// array holding indexes into the dense vector. Most of the memory is used by /// the sparse array which is the size of the key universe. The SparseT /// template parameter provides a space/speed tradeoff for sets holding many /// elements. /// /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse /// array uses 4 x Universe bytes. /// /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache /// lines, but the sparse array is 4x smaller. N is the number of elements in /// the set. /// /// For sets that may grow to thousands of elements, SparseT should be set to /// uint16_t or uint32_t. /// /// @tparam ValueT The type of objects in the set. /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. /// @tparam SparseT An unsigned integer type. See above. /// template<typename ValueT, typename KeyFunctorT = identity<unsigned>, typename SparseT = uint8_t> class SparseSet { static_assert(std::numeric_limits<SparseT>::is_integer && !std::numeric_limits<SparseT>::is_signed, "SparseT must be an unsigned integer type"); using KeyT = typename KeyFunctorT::argument_type; using DenseT = SmallVector<ValueT, 8>; using size_type = unsigned; DenseT Dense; SparseT *Sparse = nullptr; unsigned Universe = 0; KeyFunctorT KeyIndexOf; SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; public: using value_type = ValueT; using reference = ValueT &; using const_reference = const ValueT &; using pointer = ValueT *; using const_pointer = const ValueT *; SparseSet() = default; SparseSet(const SparseSet &) = delete; SparseSet &operator=(const SparseSet &) = delete; ~SparseSet() { free(Sparse); } /// setUniverse - Set the universe size which determines the largest key the /// set can hold. The universe must be sized before any elements can be /// added. /// /// @param U Universe size. All object keys must be less than U. /// void setUniverse(unsigned U) { // It's not hard to resize the universe on a non-empty set, but it doesn't // seem like a likely use case, so we can add that code when we need it. assert(empty() && "Can only resize universe on an empty map"); // Hysteresis prevents needless reallocations. if (U >= Universe/4 && U <= Universe) return; free(Sparse); // The Sparse array doesn't actually need to be initialized, so malloc // would be enough here, but that will cause tools like valgrind to // complain about branching on uninitialized data. Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT))); Universe = U; } // Import trivial vector stuff from DenseT. using iterator = typename DenseT::iterator; using const_iterator = typename DenseT::const_iterator; const_iterator begin() const { return Dense.begin(); } const_iterator end() const { return Dense.end(); } iterator begin() { return Dense.begin(); } iterator end() { return Dense.end(); } /// empty - Returns true if the set is empty. /// /// This is not the same as BitVector::empty(). /// bool empty() const { return Dense.empty(); } /// size - Returns the number of elements in the set. /// /// This is not the same as BitVector::size() which returns the size of the /// universe. /// size_type size() const { return Dense.size(); } /// clear - Clears the set. This is a very fast constant time operation. /// void clear() { // Sparse does not need to be cleared, see find(). Dense.clear(); } /// findIndex - Find an element by its index. /// /// @param Idx A valid index to find. /// @returns An iterator to the element identified by key, or end(). /// iterator findIndex(unsigned Idx) { assert(Idx < Universe && "Key out of range"); const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { const unsigned FoundIdx = ValIndexOf(Dense[i]); assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); if (Idx == FoundIdx) return begin() + i; // Stride is 0 when SparseT >= unsigned. We don't need to loop. if (!Stride) break; } return end(); } /// find - Find an element by its key. /// /// @param Key A valid key to find. /// @returns An iterator to the element identified by key, or end(). /// iterator find(const KeyT &Key) { return findIndex(KeyIndexOf(Key)); } const_iterator find(const KeyT &Key) const { return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); } /// count - Returns 1 if this set contains an element identified by Key, /// 0 otherwise. /// size_type count(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; } /// insert - Attempts to insert a new element. /// /// If Val is successfully inserted, return (I, true), where I is an iterator /// pointing to the newly inserted element. /// /// If the set already contains an element with the same key as Val, return /// (I, false), where I is an iterator pointing to the existing element. /// /// Insertion invalidates all iterators. /// std::pair<iterator, bool> insert(const ValueT &Val) { unsigned Idx = ValIndexOf(Val); iterator I = findIndex(Idx); if (I != end()) return std::make_pair(I, false); Sparse[Idx] = size(); Dense.push_back(Val); return std::make_pair(end() - 1, true); } /// array subscript - If an element already exists with this key, return it. /// Otherwise, automatically construct a new value from Key, insert it, /// and return the newly inserted element. ValueT &operator[](const KeyT &Key) { return *insert(ValueT(Key)).first; } ValueT pop_back_val() { // Sparse does not need to be cleared, see find(). return Dense.pop_back_val(); } /// erase - Erases an existing element identified by a valid iterator. /// /// This invalidates all iterators, but erase() returns an iterator pointing /// to the next element. This makes it possible to erase selected elements /// while iterating over the set: /// /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) /// if (test(*I)) /// I = Set.erase(I); /// else /// ++I; /// /// Note that end() changes when elements are erased, unlike std::list. /// iterator erase(iterator I) { assert(unsigned(I - begin()) < size() && "Invalid iterator"); if (I != end() - 1) { *I = Dense.back(); unsigned BackIdx = ValIndexOf(Dense.back()); assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); Sparse[BackIdx] = I - begin(); } // This depends on SmallVector::pop_back() not invalidating iterators. // std::vector::pop_back() doesn't give that guarantee. Dense.pop_back(); return I; } /// erase - Erases an element identified by Key, if it exists. /// /// @param Key The key identifying the element to erase. /// @returns True when an element was erased, false if no element was found. /// bool erase(const KeyT &Key) { iterator I = find(Key); if (I == end()) return false; erase(I); return true; } }; } // end namespace llvm #endif // LLVM_ADT_SPARSESET_H