//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file defines a set of templates that efficiently compute a dominator /// tree over a generic graph. This is used typically in LLVM for fast /// dominance queries on the CFG, but is fully generic w.r.t. the underlying /// graph types. /// /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements /// on the graph's NodeRef. The NodeRef should be a pointer and, depending on /// the implementation, e.g. NodeRef->getParent() return the parent node. /// /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_GENERICDOMTREE_H #define LLVM_SUPPORT_GENERICDOMTREE_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstddef> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include <vector> namespace llvm { template <class NodeT> class DominatorTreeBase; namespace detail { template <typename GT> struct DominatorTreeBaseTraits { static_assert(std::is_pointer<typename GT::NodeRef>::value, "Currently NodeRef must be a pointer type."); using type = DominatorTreeBase< typename std::remove_pointer<typename GT::NodeRef>::type>; }; } // end namespace detail template <typename GT> using DominatorTreeBaseByGraphTraits = typename detail::DominatorTreeBaseTraits<GT>::type; /// \brief Base class that other, more interesting dominator analyses /// inherit from. template <class NodeT> class DominatorBase { protected: std::vector<NodeT *> Roots; bool IsPostDominators; explicit DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {} DominatorBase(DominatorBase &&Arg) : Roots(std::move(Arg.Roots)), IsPostDominators(std::move(Arg.IsPostDominators)) { Arg.Roots.clear(); } DominatorBase &operator=(DominatorBase &&RHS) { Roots = std::move(RHS.Roots); IsPostDominators = std::move(RHS.IsPostDominators); RHS.Roots.clear(); return *this; } public: /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// const std::vector<NodeT *> &getRoots() const { return Roots; } /// isPostDominator - Returns true if analysis based of postdoms /// bool isPostDominator() const { return IsPostDominators; } }; /// \brief Base class for the actual dominator tree node. template <class NodeT> class DomTreeNodeBase { friend struct PostDominatorTree; template <class N> friend class DominatorTreeBase; NodeT *TheBB; DomTreeNodeBase<NodeT> *IDom; std::vector<DomTreeNodeBase<NodeT> *> Children; mutable int DFSNumIn = -1; mutable int DFSNumOut = -1; public: DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom) : TheBB(BB), IDom(iDom) {} typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator; typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator const_iterator; iterator begin() { return Children.begin(); } iterator end() { return Children.end(); } const_iterator begin() const { return Children.begin(); } const_iterator end() const { return Children.end(); } NodeT *getBlock() const { return TheBB; } DomTreeNodeBase<NodeT> *getIDom() const { return IDom; } const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const { return Children; } std::unique_ptr<DomTreeNodeBase<NodeT>> addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) { Children.push_back(C.get()); return C; } size_t getNumChildren() const { return Children.size(); } void clearAllChildren() { Children.clear(); } bool compare(const DomTreeNodeBase<NodeT> *Other) const { if (getNumChildren() != Other->getNumChildren()) return true; SmallPtrSet<const NodeT *, 4> OtherChildren; for (const DomTreeNodeBase *I : *Other) { const NodeT *Nd = I->getBlock(); OtherChildren.insert(Nd); } for (const DomTreeNodeBase *I : *this) { const NodeT *N = I->getBlock(); if (OtherChildren.count(N) == 0) return true; } return false; } void setIDom(DomTreeNodeBase<NodeT> *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I = find(IDom->Children, this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes /// in the dominator tree. They are only guaranteed valid if /// updateDFSNumbers() has been called. unsigned getDFSNumIn() const { return DFSNumIn; } unsigned getDFSNumOut() const { return DFSNumOut; } private: // Return true if this node is dominated by other. Use this only if DFS info // is valid. bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const { return this->DFSNumIn >= other->DFSNumIn && this->DFSNumOut <= other->DFSNumOut; } }; template <class NodeT> raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) { if (Node->getBlock()) Node->getBlock()->printAsOperand(o, false); else o << " <<exit node>>"; o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}"; return o << "\n"; } template <class NodeT> void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o, unsigned Lev) { o.indent(2 * Lev) << "[" << Lev << "] " << N; for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree<NodeT>(*I, o, Lev + 1); } // The calculate routine is provided in a separate header but referenced here. template <class FuncT, class N> void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<N>> &DT, FuncT &F); /// \brief Core dominator tree base class. /// /// This class is a generic template over graph nodes. It is instantiated for /// various graphs in the LLVM IR or in the code generator. template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> { bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) const { assert(A != B); assert(isReachableFromEntry(B)); assert(isReachableFromEntry(A)); const DomTreeNodeBase<NodeT> *IDom; while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B) B = IDom; // Walk up the tree return IDom != nullptr; } /// \brief Wipe this tree's state without releasing any resources. /// /// This is essentially a post-move helper only. It leaves the object in an /// assignable and destroyable state, but otherwise invalid. void wipe() { DomTreeNodes.clear(); IDoms.clear(); Vertex.clear(); Info.clear(); RootNode = nullptr; } protected: typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>> DomTreeNodeMapType; DomTreeNodeMapType DomTreeNodes; DomTreeNodeBase<NodeT> *RootNode; mutable bool DFSInfoValid = false; mutable unsigned int SlowQueries = 0; // Information record used during immediate dominators computation. struct InfoRec { unsigned DFSNum = 0; unsigned Parent = 0; unsigned Semi = 0; NodeT *Label = nullptr; InfoRec() = default; }; DenseMap<NodeT *, NodeT *> IDoms; // Vertex - Map the DFS number to the NodeT* std::vector<NodeT *> Vertex; // Info - Collection of information used during the computation of idoms. DenseMap<NodeT *, InfoRec> Info; void reset() { DomTreeNodes.clear(); IDoms.clear(); this->Roots.clear(); Vertex.clear(); RootNode = nullptr; DFSInfoValid = false; SlowQueries = 0; } // NewBB is split and now it has one successor. Update dominator tree to // reflect this change. template <class N> void Split(typename GraphTraits<N>::NodeRef NewBB) { using GraphT = GraphTraits<N>; using NodeRef = typename GraphT::NodeRef; assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"); NodeRef NewBBSucc = *GraphT::child_begin(NewBB); std::vector<NodeRef> PredBlocks; for (const auto &Pred : children<Inverse<N>>(NewBB)) PredBlocks.push_back(Pred); assert(!PredBlocks.empty() && "No predblocks?"); bool NewBBDominatesNewBBSucc = true; for (const auto &Pred : children<Inverse<N>>(NewBBSucc)) { if (Pred != NewBB && !dominates(NewBBSucc, Pred) && isReachableFromEntry(Pred)) { NewBBDominatesNewBBSucc = false; break; } } // Find NewBB's immediate dominator and create new dominator tree node for // NewBB. NodeT *NewBBIDom = nullptr; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (isReachableFromEntry(PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; } // It's possible that none of the predecessors of NewBB are reachable; // in that case, NewBB itself is unreachable, so nothing needs to be // changed. if (!NewBBIDom) return; for (i = i + 1; i < PredBlocks.size(); ++i) { if (isReachableFromEntry(PredBlocks[i])) NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); } // Create the new dominator tree node... and set the idom of NewBB. DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); // If NewBB strictly dominates other blocks, then it is now the immediate // dominator of NewBBSucc. Update the dominator tree as appropriate. if (NewBBDominatesNewBBSucc) { DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); changeImmediateDominator(NewBBSuccNode, NewBBNode); } } public: explicit DominatorTreeBase(bool isPostDom) : DominatorBase<NodeT>(isPostDom) {} DominatorTreeBase(DominatorTreeBase &&Arg) : DominatorBase<NodeT>( std::move(static_cast<DominatorBase<NodeT> &>(Arg))), DomTreeNodes(std::move(Arg.DomTreeNodes)), RootNode(std::move(Arg.RootNode)), DFSInfoValid(std::move(Arg.DFSInfoValid)), SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)), Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) { Arg.wipe(); } DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { DominatorBase<NodeT>::operator=( std::move(static_cast<DominatorBase<NodeT> &>(RHS))); DomTreeNodes = std::move(RHS.DomTreeNodes); RootNode = std::move(RHS.RootNode); DFSInfoValid = std::move(RHS.DFSInfoValid); SlowQueries = std::move(RHS.SlowQueries); IDoms = std::move(RHS.IDoms); Vertex = std::move(RHS.Vertex); Info = std::move(RHS.Info); RHS.wipe(); return *this; } DominatorTreeBase(const DominatorTreeBase &) = delete; DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; /// compare - Return false if the other dominator tree base matches this /// dominator tree base. Otherwise return true. bool compare(const DominatorTreeBase &Other) const { const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; if (DomTreeNodes.size() != OtherDomTreeNodes.size()) return true; for (const auto &DomTreeNode : DomTreeNodes) { NodeT *BB = DomTreeNode.first; typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); if (OI == OtherDomTreeNodes.end()) return true; DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; DomTreeNodeBase<NodeT> &OtherNd = *OI->second; if (MyNd.compare(&OtherNd)) return true; } return false; } void releaseMemory() { reset(); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. The result /// may (but is not required to) be null for a forward (backwards) /// statically unreachable block. DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const { auto I = DomTreeNodes.find(BB); if (I != DomTreeNodes.end()) return I->second.get(); return nullptr; } /// See getNode. DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); } /// getRootNode - This returns the entry node for the CFG of the function. If /// this tree represents the post-dominance relations for a function, however, /// this root may be a node with the block == NULL. This is the case when /// there are multiple exit nodes from a particular function. Consumers of /// post-dominance information must be capable of dealing with this /// possibility. /// DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } /// Get all nodes dominated by R, including R itself. void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { Result.clear(); const DomTreeNodeBase<NodeT> *RN = getNode(R); if (!RN) return; // If R is unreachable, it will not be present in the DOM tree. SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; WL.push_back(RN); while (!WL.empty()) { const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); Result.push_back(N->getBlock()); WL.append(N->begin(), N->end()); } } /// properlyDominates - Returns true iff A dominates B and A != B. /// Note that this is not a constant time operation! /// bool properlyDominates(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) const { if (!A || !B) return false; if (A == B) return false; return dominates(A, B); } bool properlyDominates(const NodeT *A, const NodeT *B) const; /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const NodeT *A) const { assert(!this->isPostDominator() && "This is not implemented for post dominators"); return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); } bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } /// dominates - Returns true iff A dominates B. Note that this is not a /// constant time operation! /// bool dominates(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) const { // A node trivially dominates itself. if (B == A) return true; // An unreachable node is dominated by anything. if (!isReachableFromEntry(B)) return true; // And dominates nothing. if (!isReachableFromEntry(A)) return false; // Compare the result of the tree walk and the dfs numbers, if expensive // checks are enabled. #ifdef EXPENSIVE_CHECKS assert((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"); #endif if (DFSInfoValid) return B->DominatedBy(A); // If we end up with too many slow queries, just update the // DFS numbers on the theory that we are going to keep querying. SlowQueries++; if (SlowQueries > 32) { updateDFSNumbers(); return B->DominatedBy(A); } return dominatedBySlowTreeWalk(A, B); } bool dominates(const NodeT *A, const NodeT *B) const; NodeT *getRoot() const { assert(this->Roots.size() == 1 && "Should always have entry node!"); return this->Roots[0]; } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) { assert(A->getParent() == B->getParent() && "Two blocks are not in same function"); // If either A or B is a entry block then it is nearest common dominator // (for forward-dominators). if (!this->isPostDominator()) { NodeT &Entry = A->getParent()->front(); if (A == &Entry || B == &Entry) return &Entry; } // If B dominates A then B is nearest common dominator. if (dominates(B, A)) return B; // If A dominates B then A is nearest common dominator. if (dominates(A, B)) return A; DomTreeNodeBase<NodeT> *NodeA = getNode(A); DomTreeNodeBase<NodeT> *NodeB = getNode(B); // If we have DFS info, then we can avoid all allocations by just querying // it from each IDom. Note that because we call 'dominates' twice above, we // expect to call through this code at most 16 times in a row without // building valid DFS information. This is important as below is a *very* // slow tree walk. if (DFSInfoValid) { DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom(); while (IDomA) { if (NodeB->DominatedBy(IDomA)) return IDomA->getBlock(); IDomA = IDomA->getIDom(); } return nullptr; } // Collect NodeA dominators set. SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms; NodeADoms.insert(NodeA); DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom(); while (IDomA) { NodeADoms.insert(IDomA); IDomA = IDomA->getIDom(); } // Walk NodeB immediate dominators chain and find common dominator node. DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom(); while (IDomB) { if (NodeADoms.count(IDomB) != 0) return IDomB->getBlock(); IDomB = IDomB->getIDom(); } return nullptr; } const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) { // Cast away the const qualifiers here. This is ok since // const is re-introduced on the return type. return findNearestCommonDominator(const_cast<NodeT *>(A), const_cast<NodeT *>(B)); } //===--------------------------------------------------------------------===// // API to update (Post)DominatorTree information based on modifications to // the CFG... /// Add a new node to the dominator tree information. /// /// This creates a new node as a child of DomBB dominator node, linking it /// into the children list of the immediate dominator. /// /// \param BB New node in CFG. /// \param DomBB CFG node that is dominator for BB. /// \returns New dominator tree node that represents new CFG node. /// DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { assert(getNode(BB) == nullptr && "Block already in dominator tree!"); DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); assert(IDomNode && "Not immediate dominator specified for block!"); DFSInfoValid = false; return (DomTreeNodes[BB] = IDomNode->addChild( llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get(); } /// Add a new node to the forward dominator tree and make it a new root. /// /// \param BB New node in CFG. /// \returns New dominator tree node that represents new CFG node. /// DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { assert(getNode(BB) == nullptr && "Block already in dominator tree!"); assert(!this->isPostDominator() && "Cannot change root of post-dominator tree"); DFSInfoValid = false; auto &Roots = DominatorBase<NodeT>::Roots; DomTreeNodeBase<NodeT> *NewNode = (DomTreeNodes[BB] = llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)).get(); if (Roots.empty()) { addRoot(BB); } else { assert(Roots.size() == 1); NodeT *OldRoot = Roots.front(); DomTreeNodes[OldRoot] = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); Roots[0] = BB; } return RootNode = NewNode; } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, DomTreeNodeBase<NodeT> *NewIDom) { assert(N && NewIDom && "Cannot change null node pointers!"); DFSInfoValid = false; N->setIDom(NewIDom); } void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { changeImmediateDominator(getNode(BB), getNode(NewBB)); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(NodeT *BB) { DomTreeNodeBase<NodeT> *Node = getNode(BB); assert(Node && "Removing node that isn't in dominator tree."); assert(Node->getChildren().empty() && "Node is not a leaf node."); // Remove node from immediate dominator's children list. DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); if (IDom) { typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I = find(IDom->Children, Node); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); } DomTreeNodes.erase(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(NodeT *NewBB) { if (this->IsPostDominators) Split<Inverse<NodeT *>>(NewBB); else Split<NodeT *>(NewBB); } /// print - Convert to human readable form /// void print(raw_ostream &o) const { o << "=============================--------------------------------\n"; if (this->isPostDominator()) o << "Inorder PostDominator Tree: "; else o << "Inorder Dominator Tree: "; if (!DFSInfoValid) o << "DFSNumbers invalid: " << SlowQueries << " slow queries."; o << "\n"; // The postdom tree can have a null root if there are no returns. if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), o, 1); } protected: template <class GraphT> friend typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef V, unsigned LastLinked); template <class GraphT> friend unsigned ReverseDFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef V, unsigned N); template <class GraphT> friend unsigned DFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef V, unsigned N); template <class FuncT, class N> friend void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<N>> &DT, FuncT &F); DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) { if (DomTreeNodeBase<NodeT> *Node = getNode(BB)) return Node; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. NodeT *IDom = getIDom(BB); assert(IDom || DomTreeNodes[nullptr]); DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom); // Add a new tree node for this NodeT, and link it as a child of // IDomNode return (DomTreeNodes[BB] = IDomNode->addChild( llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get(); } NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); } void addRoot(NodeT *BB) { this->Roots.push_back(BB); } public: /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking /// dominator tree in dfs order. void updateDFSNumbers() const { if (DFSInfoValid) { SlowQueries = 0; return; } unsigned DFSNum = 0; SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, typename DomTreeNodeBase<NodeT>::const_iterator>, 32> WorkStack; const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); if (!ThisRoot) return; // Even in the case of multiple exits that form the post dominator root // nodes, do not iterate over all exits, but start from the virtual root // node. Otherwise bbs, that are not post dominated by any exit but by the // virtual root node, will never be assigned a DFS number. WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin())); ThisRoot->DFSNumIn = DFSNum++; while (!WorkStack.empty()) { const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; typename DomTreeNodeBase<NodeT>::const_iterator ChildIt = WorkStack.back().second; // If we visited all of the children of this node, "recurse" back up the // stack setting the DFOutNum. if (ChildIt == Node->end()) { Node->DFSNumOut = DFSNum++; WorkStack.pop_back(); } else { // Otherwise, recursively visit this child. const DomTreeNodeBase<NodeT> *Child = *ChildIt; ++WorkStack.back().second; WorkStack.push_back(std::make_pair(Child, Child->begin())); Child->DFSNumIn = DFSNum++; } } SlowQueries = 0; DFSInfoValid = true; } /// recalculate - compute a dominator tree for the given function template <class FT> void recalculate(FT &F) { typedef GraphTraits<FT *> TraitsTy; reset(); Vertex.push_back(nullptr); if (!this->IsPostDominators) { // Initialize root NodeT *entry = TraitsTy::getEntryNode(&F); addRoot(entry); Calculate<FT, NodeT *>(*this, F); } else { // Initialize the roots list for (auto *Node : nodes(&F)) if (TraitsTy::child_begin(Node) == TraitsTy::child_end(Node)) addRoot(Node); Calculate<FT, Inverse<NodeT *>>(*this, F); } } }; // These two functions are declared out of line as a workaround for building // with old (< r147295) versions of clang because of pr11642. template <class NodeT> bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const { if (A == B) return true; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast<NodeT *>(A)), getNode(const_cast<NodeT *>(B))); } template <class NodeT> bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) const { if (A == B) return false; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast<NodeT *>(A)), getNode(const_cast<NodeT *>(B))); } } // end namespace llvm #endif // LLVM_SUPPORT_GENERICDOMTREE_H