//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to represent and build scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { class ConstantInt; class ConstantRange; class DominatorTree; enum SCEVTypes { // These should be ordered in terms of increasing complexity to make the // folders simpler. scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUnknown, scCouldNotCompute }; /// This class represents a constant integer value. class SCEVConstant : public SCEV { friend class ScalarEvolution; ConstantInt *V; SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : SCEV(ID, scConstant), V(v) {} public: ConstantInt *getValue() const { return V; } const APInt &getAPInt() const { return getValue()->getValue(); } Type *getType() const { return V->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } }; /// This is the base class for unary cast operator classes. class SCEVCastExpr : public SCEV { protected: const SCEV *Op; Type *Ty; SCEVCastExpr(const FoldingSetNodeIDRef ID, unsigned SCEVTy, const SCEV *op, Type *ty); public: const SCEV *getOperand() const { return Op; } Type *getType() const { return Ty; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; } }; /// This class represents a truncation of an integer value to a /// smaller integer value. class SCEVTruncateExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } }; /// This class represents a zero extension of a small integer value /// to a larger integer value. class SCEVZeroExtendExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scZeroExtend; } }; /// This class represents a sign extension of a small integer value /// to a larger integer value. class SCEVSignExtendExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSignExtend; } }; /// This node is a base class providing common functionality for /// n'ary operators. class SCEVNAryExpr : public SCEV { protected: // Since SCEVs are immutable, ScalarEvolution allocates operand // arrays with its SCEVAllocator, so this class just needs a simple // pointer rather than a more elaborate vector-like data structure. // This also avoids the need for a non-trivial destructor. const SCEV *const *Operands; size_t NumOperands; SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N) : SCEV(ID, T), Operands(O), NumOperands(N) {} public: size_t getNumOperands() const { return NumOperands; } const SCEV *getOperand(unsigned i) const { assert(i < NumOperands && "Operand index out of range!"); return Operands[i]; } typedef const SCEV *const *op_iterator; typedef iterator_range<op_iterator> op_range; op_iterator op_begin() const { return Operands; } op_iterator op_end() const { return Operands + NumOperands; } op_range operands() const { return make_range(op_begin(), op_end()); } Type *getType() const { return getOperand(0)->getType(); } NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { return (NoWrapFlags)(SubclassData & Mask); } bool hasNoUnsignedWrap() const { return getNoWrapFlags(FlagNUW) != FlagAnyWrap; } bool hasNoSignedWrap() const { return getNoWrapFlags(FlagNSW) != FlagAnyWrap; } bool hasNoSelfWrap() const { return getNoWrapFlags(FlagNW) != FlagAnyWrap; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || S->getSCEVType() == scAddRecExpr; } }; /// This node is the base class for n'ary commutative operators. class SCEVCommutativeExpr : public SCEVNAryExpr { protected: SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N) : SCEVNAryExpr(ID, T, O, N) {} public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr; } /// Set flags for a non-recurrence without clearing previously set flags. void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } }; /// This node represents an addition of some number of SCEVs. class SCEVAddExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scAddExpr, O, N) { } public: Type *getType() const { // Use the type of the last operand, which is likely to be a pointer // type, if there is one. This doesn't usually matter, but it can help // reduce casts when the expressions are expanded. return getOperand(getNumOperands() - 1)->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } }; /// This node represents multiplication of some number of SCEVs. class SCEVMulExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scMulExpr, O, N) { } public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } }; /// This class represents a binary unsigned division operation. class SCEVUDivExpr : public SCEV { friend class ScalarEvolution; const SCEV *LHS; const SCEV *RHS; SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {} public: const SCEV *getLHS() const { return LHS; } const SCEV *getRHS() const { return RHS; } Type *getType() const { // In most cases the types of LHS and RHS will be the same, but in some // crazy cases one or the other may be a pointer. ScalarEvolution doesn't // depend on the type for correctness, but handling types carefully can // avoid extra casts in the SCEVExpander. The LHS is more likely to be // a pointer type than the RHS, so use the RHS' type here. return getRHS()->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } }; /// This node represents a polynomial recurrence on the trip count /// of the specified loop. This is the primary focus of the /// ScalarEvolution framework; all the other SCEV subclasses are /// mostly just supporting infrastructure to allow SCEVAddRecExpr /// expressions to be created and analyzed. /// /// All operands of an AddRec are required to be loop invariant. /// class SCEVAddRecExpr : public SCEVNAryExpr { friend class ScalarEvolution; const Loop *L; SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N, const Loop *l) : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} public: const SCEV *getStart() const { return Operands[0]; } const Loop *getLoop() const { return L; } /// Constructs and returns the recurrence indicating how much this /// expression steps by. If this is a polynomial of degree N, it /// returns a chrec of degree N-1. We cannot determine whether /// the step recurrence has self-wraparound. const SCEV *getStepRecurrence(ScalarEvolution &SE) const { if (isAffine()) return getOperand(1); return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, op_end()), getLoop(), FlagAnyWrap); } /// Return true if this represents an expression A + B*x where A /// and B are loop invariant values. bool isAffine() const { // We know that the start value is invariant. This expression is thus // affine iff the step is also invariant. return getNumOperands() == 2; } /// Return true if this represents an expression A + B*x + C*x^2 /// where A, B and C are loop invariant values. This corresponds /// to an addrec of the form {L,+,M,+,N} bool isQuadratic() const { return getNumOperands() == 3; } /// Set flags for a recurrence without clearing any previously set flags. /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here /// to make it easier to propagate flags. void setNoWrapFlags(NoWrapFlags Flags) { if (Flags & (FlagNUW | FlagNSW)) Flags = ScalarEvolution::setFlags(Flags, FlagNW); SubclassData |= Flags; } /// Return the value of this chain of recurrences at the specified /// iteration number. const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; /// Return the number of iterations of this loop that produce /// values in the specified constant range. Another way of /// looking at this is that it returns the first iteration number /// where the value is not in the condition, thus computing the /// exit count. If the iteration count can't be computed, an /// instance of SCEVCouldNotCompute is returned. const SCEV *getNumIterationsInRange(const ConstantRange &Range, ScalarEvolution &SE) const; /// Return an expression representing the value of this expression /// one iteration of the loop ahead. const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const { return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE))); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddRecExpr; } }; /// This class represents a signed maximum selection. class SCEVSMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { // Max never overflows. setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); } public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } }; /// This class represents an unsigned maximum selection. class SCEVUMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { // Max never overflows. setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); } public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } }; /// This means that we are dealing with an entirely unknown SCEV /// value, and only represent it as its LLVM Value. This is the /// "bottom" value for the analysis. class SCEVUnknown final : public SCEV, private CallbackVH { friend class ScalarEvolution; // Implement CallbackVH. void deleted() override; void allUsesReplacedWith(Value *New) override; /// The parent ScalarEvolution value. This is used to update the /// parent's maps when the value associated with a SCEVUnknown is /// deleted or RAUW'd. ScalarEvolution *SE; /// The next pointer in the linked list of all SCEVUnknown /// instances owned by a ScalarEvolution. SCEVUnknown *Next; SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se, SCEVUnknown *next) : SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {} public: Value *getValue() const { return getValPtr(); } /// @{ /// Test whether this is a special constant representing a type /// size, alignment, or field offset in a target-independent /// manner, and hasn't happened to have been folded with other /// operations into something unrecognizable. This is mainly only /// useful for pretty-printing and other situations where it isn't /// absolutely required for these to succeed. bool isSizeOf(Type *&AllocTy) const; bool isAlignOf(Type *&AllocTy) const; bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; /// @} Type *getType() const { return getValPtr()->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } }; /// This class defines a simple visitor class that may be used for /// various SCEV analysis purposes. template<typename SC, typename RetVal=void> struct SCEVVisitor { RetVal visit(const SCEV *S) { switch (S->getSCEVType()) { case scConstant: return ((SC*)this)->visitConstant((const SCEVConstant*)S); case scTruncate: return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); case scZeroExtend: return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); case scSignExtend: return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); case scAddExpr: return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); case scMulExpr: return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); case scUDivExpr: return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); case scAddRecExpr: return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); case scSMaxExpr: return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); case scUMaxExpr: return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); case scUnknown: return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); case scCouldNotCompute: return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); default: llvm_unreachable("Unknown SCEV type!"); } } RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); } }; /// Visit all nodes in the expression tree using worklist traversal. /// /// Visitor implements: /// // return true to follow this node. /// bool follow(const SCEV *S); /// // return true to terminate the search. /// bool isDone(); template<typename SV> class SCEVTraversal { SV &Visitor; SmallVector<const SCEV *, 8> Worklist; SmallPtrSet<const SCEV *, 8> Visited; void push(const SCEV *S) { if (Visited.insert(S).second && Visitor.follow(S)) Worklist.push_back(S); } public: SCEVTraversal(SV& V): Visitor(V) {} void visitAll(const SCEV *Root) { push(Root); while (!Worklist.empty() && !Visitor.isDone()) { const SCEV *S = Worklist.pop_back_val(); switch (S->getSCEVType()) { case scConstant: case scUnknown: break; case scTruncate: case scZeroExtend: case scSignExtend: push(cast<SCEVCastExpr>(S)->getOperand()); break; case scAddExpr: case scMulExpr: case scSMaxExpr: case scUMaxExpr: case scAddRecExpr: for (const auto *Op : cast<SCEVNAryExpr>(S)->operands()) push(Op); break; case scUDivExpr: { const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); push(UDiv->getLHS()); push(UDiv->getRHS()); break; } case scCouldNotCompute: llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); default: llvm_unreachable("Unknown SCEV kind!"); } } } }; /// Use SCEVTraversal to visit all nodes in the given expression tree. template<typename SV> void visitAll(const SCEV *Root, SV& Visitor) { SCEVTraversal<SV> T(Visitor); T.visitAll(Root); } /// Return true if any node in \p Root satisfies the predicate \p Pred. template <typename PredTy> bool SCEVExprContains(const SCEV *Root, PredTy Pred) { struct FindClosure { bool Found = false; PredTy Pred; FindClosure(PredTy Pred) : Pred(Pred) {} bool follow(const SCEV *S) { if (!Pred(S)) return true; Found = true; return false; } bool isDone() const { return Found; } }; FindClosure FC(Pred); visitAll(Root, FC); return FC.Found; } /// This visitor recursively visits a SCEV expression and re-writes it. /// The result from each visit is cached, so it will return the same /// SCEV for the same input. template<typename SC> class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { protected: ScalarEvolution &SE; // Memoize the result of each visit so that we only compute once for // the same input SCEV. This is to avoid redundant computations when // a SCEV is referenced by multiple SCEVs. Without memoization, this // visit algorithm would have exponential time complexity in the worst // case, causing the compiler to hang on certain tests. DenseMap<const SCEV *, const SCEV *> RewriteResults; public: SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} const SCEV *visit(const SCEV *S) { auto It = RewriteResults.find(S); if (It != RewriteResults.end()) return It->second; auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S); auto Result = RewriteResults.try_emplace(S, Visited); assert(Result.second && "Should insert a new entry"); return Result.first->second; } const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; } const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); return Operand == Expr->getOperand() ? Expr : SE.getTruncateExpr(Operand, Expr->getType()); } const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); return Operand == Expr->getOperand() ? Expr : SE.getZeroExtendExpr(Operand, Expr->getType()); } const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); return Operand == Expr->getOperand() ? Expr : SE.getSignExtendExpr(Operand, Expr->getType()); } const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { SmallVector<const SCEV *, 2> Operands; bool Changed = false; for (auto *Op : Expr->operands()) { Operands.push_back(((SC*)this)->visit(Op)); Changed |= Op != Operands.back(); } return !Changed ? Expr : SE.getAddExpr(Operands); } const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { SmallVector<const SCEV *, 2> Operands; bool Changed = false; for (auto *Op : Expr->operands()) { Operands.push_back(((SC*)this)->visit(Op)); Changed |= Op != Operands.back(); } return !Changed ? Expr : SE.getMulExpr(Operands); } const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { auto *LHS = ((SC *)this)->visit(Expr->getLHS()); auto *RHS = ((SC *)this)->visit(Expr->getRHS()); bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); } const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { SmallVector<const SCEV *, 2> Operands; bool Changed = false; for (auto *Op : Expr->operands()) { Operands.push_back(((SC*)this)->visit(Op)); Changed |= Op != Operands.back(); } return !Changed ? Expr : SE.getAddRecExpr(Operands, Expr->getLoop(), Expr->getNoWrapFlags()); } const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { SmallVector<const SCEV *, 2> Operands; bool Changed = false; for (auto *Op : Expr->operands()) { Operands.push_back(((SC *)this)->visit(Op)); Changed |= Op != Operands.back(); } return !Changed ? Expr : SE.getSMaxExpr(Operands); } const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { SmallVector<const SCEV *, 2> Operands; bool Changed = false; for (auto *Op : Expr->operands()) { Operands.push_back(((SC*)this)->visit(Op)); Changed |= Op != Operands.back(); } return !Changed ? Expr : SE.getUMaxExpr(Operands); } const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; } const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } }; typedef DenseMap<const Value*, Value*> ValueToValueMap; /// The SCEVParameterRewriter takes a scalar evolution expression and updates /// the SCEVUnknown components following the Map (Value -> Value). class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { public: static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToValueMap &Map, bool InterpretConsts = false) { SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts); return Rewriter.visit(Scev); } SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C) : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {} const SCEV *visitUnknown(const SCEVUnknown *Expr) { Value *V = Expr->getValue(); if (Map.count(V)) { Value *NV = Map[V]; if (InterpretConsts && isa<ConstantInt>(NV)) return SE.getConstant(cast<ConstantInt>(NV)); return SE.getUnknown(NV); } return Expr; } private: ValueToValueMap ⤅ bool InterpretConsts; }; typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT; /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies /// the Map (Loop -> SCEV) to all AddRecExprs. class SCEVLoopAddRecRewriter : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { public: static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, ScalarEvolution &SE) { SCEVLoopAddRecRewriter Rewriter(SE, Map); return Rewriter.visit(Scev); } SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) : SCEVRewriteVisitor(SE), Map(M) {} const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { SmallVector<const SCEV *, 2> Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); const Loop *L = Expr->getLoop(); const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); if (0 == Map.count(L)) return Res; const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res); return Rec->evaluateAtIteration(Map[L], SE); } private: LoopToScevMapT ⤅ }; } #endif