//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a set that has insertion order iteration // characteristics. This is useful for keeping a set of things that need to be // visited later but in a deterministic order (insertion order). The interface // is purposefully minimal. // // This file defines SetVector and SmallSetVector, which performs no allocations // if the SetVector has less than a certain number of elements. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SETVECTOR_H #define LLVM_ADT_SETVECTOR_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include <algorithm> #include <cassert> #include <iterator> #include <vector> namespace llvm { /// \brief A vector that has set insertion semantics. /// /// This adapter class provides a way to keep a set of things that also has the /// property of a deterministic iteration order. The order of iteration is the /// order of insertion. template <typename T, typename Vector = std::vector<T>, typename Set = DenseSet<T>> class SetVector { public: using value_type = T; using key_type = T; using reference = T&; using const_reference = const T&; using set_type = Set; using vector_type = Vector; using iterator = typename vector_type::const_iterator; using const_iterator = typename vector_type::const_iterator; using reverse_iterator = typename vector_type::const_reverse_iterator; using const_reverse_iterator = typename vector_type::const_reverse_iterator; using size_type = typename vector_type::size_type; /// \brief Construct an empty SetVector SetVector() = default; /// \brief Initialize a SetVector with a range of elements template<typename It> SetVector(It Start, It End) { insert(Start, End); } ArrayRef<T> getArrayRef() const { return vector_; } /// Clear the SetVector and return the underlying vector. Vector takeVector() { set_.clear(); return std::move(vector_); } /// \brief Determine if the SetVector is empty or not. bool empty() const { return vector_.empty(); } /// \brief Determine the number of elements in the SetVector. size_type size() const { return vector_.size(); } /// \brief Get an iterator to the beginning of the SetVector. iterator begin() { return vector_.begin(); } /// \brief Get a const_iterator to the beginning of the SetVector. const_iterator begin() const { return vector_.begin(); } /// \brief Get an iterator to the end of the SetVector. iterator end() { return vector_.end(); } /// \brief Get a const_iterator to the end of the SetVector. const_iterator end() const { return vector_.end(); } /// \brief Get an reverse_iterator to the end of the SetVector. reverse_iterator rbegin() { return vector_.rbegin(); } /// \brief Get a const_reverse_iterator to the end of the SetVector. const_reverse_iterator rbegin() const { return vector_.rbegin(); } /// \brief Get a reverse_iterator to the beginning of the SetVector. reverse_iterator rend() { return vector_.rend(); } /// \brief Get a const_reverse_iterator to the beginning of the SetVector. const_reverse_iterator rend() const { return vector_.rend(); } /// \brief Return the first element of the SetVector. const T &front() const { assert(!empty() && "Cannot call front() on empty SetVector!"); return vector_.front(); } /// \brief Return the last element of the SetVector. const T &back() const { assert(!empty() && "Cannot call back() on empty SetVector!"); return vector_.back(); } /// \brief Index into the SetVector. const_reference operator[](size_type n) const { assert(n < vector_.size() && "SetVector access out of range!"); return vector_[n]; } /// \brief Insert a new element into the SetVector. /// \returns true if the element was inserted into the SetVector. bool insert(const value_type &X) { bool result = set_.insert(X).second; if (result) vector_.push_back(X); return result; } /// \brief Insert a range of elements into the SetVector. template<typename It> void insert(It Start, It End) { for (; Start != End; ++Start) if (set_.insert(*Start).second) vector_.push_back(*Start); } /// \brief Remove an item from the set vector. bool remove(const value_type& X) { if (set_.erase(X)) { typename vector_type::iterator I = find(vector_, X); assert(I != vector_.end() && "Corrupted SetVector instances!"); vector_.erase(I); return true; } return false; } /// Erase a single element from the set vector. /// \returns an iterator pointing to the next element that followed the /// element erased. This is the end of the SetVector if the last element is /// erased. iterator erase(iterator I) { const key_type &V = *I; assert(set_.count(V) && "Corrupted SetVector instances!"); set_.erase(V); // FIXME: No need to use the non-const iterator when built with // std:vector.erase(const_iterator) as defined in C++11. This is for // compatibility with non-standard libstdc++ up to 4.8 (fixed in 4.9). auto NI = vector_.begin(); std::advance(NI, std::distance<iterator>(NI, I)); return vector_.erase(NI); } /// \brief Remove items from the set vector based on a predicate function. /// /// This is intended to be equivalent to the following code, if we could /// write it: /// /// \code /// V.erase(remove_if(V, P), V.end()); /// \endcode /// /// However, SetVector doesn't expose non-const iterators, making any /// algorithm like remove_if impossible to use. /// /// \returns true if any element is removed. template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { typename vector_type::iterator I = llvm::remove_if(vector_, TestAndEraseFromSet<UnaryPredicate>(P, set_)); if (I == vector_.end()) return false; vector_.erase(I, vector_.end()); return true; } /// \brief Count the number of elements of a given key in the SetVector. /// \returns 0 if the element is not in the SetVector, 1 if it is. size_type count(const key_type &key) const { return set_.count(key); } /// \brief Completely clear the SetVector void clear() { set_.clear(); vector_.clear(); } /// \brief Remove the last element of the SetVector. void pop_back() { assert(!empty() && "Cannot remove an element from an empty SetVector!"); set_.erase(back()); vector_.pop_back(); } LLVM_NODISCARD T pop_back_val() { T Ret = back(); pop_back(); return Ret; } bool operator==(const SetVector &that) const { return vector_ == that.vector_; } bool operator!=(const SetVector &that) const { return vector_ != that.vector_; } /// \brief Compute This := This u S, return whether 'This' changed. /// TODO: We should be able to use set_union from SetOperations.h, but /// SetVector interface is inconsistent with DenseSet. template <class STy> bool set_union(const STy &S) { bool Changed = false; for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) if (insert(*SI)) Changed = true; return Changed; } /// \brief Compute This := This - B /// TODO: We should be able to use set_subtract from SetOperations.h, but /// SetVector interface is inconsistent with DenseSet. template <class STy> void set_subtract(const STy &S) { for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) remove(*SI); } private: /// \brief A wrapper predicate designed for use with std::remove_if. /// /// This predicate wraps a predicate suitable for use with std::remove_if to /// call set_.erase(x) on each element which is slated for removal. template <typename UnaryPredicate> class TestAndEraseFromSet { UnaryPredicate P; set_type &set_; public: TestAndEraseFromSet(UnaryPredicate P, set_type &set_) : P(std::move(P)), set_(set_) {} template <typename ArgumentT> bool operator()(const ArgumentT &Arg) { if (P(Arg)) { set_.erase(Arg); return true; } return false; } }; set_type set_; ///< The set. vector_type vector_; ///< The vector. }; /// \brief A SetVector that performs no allocations if smaller than /// a certain size. template <typename T, unsigned N> class SmallSetVector : public SetVector<T, SmallVector<T, N>, SmallDenseSet<T, N>> { public: SmallSetVector() = default; /// \brief Initialize a SmallSetVector with a range of elements template<typename It> SmallSetVector(It Start, It End) { this->insert(Start, End); } }; } // end namespace llvm #endif // LLVM_ADT_SETVECTOR_H