//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include <algorithm> // for std::all_of #include <cassert> #include <cstddef> // for std::size_t #include <cstdlib> // for qsort #include <functional> #include <iterator> #include <limits> #include <memory> #include <tuple> #include <utility> // for std::pair #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { // Only used by compiler if both template types are the same. Useful when // using SFINAE to test for the existence of member functions. template <typename T, T> struct SameType; namespace detail { template <typename RangeT> using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); template <typename RangeT> using ValueOfRange = typename std::remove_reference<decltype( *std::begin(std::declval<RangeT &>()))>::type; } // End detail namespace //===----------------------------------------------------------------------===// // Extra additions to <functional> //===----------------------------------------------------------------------===// template <class Ty> struct identity { using argument_type = Ty; Ty &operator()(Ty &self) const { return self; } const Ty &operator()(const Ty &self) const { return self; } }; template <class Ty> struct less_ptr { bool operator()(const Ty* left, const Ty* right) const { return *left < *right; } }; template <class Ty> struct greater_ptr { bool operator()(const Ty* left, const Ty* right) const { return *right < *left; } }; /// An efficient, type-erasing, non-owning reference to a callable. This is /// intended for use as the type of a function parameter that is not used /// after the function in question returns. /// /// This class does not own the callable, so it is not in general safe to store /// a function_ref. template<typename Fn> class function_ref; template<typename Ret, typename ...Params> class function_ref<Ret(Params...)> { Ret (*callback)(intptr_t callable, Params ...params); intptr_t callable; template<typename Callable> static Ret callback_fn(intptr_t callable, Params ...params) { return (*reinterpret_cast<Callable*>(callable))( std::forward<Params>(params)...); } public: function_ref() : callback(nullptr) {} template <typename Callable> function_ref(Callable &&callable, typename std::enable_if< !std::is_same<typename std::remove_reference<Callable>::type, function_ref>::value>::type * = nullptr) : callback(callback_fn<typename std::remove_reference<Callable>::type>), callable(reinterpret_cast<intptr_t>(&callable)) {} Ret operator()(Params ...params) const { return callback(callable, std::forward<Params>(params)...); } operator bool() const { return callback; } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter<Interval>); // template <class T> inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to <iterator> //===----------------------------------------------------------------------===// // mapped_iterator - This is a simple iterator adapter that causes a function to // be applied whenever operator* is invoked on the iterator. // template <class RootIt, class UnaryFunc> class mapped_iterator { RootIt current; UnaryFunc Fn; public: typedef typename std::iterator_traits<RootIt>::iterator_category iterator_category; typedef typename std::iterator_traits<RootIt>::difference_type difference_type; typedef decltype(std::declval<UnaryFunc>()(*std::declval<RootIt>())) value_type; typedef void pointer; //typedef typename UnaryFunc::result_type *pointer; typedef void reference; // Can't modify value returned by fn typedef RootIt iterator_type; inline const RootIt &getCurrent() const { return current; } inline const UnaryFunc &getFunc() const { return Fn; } inline explicit mapped_iterator(const RootIt &I, UnaryFunc F) : current(I), Fn(F) {} inline value_type operator*() const { // All this work to do this return Fn(*current); // little change } mapped_iterator &operator++() { ++current; return *this; } mapped_iterator &operator--() { --current; return *this; } mapped_iterator operator++(int) { mapped_iterator __tmp = *this; ++current; return __tmp; } mapped_iterator operator--(int) { mapped_iterator __tmp = *this; --current; return __tmp; } mapped_iterator operator+(difference_type n) const { return mapped_iterator(current + n, Fn); } mapped_iterator &operator+=(difference_type n) { current += n; return *this; } mapped_iterator operator-(difference_type n) const { return mapped_iterator(current - n, Fn); } mapped_iterator &operator-=(difference_type n) { current -= n; return *this; } reference operator[](difference_type n) const { return *(*this + n); } bool operator!=(const mapped_iterator &X) const { return !operator==(X); } bool operator==(const mapped_iterator &X) const { return current == X.current; } bool operator<(const mapped_iterator &X) const { return current < X.current; } difference_type operator-(const mapped_iterator &X) const { return current - X.current; } }; template <class Iterator, class Func> inline mapped_iterator<Iterator, Func> operator+(typename mapped_iterator<Iterator, Func>::difference_type N, const mapped_iterator<Iterator, Func> &X) { return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc()); } // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... // template <class ItTy, class FuncTy> inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) { return mapped_iterator<ItTy, FuncTy>(I, F); } /// Helper to determine if type T has a member called rbegin(). template <typename Ty> class has_rbegin_impl { typedef char yes[1]; typedef char no[2]; template <typename Inner> static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); template <typename> static no& test(...); public: static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); }; /// Metafunction to determine if T& or T has a member called rbegin(). template <typename Ty> struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { }; // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have rbegin()/rend() methods for this to work. template <typename ContainerTy> auto reverse(ContainerTy &&C, typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { return make_range(C.rbegin(), C.rend()); } // Returns a std::reverse_iterator wrapped around the given iterator. template <typename IteratorTy> std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { return std::reverse_iterator<IteratorTy>(It); } // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have begin()/end() methods which return // bidirectional iterators for this to work. template <typename ContainerTy> auto reverse( ContainerTy &&C, typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr) -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C)))) { return make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C))); } /// An iterator adaptor that filters the elements of given inner iterators. /// /// The predicate parameter should be a callable object that accepts the wrapped /// iterator's reference type and returns a bool. When incrementing or /// decrementing the iterator, it will call the predicate on each element and /// skip any where it returns false. /// /// \code /// int A[] = { 1, 2, 3, 4 }; /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); /// // R contains { 1, 3 }. /// \endcode template <typename WrappedIteratorT, typename PredicateT> class filter_iterator : public iterator_adaptor_base< filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT, typename std::common_type< std::forward_iterator_tag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type> { using BaseT = iterator_adaptor_base< filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT, typename std::common_type< std::forward_iterator_tag, typename std::iterator_traits<WrappedIteratorT>::iterator_category>:: type>; struct PayloadType { WrappedIteratorT End; PredicateT Pred; }; Optional<PayloadType> Payload; void findNextValid() { assert(Payload && "Payload should be engaged when findNextValid is called"); while (this->I != Payload->End && !Payload->Pred(*this->I)) BaseT::operator++(); } // Construct the begin iterator. The begin iterator requires to know where end // is, so that it can properly stop when it hits end. filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(std::move(Begin)), Payload(PayloadType{std::move(End), std::move(Pred)}) { findNextValid(); } // Construct the end iterator. It's not incrementable, so Payload doesn't // have to be engaged. filter_iterator(WrappedIteratorT End) : BaseT(End) {} public: using BaseT::operator++; filter_iterator &operator++() { BaseT::operator++(); findNextValid(); return *this; } template <typename RT, typename PT> friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>> make_filter_range(RT &&, PT); }; /// Convenience function that takes a range of elements and a predicate, /// and return a new filter_iterator range. /// /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the /// lifetime of that temporary is not kept by the returned range object, and the /// temporary is going to be dropped on the floor after the make_iterator_range /// full expression that contains this function call. template <typename RangeT, typename PredicateT> iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> make_filter_range(RangeT &&Range, PredicateT Pred) { using FilterIteratorT = filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)), std::end(std::forward<RangeT>(Range)), std::move(Pred)), FilterIteratorT(std::end(std::forward<RangeT>(Range)))); } // forward declarations required by zip_shortest/zip_first template <typename R, typename UnaryPredicate> bool all_of(R &&range, UnaryPredicate P); template <size_t... I> struct index_sequence; template <class... Ts> struct index_sequence_for; namespace detail { using std::declval; // We have to alias this since inlining the actual type at the usage site // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. template<typename... Iters> struct ZipTupleType { typedef std::tuple<decltype(*declval<Iters>())...> type; }; template <typename ZipType, typename... Iters> using zip_traits = iterator_facade_base< ZipType, typename std::common_type<std::bidirectional_iterator_tag, typename std::iterator_traits< Iters>::iterator_category...>::type, // ^ TODO: Implement random access methods. typename ZipTupleType<Iters...>::type, typename std::iterator_traits<typename std::tuple_element< 0, std::tuple<Iters...>>::type>::difference_type, // ^ FIXME: This follows boost::make_zip_iterator's assumption that all // inner iterators have the same difference_type. It would fail if, for // instance, the second field's difference_type were non-numeric while the // first is. typename ZipTupleType<Iters...>::type *, typename ZipTupleType<Iters...>::type>; template <typename ZipType, typename... Iters> struct zip_common : public zip_traits<ZipType, Iters...> { using Base = zip_traits<ZipType, Iters...>; using value_type = typename Base::value_type; std::tuple<Iters...> iterators; protected: template <size_t... Ns> value_type deref(index_sequence<Ns...>) const { return value_type(*std::get<Ns>(iterators)...); } template <size_t... Ns> decltype(iterators) tup_inc(index_sequence<Ns...>) const { return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); } template <size_t... Ns> decltype(iterators) tup_dec(index_sequence<Ns...>) const { return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); } public: zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} value_type operator*() { return deref(index_sequence_for<Iters...>{}); } const value_type operator*() const { return deref(index_sequence_for<Iters...>{}); } ZipType &operator++() { iterators = tup_inc(index_sequence_for<Iters...>{}); return *reinterpret_cast<ZipType *>(this); } ZipType &operator--() { static_assert(Base::IsBidirectional, "All inner iterators must be at least bidirectional."); iterators = tup_dec(index_sequence_for<Iters...>{}); return *reinterpret_cast<ZipType *>(this); } }; template <typename... Iters> struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { using Base = zip_common<zip_first<Iters...>, Iters...>; bool operator==(const zip_first<Iters...> &other) const { return std::get<0>(this->iterators) == std::get<0>(other.iterators); } zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} }; template <typename... Iters> class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { template <size_t... Ns> bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const { return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)...}, identity<bool>{}); } public: using Base = zip_common<zip_shortest<Iters...>, Iters...>; bool operator==(const zip_shortest<Iters...> &other) const { return !test(other, index_sequence_for<Iters...>{}); } zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} }; template <template <typename...> class ItType, typename... Args> class zippy { public: using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; using iterator_category = typename iterator::iterator_category; using value_type = typename iterator::value_type; using difference_type = typename iterator::difference_type; using pointer = typename iterator::pointer; using reference = typename iterator::reference; private: std::tuple<Args...> ts; template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const { return iterator(std::begin(std::get<Ns>(ts))...); } template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const { return iterator(std::end(std::get<Ns>(ts))...); } public: iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); } iterator end() const { return end_impl(index_sequence_for<Args...>{}); } zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} }; } // End detail namespace /// zip iterator for two or more iteratable types. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, Args &&... args) { return detail::zippy<detail::zip_shortest, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// zip iterator that, for the sake of efficiency, assumes the first iteratee to /// be the shortest. template <typename T, typename U, typename... Args> detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, Args &&... args) { return detail::zippy<detail::zip_first, T, U, Args...>( std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); } /// Iterator wrapper that concatenates sequences together. /// /// This can concatenate different iterators, even with different types, into /// a single iterator provided the value types of all the concatenated /// iterators expose `reference` and `pointer` types that can be converted to /// `ValueT &` and `ValueT *` respectively. It doesn't support more /// interesting/customized pointer or reference types. /// /// Currently this only supports forward or higher iterator categories as /// inputs and always exposes a forward iterator interface. template <typename ValueT, typename... IterTs> class concat_iterator : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, std::forward_iterator_tag, ValueT> { typedef typename concat_iterator::iterator_facade_base BaseT; /// We store both the current and end iterators for each concatenated /// sequence in a tuple of pairs. /// /// Note that something like iterator_range seems nice at first here, but the /// range properties are of little benefit and end up getting in the way /// because we need to do mutation on the current iterators. std::tuple<std::pair<IterTs, IterTs>...> IterPairs; /// Attempts to increment a specific iterator. /// /// Returns true if it was able to increment the iterator. Returns false if /// the iterator is already at the end iterator. template <size_t Index> bool incrementHelper() { auto &IterPair = std::get<Index>(IterPairs); if (IterPair.first == IterPair.second) return false; ++IterPair.first; return true; } /// Increments the first non-end iterator. /// /// It is an error to call this with all iterators at the end. template <size_t... Ns> void increment(index_sequence<Ns...>) { // Build a sequence of functions to increment each iterator if possible. bool (concat_iterator::*IncrementHelperFns[])() = { &concat_iterator::incrementHelper<Ns>...}; // Loop over them, and stop as soon as we succeed at incrementing one. for (auto &IncrementHelperFn : IncrementHelperFns) if ((this->*IncrementHelperFn)()) return; llvm_unreachable("Attempted to increment an end concat iterator!"); } /// Returns null if the specified iterator is at the end. Otherwise, /// dereferences the iterator and returns the address of the resulting /// reference. template <size_t Index> ValueT *getHelper() const { auto &IterPair = std::get<Index>(IterPairs); if (IterPair.first == IterPair.second) return nullptr; return &*IterPair.first; } /// Finds the first non-end iterator, dereferences, and returns the resulting /// reference. /// /// It is an error to call this with all iterators at the end. template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const { // Build a sequence of functions to get from iterator if possible. ValueT *(concat_iterator::*GetHelperFns[])() const = { &concat_iterator::getHelper<Ns>...}; // Loop over them, and return the first result we find. for (auto &GetHelperFn : GetHelperFns) if (ValueT *P = (this->*GetHelperFn)()) return *P; llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); } public: /// Constructs an iterator from a squence of ranges. /// /// We need the full range to know how to switch between each of the /// iterators. template <typename... RangeTs> explicit concat_iterator(RangeTs &&... Ranges) : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {} using BaseT::operator++; concat_iterator &operator++() { increment(index_sequence_for<IterTs...>()); return *this; } ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); } bool operator==(const concat_iterator &RHS) const { return IterPairs == RHS.IterPairs; } }; namespace detail { /// Helper to store a sequence of ranges being concatenated and access them. /// /// This is designed to facilitate providing actual storage when temporaries /// are passed into the constructor such that we can use it as part of range /// based for loops. template <typename ValueT, typename... RangeTs> class concat_range { public: typedef concat_iterator<ValueT, decltype(std::begin(std::declval<RangeTs &>()))...> iterator; private: std::tuple<RangeTs...> Ranges; template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) { return iterator(std::get<Ns>(Ranges)...); } template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) { return iterator(make_range(std::end(std::get<Ns>(Ranges)), std::end(std::get<Ns>(Ranges)))...); } public: iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); } iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); } concat_range(RangeTs &&... Ranges) : Ranges(std::forward<RangeTs>(Ranges)...) {} }; } /// Concatenated range across two or more ranges. /// /// The desired value type must be explicitly specified. template <typename ValueT, typename... RangeTs> detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { static_assert(sizeof...(RangeTs) > 1, "Need more than one range to concatenate!"); return detail::concat_range<ValueT, RangeTs...>( std::forward<RangeTs>(Ranges)...); } //===----------------------------------------------------------------------===// // Extra additions to <utility> //===----------------------------------------------------------------------===// /// \brief Function object to check whether the first component of a std::pair /// compares less than the first component of another std::pair. struct less_first { template <typename T> bool operator()(const T &lhs, const T &rhs) const { return lhs.first < rhs.first; } }; /// \brief Function object to check whether the second component of a std::pair /// compares less than the second component of another std::pair. struct less_second { template <typename T> bool operator()(const T &lhs, const T &rhs) const { return lhs.second < rhs.second; } }; // A subset of N3658. More stuff can be added as-needed. /// \brief Represents a compile-time sequence of integers. template <class T, T... I> struct integer_sequence { typedef T value_type; static constexpr size_t size() { return sizeof...(I); } }; /// \brief Alias for the common case of a sequence of size_ts. template <size_t... I> struct index_sequence : integer_sequence<std::size_t, I...> {}; template <std::size_t N, std::size_t... I> struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {}; template <std::size_t... I> struct build_index_impl<0, I...> : index_sequence<I...> {}; /// \brief Creates a compile-time integer sequence for a parameter pack. template <class... Ts> struct index_sequence_for : build_index_impl<sizeof...(Ts)> {}; /// Utility type to build an inheritance chain that makes it easy to rank /// overload candidates. template <int N> struct rank : rank<N - 1> {}; template <> struct rank<0> {}; /// \brief traits class for checking whether type T is one of any of the given /// types in the variadic list. template <typename T, typename... Ts> struct is_one_of { static const bool value = false; }; template <typename T, typename U, typename... Ts> struct is_one_of<T, U, Ts...> { static const bool value = std::is_same<T, U>::value || is_one_of<T, Ts...>::value; }; /// \brief traits class for checking whether type T is a base class for all /// the given types in the variadic list. template <typename T, typename... Ts> struct are_base_of { static const bool value = true; }; template <typename T, typename U, typename... Ts> struct are_base_of<T, U, Ts...> { static const bool value = std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value; }; //===----------------------------------------------------------------------===// // Extra additions for arrays //===----------------------------------------------------------------------===// /// Find the length of an array. template <class T, std::size_t N> constexpr inline size_t array_lengthof(T (&)[N]) { return N; } /// Adapt std::less<T> for array_pod_sort. template<typename T> inline int array_pod_sort_comparator(const void *P1, const void *P2) { if (std::less<T>()(*reinterpret_cast<const T*>(P1), *reinterpret_cast<const T*>(P2))) return -1; if (std::less<T>()(*reinterpret_cast<const T*>(P2), *reinterpret_cast<const T*>(P1))) return 1; return 0; } /// get_array_pod_sort_comparator - This is an internal helper function used to /// get type deduction of T right. template<typename T> inline int (*get_array_pod_sort_comparator(const T &)) (const void*, const void*) { return array_pod_sort_comparator<T>; } /// array_pod_sort - This sorts an array with the specified start and end /// extent. This is just like std::sort, except that it calls qsort instead of /// using an inlined template. qsort is slightly slower than std::sort, but /// most sorts are not performance critical in LLVM and std::sort has to be /// template instantiated for each type, leading to significant measured code /// bloat. This function should generally be used instead of std::sort where /// possible. /// /// This function assumes that you have simple POD-like types that can be /// compared with std::less and can be moved with memcpy. If this isn't true, /// you should use std::sort. /// /// NOTE: If qsort_r were portable, we could allow a custom comparator and /// default to std::less. template<class IteratorTy> inline void array_pod_sort(IteratorTy Start, IteratorTy End) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); } template <class IteratorTy> inline void array_pod_sort( IteratorTy Start, IteratorTy End, int (*Compare)( const typename std::iterator_traits<IteratorTy>::value_type *, const typename std::iterator_traits<IteratorTy>::value_type *)) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; qsort(&*Start, NElts, sizeof(*Start), reinterpret_cast<int (*)(const void *, const void *)>(Compare)); } //===----------------------------------------------------------------------===// // Extra additions to <algorithm> //===----------------------------------------------------------------------===// /// For a container of pointers, deletes the pointers and then clears the /// container. template<typename Container> void DeleteContainerPointers(Container &C) { for (auto V : C) delete V; C.clear(); } /// In a container of pairs (usually a map) whose second element is a pointer, /// deletes the second elements and then clears the container. template<typename Container> void DeleteContainerSeconds(Container &C) { for (auto &V : C) delete V.second; C.clear(); } /// Provide wrappers to std::all_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool all_of(R &&Range, UnaryPredicate P) { return std::all_of(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::any_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool any_of(R &&Range, UnaryPredicate P) { return std::any_of(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::none_of which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> bool none_of(R &&Range, UnaryPredicate P) { return std::none_of(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::find which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename T> auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) { return std::find(std::begin(Range), std::end(Range), Val); } /// Provide wrappers to std::find_if which take ranges instead of having to pass /// begin/end explicitly. template <typename R, typename UnaryPredicate> auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::find_if(std::begin(Range), std::end(Range), P); } template <typename R, typename UnaryPredicate> auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::find_if_not(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::remove_if which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::remove_if(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::copy_if which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename OutputIt, typename UnaryPredicate> OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { return std::copy_if(std::begin(Range), std::end(Range), Out, P); } /// Wrapper function around std::find to detect if an element exists /// in a container. template <typename R, typename E> bool is_contained(R &&Range, const E &Element) { return std::find(std::begin(Range), std::end(Range), Element) != std::end(Range); } /// Wrapper function around std::count to count the number of times an element /// \p Element occurs in the given range \p Range. template <typename R, typename E> auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(std::begin(Range))>::difference_type { return std::count(std::begin(Range), std::end(Range), Element); } /// Wrapper function around std::count_if to count the number of times an /// element satisfying a given predicate occurs in a range. template <typename R, typename UnaryPredicate> auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits< decltype(std::begin(Range))>::difference_type { return std::count_if(std::begin(Range), std::end(Range), P); } /// Wrapper function around std::transform to apply a function to a range and /// store the result elsewhere. template <typename R, typename OutputIt, typename UnaryPredicate> OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { return std::transform(std::begin(Range), std::end(Range), d_first, P); } /// Provide wrappers to std::partition which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename UnaryPredicate> auto partition(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::partition(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::lower_bound which take ranges instead of having to /// pass begin/end explicitly. template <typename R, typename ForwardIt> auto lower_bound(R &&Range, ForwardIt I) -> decltype(std::begin(Range)) { return std::lower_bound(std::begin(Range), std::end(Range), I); } /// \brief Given a range of type R, iterate the entire range and return a /// SmallVector with elements of the vector. This is useful, for example, /// when you want to iterate a range and then sort the results. template <unsigned Size, typename R> SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size> to_vector(R &&Range) { return {std::begin(Range), std::end(Range)}; } /// Provide a container algorithm similar to C++ Library Fundamentals v2's /// `erase_if` which is equivalent to: /// /// C.erase(remove_if(C, pred), C.end()); /// /// This version works for any container with an erase method call accepting /// two iterators. template <typename Container, typename UnaryPredicate> void erase_if(Container &C, UnaryPredicate P) { C.erase(remove_if(C, P), C.end()); } //===----------------------------------------------------------------------===// // Extra additions to <memory> //===----------------------------------------------------------------------===// // Implement make_unique according to N3656. /// \brief Constructs a `new T()` with the given args and returns a /// `unique_ptr<T>` which owns the object. /// /// Example: /// /// auto p = make_unique<int>(); /// auto p = make_unique<std::tuple<int, int>>(0, 1); template <class T, class... Args> typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type make_unique(Args &&... args) { return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); } /// \brief Constructs a `new T[n]` with the given args and returns a /// `unique_ptr<T[]>` which owns the object. /// /// \param n size of the new array. /// /// Example: /// /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's. template <class T> typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0, std::unique_ptr<T>>::type make_unique(size_t n) { return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); } /// This function isn't used and is only here to provide better compile errors. template <class T, class... Args> typename std::enable_if<std::extent<T>::value != 0>::type make_unique(Args &&...) = delete; struct FreeDeleter { void operator()(void* v) { ::free(v); } }; template<typename First, typename Second> struct pair_hash { size_t operator()(const std::pair<First, Second> &P) const { return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); } }; /// A functor like C++14's std::less<void> in its absence. struct less { template <typename A, typename B> bool operator()(A &&a, B &&b) const { return std::forward<A>(a) < std::forward<B>(b); } }; /// A functor like C++14's std::equal<void> in its absence. struct equal { template <typename A, typename B> bool operator()(A &&a, B &&b) const { return std::forward<A>(a) == std::forward<B>(b); } }; /// Binary functor that adapts to any other binary functor after dereferencing /// operands. template <typename T> struct deref { T func; // Could be further improved to cope with non-derivable functors and // non-binary functors (should be a variadic template member function // operator()). template <typename A, typename B> auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { assert(lhs); assert(rhs); return func(*lhs, *rhs); } }; namespace detail { template <typename R> class enumerator_iter; template <typename R> struct result_pair { friend class enumerator_iter<R>; result_pair() : Index(-1) {} result_pair(std::size_t Index, IterOfRange<R> Iter) : Index(Index), Iter(Iter) {} result_pair<R> &operator=(const result_pair<R> &Other) { Index = Other.Index; Iter = Other.Iter; return *this; } std::size_t index() const { return Index; } const ValueOfRange<R> &value() const { return *Iter; } ValueOfRange<R> &value() { return *Iter; } private: std::size_t Index; IterOfRange<R> Iter; }; template <typename R> class enumerator_iter : public iterator_facade_base< enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, typename std::iterator_traits<IterOfRange<R>>::difference_type, typename std::iterator_traits<IterOfRange<R>>::pointer, typename std::iterator_traits<IterOfRange<R>>::reference> { using result_type = result_pair<R>; public: explicit enumerator_iter(IterOfRange<R> EndIter) : Result(std::numeric_limits<size_t>::max(), EndIter) { } enumerator_iter(std::size_t Index, IterOfRange<R> Iter) : Result(Index, Iter) {} result_type &operator*() { return Result; } const result_type &operator*() const { return Result; } enumerator_iter<R> &operator++() { assert(Result.Index != std::numeric_limits<size_t>::max()); ++Result.Iter; ++Result.Index; return *this; } bool operator==(const enumerator_iter<R> &RHS) const { // Don't compare indices here, only iterators. It's possible for an end // iterator to have different indices depending on whether it was created // by calling std::end() versus incrementing a valid iterator. return Result.Iter == RHS.Result.Iter; } enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) { Result = Other.Result; return *this; } private: result_type Result; }; template <typename R> class enumerator { public: explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} enumerator_iter<R> begin() { return enumerator_iter<R>(0, std::begin(TheRange)); } enumerator_iter<R> end() { return enumerator_iter<R>(std::end(TheRange)); } private: R TheRange; }; } /// Given an input range, returns a new range whose values are are pair (A,B) /// such that A is the 0-based index of the item in the sequence, and B is /// the value from the original sequence. Example: /// /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; /// for (auto X : enumerate(Items)) { /// printf("Item %d - %c\n", X.index(), X.value()); /// } /// /// Output: /// Item 0 - A /// Item 1 - B /// Item 2 - C /// Item 3 - D /// template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { return detail::enumerator<R>(std::forward<R>(TheRange)); } namespace detail { template <typename F, typename Tuple, std::size_t... I> auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>) -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) { return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); } } /// Given an input tuple (a1, a2, ..., an), pass the arguments of the /// tuple variadically to f as if by calling f(a1, a2, ..., an) and /// return the result. template <typename F, typename Tuple> auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( std::forward<F>(f), std::forward<Tuple>(t), build_index_impl< std::tuple_size<typename std::decay<Tuple>::type>::value>{})) { using Indices = build_index_impl< std::tuple_size<typename std::decay<Tuple>::type>::value>; return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), Indices{}); } } // End llvm namespace #endif