//===- BasicAliasAnalysis.h - Stateless, local Alias Analysis ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This is the interface for LLVM's primary stateless and local alias analysis. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_BASICALIASANALYSIS_H #define LLVM_ANALYSIS_BASICALIASANALYSIS_H #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { class AssumptionCache; class DominatorTree; class LoopInfo; /// This is the AA result object for the basic, local, and stateless alias /// analysis. It implements the AA query interface in an entirely stateless /// manner. As one consequence, it is never invalidated due to IR changes. /// While it does retain some storage, that is used as an optimization and not /// to preserve information from query to query. However it does retain handles /// to various other analyses and must be recomputed when those analyses are. class BasicAAResult : public AAResultBase<BasicAAResult> { friend AAResultBase<BasicAAResult>; const DataLayout &DL; const TargetLibraryInfo &TLI; AssumptionCache &AC; DominatorTree *DT; LoopInfo *LI; public: BasicAAResult(const DataLayout &DL, const TargetLibraryInfo &TLI, AssumptionCache &AC, DominatorTree *DT = nullptr, LoopInfo *LI = nullptr) : AAResultBase(), DL(DL), TLI(TLI), AC(AC), DT(DT), LI(LI) {} BasicAAResult(const BasicAAResult &Arg) : AAResultBase(Arg), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI) {} BasicAAResult(BasicAAResult &&Arg) : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI) {} /// Handle invalidation events in the new pass manager. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv); AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB); ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc); ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2); /// Chases pointers until we find a (constant global) or not. bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal); /// Get the location associated with a pointer argument of a callsite. ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx); /// Returns the behavior when calling the given call site. FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS); /// Returns the behavior when calling the given function. For use when the /// call site is not known. FunctionModRefBehavior getModRefBehavior(const Function *F); private: // A linear transformation of a Value; this class represents ZExt(SExt(V, // SExtBits), ZExtBits) * Scale + Offset. struct VariableGEPIndex { // An opaque Value - we can't decompose this further. const Value *V; // We need to track what extensions we've done as we consider the same Value // with different extensions as different variables in a GEP's linear // expression; // e.g.: if V == -1, then sext(x) != zext(x). unsigned ZExtBits; unsigned SExtBits; int64_t Scale; bool operator==(const VariableGEPIndex &Other) const { return V == Other.V && ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && Scale == Other.Scale; } bool operator!=(const VariableGEPIndex &Other) const { return !operator==(Other); } }; // Represents the internal structure of a GEP, decomposed into a base pointer, // constant offsets, and variable scaled indices. struct DecomposedGEP { // Base pointer of the GEP const Value *Base; // Total constant offset w.r.t the base from indexing into structs int64_t StructOffset; // Total constant offset w.r.t the base from indexing through // pointers/arrays/vectors int64_t OtherOffset; // Scaled variable (non-constant) indices. SmallVector<VariableGEPIndex, 4> VarIndices; }; /// Track alias queries to guard against recursion. typedef std::pair<MemoryLocation, MemoryLocation> LocPair; typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; AliasCacheTy AliasCache; /// Tracks phi nodes we have visited. /// /// When interpret "Value" pointer equality as value equality we need to make /// sure that the "Value" is not part of a cycle. Otherwise, two uses could /// come from different "iterations" of a cycle and see different values for /// the same "Value" pointer. /// /// The following example shows the problem: /// %p = phi(%alloca1, %addr2) /// %l = load %ptr /// %addr1 = gep, %alloca2, 0, %l /// %addr2 = gep %alloca2, 0, (%l + 1) /// alias(%p, %addr1) -> MayAlias ! /// store %l, ... SmallPtrSet<const BasicBlock *, 8> VisitedPhiBBs; /// Tracks instructions visited by pointsToConstantMemory. SmallPtrSet<const Value *, 16> Visited; static const Value * GetLinearExpression(const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, unsigned &SExtBits, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW); static bool DecomposeGEPExpression(const Value *V, DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT); static bool isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, uint64_t ObjectAccessSize); /// \brief A Heuristic for aliasGEP that searches for a constant offset /// between the variables. /// /// GetLinearExpression has some limitations, as generally zext(%x + 1) /// != zext(%x) + zext(1) if the arithmetic overflows. GetLinearExpression /// will therefore conservatively refuse to decompose these expressions. /// However, we know that, for all %x, zext(%x) != zext(%x + 1), even if /// the addition overflows. bool constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, DominatorTree *DT); bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, const SmallVectorImpl<VariableGEPIndex> &Src); AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, const AAMDNodes &V1AAInfo, const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo, const Value *UnderlyingV1, const Value *UnderlyingV2); AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, const AAMDNodes &PNAAInfo, const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo, const Value *UnderV2); AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, const AAMDNodes &SIAAInfo, const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo, const Value *UnderV2); AliasResult aliasCheck(const Value *V1, uint64_t V1Size, AAMDNodes V1AATag, const Value *V2, uint64_t V2Size, AAMDNodes V2AATag, const Value *O1 = nullptr, const Value *O2 = nullptr); }; /// Analysis pass providing a never-invalidated alias analysis result. class BasicAA : public AnalysisInfoMixin<BasicAA> { friend AnalysisInfoMixin<BasicAA>; static AnalysisKey Key; public: typedef BasicAAResult Result; BasicAAResult run(Function &F, FunctionAnalysisManager &AM); }; /// Legacy wrapper pass to provide the BasicAAResult object. class BasicAAWrapperPass : public FunctionPass { std::unique_ptr<BasicAAResult> Result; virtual void anchor(); public: static char ID; BasicAAWrapperPass(); BasicAAResult &getResult() { return *Result; } const BasicAAResult &getResult() const { return *Result; } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; FunctionPass *createBasicAAWrapperPass(); /// A helper for the legacy pass manager to create a \c BasicAAResult object /// populated to the best of our ability for a particular function when inside /// of a \c ModulePass or a \c CallGraphSCCPass. BasicAAResult createLegacyPMBasicAAResult(Pass &P, Function &F); /// This class is a functor to be used in legacy module or SCC passes for /// computing AA results for a function. We store the results in fields so that /// they live long enough to be queried, but we re-use them each time. class LegacyAARGetter { Pass &P; Optional<BasicAAResult> BAR; Optional<AAResults> AAR; public: LegacyAARGetter(Pass &P) : P(P) {} AAResults &operator()(Function &F) { BAR.emplace(createLegacyPMBasicAAResult(P, F)); AAR.emplace(createLegacyPMAAResults(P, F, *BAR)); return *AAR; } }; } #endif