//===-- llvm/Target/TargetFrameLowering.h ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Interface to describe the layout of a stack frame on the target machine. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETFRAMELOWERING_H #define LLVM_TARGET_TARGETFRAMELOWERING_H #include "llvm/CodeGen/MachineBasicBlock.h" #include <utility> #include <vector> namespace llvm { class BitVector; class CalleeSavedInfo; class MachineFunction; class RegScavenger; /// Information about stack frame layout on the target. It holds the direction /// of stack growth, the known stack alignment on entry to each function, and /// the offset to the locals area. /// /// The offset to the local area is the offset from the stack pointer on /// function entry to the first location where function data (local variables, /// spill locations) can be stored. class TargetFrameLowering { public: enum StackDirection { StackGrowsUp, // Adding to the stack increases the stack address StackGrowsDown // Adding to the stack decreases the stack address }; // Maps a callee saved register to a stack slot with a fixed offset. struct SpillSlot { unsigned Reg; int Offset; // Offset relative to stack pointer on function entry. }; private: StackDirection StackDir; unsigned StackAlignment; unsigned TransientStackAlignment; int LocalAreaOffset; bool StackRealignable; public: TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO, unsigned TransAl = 1, bool StackReal = true) : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl), LocalAreaOffset(LAO), StackRealignable(StackReal) {} virtual ~TargetFrameLowering(); // These methods return information that describes the abstract stack layout // of the target machine. /// getStackGrowthDirection - Return the direction the stack grows /// StackDirection getStackGrowthDirection() const { return StackDir; } /// getStackAlignment - This method returns the number of bytes to which the /// stack pointer must be aligned on entry to a function. Typically, this /// is the largest alignment for any data object in the target. /// unsigned getStackAlignment() const { return StackAlignment; } /// alignSPAdjust - This method aligns the stack adjustment to the correct /// alignment. /// int alignSPAdjust(int SPAdj) const { if (SPAdj < 0) { SPAdj = -alignTo(-SPAdj, StackAlignment); } else { SPAdj = alignTo(SPAdj, StackAlignment); } return SPAdj; } /// getTransientStackAlignment - This method returns the number of bytes to /// which the stack pointer must be aligned at all times, even between /// calls. /// unsigned getTransientStackAlignment() const { return TransientStackAlignment; } /// isStackRealignable - This method returns whether the stack can be /// realigned. bool isStackRealignable() const { return StackRealignable; } /// Return the skew that has to be applied to stack alignment under /// certain conditions (e.g. stack was adjusted before function \p MF /// was called). virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const; /// getOffsetOfLocalArea - This method returns the offset of the local area /// from the stack pointer on entrance to a function. /// int getOffsetOfLocalArea() const { return LocalAreaOffset; } /// isFPCloseToIncomingSP - Return true if the frame pointer is close to /// the incoming stack pointer, false if it is close to the post-prologue /// stack pointer. virtual bool isFPCloseToIncomingSP() const { return true; } /// assignCalleeSavedSpillSlots - Allows target to override spill slot /// assignment logic. If implemented, assignCalleeSavedSpillSlots() should /// assign frame slots to all CSI entries and return true. If this method /// returns false, spill slots will be assigned using generic implementation. /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of /// CSI. virtual bool assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { return false; } /// getCalleeSavedSpillSlots - This method returns a pointer to an array of /// pairs, that contains an entry for each callee saved register that must be /// spilled to a particular stack location if it is spilled. /// /// Each entry in this array contains a <register,offset> pair, indicating the /// fixed offset from the incoming stack pointer that each register should be /// spilled at. If a register is not listed here, the code generator is /// allowed to spill it anywhere it chooses. /// virtual const SpillSlot * getCalleeSavedSpillSlots(unsigned &NumEntries) const { NumEntries = 0; return nullptr; } /// targetHandlesStackFrameRounding - Returns true if the target is /// responsible for rounding up the stack frame (probably at emitPrologue /// time). virtual bool targetHandlesStackFrameRounding() const { return false; } /// Returns true if the target will correctly handle shrink wrapping. virtual bool enableShrinkWrapping(const MachineFunction &MF) const { return false; } /// Returns true if the stack slot holes in the fixed and callee-save stack /// area should be used when allocating other stack locations to reduce stack /// size. virtual bool enableStackSlotScavenging(const MachineFunction &MF) const { return false; } /// emitProlog/emitEpilog - These methods insert prolog and epilog code into /// the function. virtual void emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const = 0; virtual void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const = 0; /// Replace a StackProbe stub (if any) with the actual probe code inline virtual void inlineStackProbe(MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {} /// Adjust the prologue to have the function use segmented stacks. This works /// by adding a check even before the "normal" function prologue. virtual void adjustForSegmentedStacks(MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {} /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in /// the assembly prologue to explicitly handle the stack. virtual void adjustForHiPEPrologue(MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {} /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of store instructions via /// storeRegToStackSlot(). Returns false otherwise. virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { return false; } /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of load instructions via loadRegToStackSlot(). /// Returns false otherwise. virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector<CalleeSavedInfo> &CSI, const TargetRegisterInfo *TRI) const { return false; } /// Return true if the target needs to disable frame pointer elimination. virtual bool noFramePointerElim(const MachineFunction &MF) const; /// hasFP - Return true if the specified function should have a dedicated /// frame pointer register. For most targets this is true only if the function /// has variable sized allocas or if frame pointer elimination is disabled. virtual bool hasFP(const MachineFunction &MF) const = 0; /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is /// not required, we reserve argument space for call sites in the function /// immediately on entry to the current function. This eliminates the need for /// add/sub sp brackets around call sites. Returns true if the call frame is /// included as part of the stack frame. virtual bool hasReservedCallFrame(const MachineFunction &MF) const { return !hasFP(MF); } /// canSimplifyCallFramePseudos - When possible, it's best to simplify the /// call frame pseudo ops before doing frame index elimination. This is /// possible only when frame index references between the pseudos won't /// need adjusting for the call frame adjustments. Normally, that's true /// if the function has a reserved call frame or a frame pointer. Some /// targets (Thumb2, for example) may have more complicated criteria, /// however, and can override this behavior. virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const { return hasReservedCallFrame(MF) || hasFP(MF); } // needsFrameIndexResolution - Do we need to perform FI resolution for // this function. Normally, this is required only when the function // has any stack objects. However, targets may want to override this. virtual bool needsFrameIndexResolution(const MachineFunction &MF) const; /// getFrameIndexReference - This method should return the base register /// and offset used to reference a frame index location. The offset is /// returned directly, and the base register is returned via FrameReg. virtual int getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const; /// Same as \c getFrameIndexReference, except that the stack pointer (as /// opposed to the frame pointer) will be the preferred value for \p /// FrameReg. This is generally used for emitting statepoint or EH tables that /// use offsets from RSP. If \p IgnoreSPUpdates is true, the returned /// offset is only guaranteed to be valid with respect to the value of SP at /// the end of the prologue. virtual int getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI, unsigned &FrameReg, bool IgnoreSPUpdates) const { // Always safe to dispatch to getFrameIndexReference. return getFrameIndexReference(MF, FI, FrameReg); } /// This method determines which of the registers reported by /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved. /// The default implementation checks populates the \p SavedRegs bitset with /// all registers which are modified in the function, targets may override /// this function to save additional registers. /// This method also sets up the register scavenger ensuring there is a free /// register or a frameindex available. virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS = nullptr) const; /// processFunctionBeforeFrameFinalized - This method is called immediately /// before the specified function's frame layout (MF.getFrameInfo()) is /// finalized. Once the frame is finalized, MO_FrameIndex operands are /// replaced with direct constants. This method is optional. /// virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF, RegScavenger *RS = nullptr) const { } virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const { report_fatal_error("WinEH not implemented for this target"); } /// This method is called during prolog/epilog code insertion to eliminate /// call frame setup and destroy pseudo instructions (but only if the Target /// is using them). It is responsible for eliminating these instructions, /// replacing them with concrete instructions. This method need only be /// implemented if using call frame setup/destroy pseudo instructions. /// Returns an iterator pointing to the instruction after the replaced one. virtual MachineBasicBlock::iterator eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { llvm_unreachable("Call Frame Pseudo Instructions do not exist on this " "target!"); } /// Order the symbols in the local stack frame. /// The list of objects that we want to order is in \p objectsToAllocate as /// indices into the MachineFrameInfo. The array can be reordered in any way /// upon return. The contents of the array, however, may not be modified (i.e. /// only their order may be changed). /// By default, just maintain the original order. virtual void orderFrameObjects(const MachineFunction &MF, SmallVectorImpl<int> &objectsToAllocate) const { } /// Check whether or not the given \p MBB can be used as a prologue /// for the target. /// The prologue will be inserted first in this basic block. /// This method is used by the shrink-wrapping pass to decide if /// \p MBB will be correctly handled by the target. /// As soon as the target enable shrink-wrapping without overriding /// this method, we assume that each basic block is a valid /// prologue. virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const { return true; } /// Check whether or not the given \p MBB can be used as a epilogue /// for the target. /// The epilogue will be inserted before the first terminator of that block. /// This method is used by the shrink-wrapping pass to decide if /// \p MBB will be correctly handled by the target. /// As soon as the target enable shrink-wrapping without overriding /// this method, we assume that each basic block is a valid /// epilogue. virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const { return true; } /// Check if given function is safe for not having callee saved registers. /// This is used when interprocedural register allocation is enabled. static bool isSafeForNoCSROpt(const Function *F) { if (!F->hasLocalLinkage() || F->hasAddressTaken() || !F->hasFnAttribute(Attribute::NoRecurse)) return false; // Function should not be optimized as tail call. for (const User *U : F->users()) if (auto CS = ImmutableCallSite(U)) if (CS.isTailCall()) return false; return true; } }; } // End llvm namespace #endif