//===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DominatorTree class, which provides fast and efficient // dominance queries. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_DOMINATORS_H #define LLVM_IR_DOMINATORS_H #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/Hashing.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/GenericDomTree.h" #include <utility> namespace llvm { class Function; class Instruction; class Module; class raw_ostream; extern template class DomTreeNodeBase<BasicBlock>; extern template class DominatorTreeBase<BasicBlock>; extern template void Calculate<Function, BasicBlock *>( DominatorTreeBaseByGraphTraits<GraphTraits<BasicBlock *>> &DT, Function &F); extern template void Calculate<Function, Inverse<BasicBlock *>>( DominatorTreeBaseByGraphTraits<GraphTraits<Inverse<BasicBlock *>>> &DT, Function &F); using DomTreeNode = DomTreeNodeBase<BasicBlock>; class BasicBlockEdge { const BasicBlock *Start; const BasicBlock *End; public: BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) : Start(Start_), End(End_) {} BasicBlockEdge(const std::pair<BasicBlock *, BasicBlock *> &Pair) : Start(Pair.first), End(Pair.second) {} BasicBlockEdge(const std::pair<const BasicBlock *, const BasicBlock *> &Pair) : Start(Pair.first), End(Pair.second) {} const BasicBlock *getStart() const { return Start; } const BasicBlock *getEnd() const { return End; } /// Check if this is the only edge between Start and End. bool isSingleEdge() const; }; template <> struct DenseMapInfo<BasicBlockEdge> { using BBInfo = DenseMapInfo<const BasicBlock *>; static unsigned getHashValue(const BasicBlockEdge *V); static inline BasicBlockEdge getEmptyKey() { return BasicBlockEdge(BBInfo::getEmptyKey(), BBInfo::getEmptyKey()); } static inline BasicBlockEdge getTombstoneKey() { return BasicBlockEdge(BBInfo::getTombstoneKey(), BBInfo::getTombstoneKey()); } static unsigned getHashValue(const BasicBlockEdge &Edge) { return hash_combine(BBInfo::getHashValue(Edge.getStart()), BBInfo::getHashValue(Edge.getEnd())); } static bool isEqual(const BasicBlockEdge &LHS, const BasicBlockEdge &RHS) { return BBInfo::isEqual(LHS.getStart(), RHS.getStart()) && BBInfo::isEqual(LHS.getEnd(), RHS.getEnd()); } }; /// \brief Concrete subclass of DominatorTreeBase that is used to compute a /// normal dominator tree. /// /// Definition: A block is said to be forward statically reachable if there is /// a path from the entry of the function to the block. A statically reachable /// block may become statically unreachable during optimization. /// /// A forward unreachable block may appear in the dominator tree, or it may /// not. If it does, dominance queries will return results as if all reachable /// blocks dominate it. When asking for a Node corresponding to a potentially /// unreachable block, calling code must handle the case where the block was /// unreachable and the result of getNode() is nullptr. /// /// Generally, a block known to be unreachable when the dominator tree is /// constructed will not be in the tree. One which becomes unreachable after /// the dominator tree is initially constructed may still exist in the tree, /// even if the tree is properly updated. Calling code should not rely on the /// preceding statements; this is stated only to assist human understanding. class DominatorTree : public DominatorTreeBase<BasicBlock> { public: using Base = DominatorTreeBase<BasicBlock>; DominatorTree() : DominatorTreeBase<BasicBlock>(false) {} explicit DominatorTree(Function &F) : DominatorTreeBase<BasicBlock>(false) { recalculate(F); } /// Handle invalidation explicitly. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &); /// \brief Returns *false* if the other dominator tree matches this dominator /// tree. inline bool compare(const DominatorTree &Other) const { const DomTreeNode *R = getRootNode(); const DomTreeNode *OtherR = Other.getRootNode(); return !R || !OtherR || R->getBlock() != OtherR->getBlock() || Base::compare(Other); } // Ensure base-class overloads are visible. using Base::dominates; /// \brief Return true if Def dominates a use in User. /// /// This performs the special checks necessary if Def and User are in the same /// basic block. Note that Def doesn't dominate a use in Def itself! bool dominates(const Instruction *Def, const Use &U) const; bool dominates(const Instruction *Def, const Instruction *User) const; bool dominates(const Instruction *Def, const BasicBlock *BB) const; /// Return true if an edge dominates a use. /// /// If BBE is not a unique edge between start and end of the edge, it can /// never dominate the use. bool dominates(const BasicBlockEdge &BBE, const Use &U) const; bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const; // Ensure base class overloads are visible. using Base::isReachableFromEntry; /// \brief Provide an overload for a Use. bool isReachableFromEntry(const Use &U) const; /// \brief Verify the correctness of the domtree by re-computing it. /// /// This should only be used for debugging as it aborts the program if the /// verification fails. void verifyDomTree() const; // Pop up a GraphViz/gv window with the Dominator Tree rendered using `dot`. void viewGraph(const Twine &Name, const Twine &Title); void viewGraph(); }; //===------------------------------------- // DominatorTree GraphTraits specializations so the DominatorTree can be // iterable by generic graph iterators. template <class Node, class ChildIterator> struct DomTreeGraphTraitsBase { using NodeRef = Node *; using ChildIteratorType = ChildIterator; using nodes_iterator = df_iterator<Node *, df_iterator_default_set<Node*>>; static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } static nodes_iterator nodes_begin(NodeRef N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(NodeRef N) { return df_end(getEntryNode(N)); } }; template <> struct GraphTraits<DomTreeNode *> : public DomTreeGraphTraitsBase<DomTreeNode, DomTreeNode::iterator> {}; template <> struct GraphTraits<const DomTreeNode *> : public DomTreeGraphTraitsBase<const DomTreeNode, DomTreeNode::const_iterator> {}; template <> struct GraphTraits<DominatorTree*> : public GraphTraits<DomTreeNode*> { static NodeRef getEntryNode(DominatorTree *DT) { return DT->getRootNode(); } static nodes_iterator nodes_begin(DominatorTree *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DominatorTree *N) { return df_end(getEntryNode(N)); } }; /// \brief Analysis pass which computes a \c DominatorTree. class DominatorTreeAnalysis : public AnalysisInfoMixin<DominatorTreeAnalysis> { friend AnalysisInfoMixin<DominatorTreeAnalysis>; static AnalysisKey Key; public: /// \brief Provide the result typedef for this analysis pass. using Result = DominatorTree; /// \brief Run the analysis pass over a function and produce a dominator tree. DominatorTree run(Function &F, FunctionAnalysisManager &); }; /// \brief Printer pass for the \c DominatorTree. class DominatorTreePrinterPass : public PassInfoMixin<DominatorTreePrinterPass> { raw_ostream &OS; public: explicit DominatorTreePrinterPass(raw_ostream &OS); PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// \brief Verifier pass for the \c DominatorTree. struct DominatorTreeVerifierPass : PassInfoMixin<DominatorTreeVerifierPass> { PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// \brief Legacy analysis pass which computes a \c DominatorTree. class DominatorTreeWrapperPass : public FunctionPass { DominatorTree DT; public: static char ID; DominatorTreeWrapperPass() : FunctionPass(ID) { initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); } DominatorTree &getDomTree() { return DT; } const DominatorTree &getDomTree() const { return DT; } bool runOnFunction(Function &F) override; void verifyAnalysis() const override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } void releaseMemory() override { DT.releaseMemory(); } void print(raw_ostream &OS, const Module *M = nullptr) const override; }; } // end namespace llvm #endif // LLVM_IR_DOMINATORS_H