//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// Generic dominator tree construction - This file provides routines to /// construct immediate dominator information for a flow-graph based on the /// Semi-NCA algorithm described in this dissertation: /// /// Linear-Time Algorithms for Dominators and Related Problems /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf /// /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns /// out that the theoretically slower O(n*log(n)) implementation is actually /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs. /// /// The file uses the Depth Based Search algorithm to perform incremental /// updates (insertion and deletions). The implemented algorithm is based on /// this publication: /// /// An Experimental Study of Dynamic Dominators /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: /// https://arxiv.org/pdf/1604.02711.pdf /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #include <queue> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTree.h" #define DEBUG_TYPE "dom-tree-builder" namespace llvm { namespace DomTreeBuilder { template <typename DomTreeT> struct SemiNCAInfo { using NodePtr = typename DomTreeT::NodePtr; using NodeT = typename DomTreeT::NodeType; using TreeNodePtr = DomTreeNodeBase<NodeT> *; using RootsT = decltype(DomTreeT::Roots); static constexpr bool IsPostDom = DomTreeT::IsPostDominator; // Information record used by Semi-NCA during tree construction. struct InfoRec { unsigned DFSNum = 0; unsigned Parent = 0; unsigned Semi = 0; NodePtr Label = nullptr; NodePtr IDom = nullptr; SmallVector<NodePtr, 2> ReverseChildren; }; // Number to node mapping is 1-based. Initialize the mapping to start with // a dummy element. std::vector<NodePtr> NumToNode = {nullptr}; DenseMap<NodePtr, InfoRec> NodeToInfo; using UpdateT = typename DomTreeT::UpdateType; struct BatchUpdateInfo { SmallVector<UpdateT, 4> Updates; using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>; // In order to be able to walk a CFG that is out of sync with the CFG // DominatorTree last knew about, use the list of updates to reconstruct // previous CFG versions of the current CFG. For each node, we store a set // of its virtually added/deleted future successors and predecessors. // Note that these children are from the future relative to what the // DominatorTree knows about -- using them to gets us some snapshot of the // CFG from the past (relative to the state of the CFG). DenseMap<NodePtr, SmallDenseSet<NodePtrAndKind, 4>> FutureSuccessors; DenseMap<NodePtr, SmallDenseSet<NodePtrAndKind, 4>> FuturePredecessors; // Remembers if the whole tree was recalculated at some point during the // current batch update. bool IsRecalculated = false; }; BatchUpdateInfo *BatchUpdates; using BatchUpdatePtr = BatchUpdateInfo *; // If BUI is a nullptr, then there's no batch update in progress. SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {} void clear() { NumToNode = {nullptr}; // Restore to initial state with a dummy start node. NodeToInfo.clear(); // Don't reset the pointer to BatchUpdateInfo here -- if there's an update // in progress, we need this information to continue it. } template <bool Inverse> struct ChildrenGetter { using ResultTy = SmallVector<NodePtr, 8>; static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) { auto RChildren = reverse(children<NodePtr>(N)); return ResultTy(RChildren.begin(), RChildren.end()); } static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) { auto IChildren = inverse_children<NodePtr>(N); return ResultTy(IChildren.begin(), IChildren.end()); } using Tag = std::integral_constant<bool, Inverse>; // The function below is the core part of the batch updater. It allows the // Depth Based Search algorithm to perform incremental updates in lockstep // with updates to the CFG. We emulated lockstep CFG updates by getting its // next snapshots by reverse-applying future updates. static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) { ResultTy Res = Get(N, Tag()); // If there's no batch update in progress, simply return node's children. if (!BUI) return Res; // CFG children are actually its *most current* children, and we have to // reverse-apply the future updates to get the node's children at the // point in time the update was performed. auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors : BUI->FutureSuccessors; auto FCIt = FutureChildren.find(N); if (FCIt == FutureChildren.end()) return Res; for (auto ChildAndKind : FCIt->second) { const NodePtr Child = ChildAndKind.getPointer(); const UpdateKind UK = ChildAndKind.getInt(); // Reverse-apply the future update. if (UK == UpdateKind::Insert) { // If there's an insertion in the future, it means that the edge must // exist in the current CFG, but was not present in it before. assert(llvm::find(Res, Child) != Res.end() && "Expected child not found in the CFG"); Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end()); DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> " << BlockNamePrinter(Child) << "\n"); } else { // If there's an deletion in the future, it means that the edge cannot // exist in the current CFG, but existed in it before. assert(llvm::find(Res, Child) == Res.end() && "Unexpected child found in the CFG"); DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N) << " -> " << BlockNamePrinter(Child) << "\n"); Res.push_back(Child); } } return Res; } }; NodePtr getIDom(NodePtr BB) const { auto InfoIt = NodeToInfo.find(BB); if (InfoIt == NodeToInfo.end()) return nullptr; return InfoIt->second.IDom; } TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { if (TreeNodePtr Node = DT.getNode(BB)) return Node; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. NodePtr IDom = getIDom(BB); assert(IDom || DT.DomTreeNodes[nullptr]); TreeNodePtr IDomNode = getNodeForBlock(IDom, DT); // Add a new tree node for this NodeT, and link it as a child of // IDomNode return (DT.DomTreeNodes[BB] = IDomNode->addChild( llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))) .get(); } static bool AlwaysDescend(NodePtr, NodePtr) { return true; } struct BlockNamePrinter { NodePtr N; BlockNamePrinter(NodePtr Block) : N(Block) {} BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { if (!BP.N) O << "nullptr"; else BP.N->printAsOperand(O, false); return O; } }; // Custom DFS implementation which can skip nodes based on a provided // predicate. It also collects ReverseChildren so that we don't have to spend // time getting predecessors in SemiNCA. // // If IsReverse is set to true, the DFS walk will be performed backwards // relative to IsPostDom -- using reverse edges for dominators and forward // edges for postdominators. template <bool IsReverse = false, typename DescendCondition> unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, unsigned AttachToNum) { assert(V); SmallVector<NodePtr, 64> WorkList = {V}; if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum; while (!WorkList.empty()) { const NodePtr BB = WorkList.pop_back_val(); auto &BBInfo = NodeToInfo[BB]; // Visited nodes always have positive DFS numbers. if (BBInfo.DFSNum != 0) continue; BBInfo.DFSNum = BBInfo.Semi = ++LastNum; BBInfo.Label = BB; NumToNode.push_back(BB); constexpr bool Direction = IsReverse != IsPostDom; // XOR. for (const NodePtr Succ : ChildrenGetter<Direction>::Get(BB, BatchUpdates)) { const auto SIT = NodeToInfo.find(Succ); // Don't visit nodes more than once but remember to collect // ReverseChildren. if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) { if (Succ != BB) SIT->second.ReverseChildren.push_back(BB); continue; } if (!Condition(BB, Succ)) continue; // It's fine to add Succ to the map, because we know that it will be // visited later. auto &SuccInfo = NodeToInfo[Succ]; WorkList.push_back(Succ); SuccInfo.Parent = LastNum; SuccInfo.ReverseChildren.push_back(BB); } } return LastNum; } NodePtr eval(NodePtr VIn, unsigned LastLinked) { auto &VInInfo = NodeToInfo[VIn]; if (VInInfo.DFSNum < LastLinked) return VIn; SmallVector<NodePtr, 32> Work; SmallPtrSet<NodePtr, 32> Visited; if (VInInfo.Parent >= LastLinked) Work.push_back(VIn); while (!Work.empty()) { NodePtr V = Work.back(); auto &VInfo = NodeToInfo[V]; NodePtr VAncestor = NumToNode[VInfo.Parent]; // Process Ancestor first if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) { Work.push_back(VAncestor); continue; } Work.pop_back(); // Update VInfo based on Ancestor info if (VInfo.Parent < LastLinked) continue; auto &VAInfo = NodeToInfo[VAncestor]; NodePtr VAncestorLabel = VAInfo.Label; NodePtr VLabel = VInfo.Label; if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Parent = VAInfo.Parent; } return VInInfo.Label; } // This function requires DFS to be run before calling it. void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) { const unsigned NextDFSNum(NumToNode.size()); // Initialize IDoms to spanning tree parents. for (unsigned i = 1; i < NextDFSNum; ++i) { const NodePtr V = NumToNode[i]; auto &VInfo = NodeToInfo[V]; VInfo.IDom = NumToNode[VInfo.Parent]; } // Step #1: Calculate the semidominators of all vertices. for (unsigned i = NextDFSNum - 1; i >= 2; --i) { NodePtr W = NumToNode[i]; auto &WInfo = NodeToInfo[W]; // Initialize the semi dominator to point to the parent node. WInfo.Semi = WInfo.Parent; for (const auto &N : WInfo.ReverseChildren) { if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors. continue; const TreeNodePtr TN = DT.getNode(N); // Skip predecessors whose level is above the subtree we are processing. if (TN && TN->getLevel() < MinLevel) continue; unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } } // Step #2: Explicitly define the immediate dominator of each vertex. // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). // Note that the parents were stored in IDoms and later got invalidated // during path compression in Eval. for (unsigned i = 2; i < NextDFSNum; ++i) { const NodePtr W = NumToNode[i]; auto &WInfo = NodeToInfo[W]; const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum; NodePtr WIDomCandidate = WInfo.IDom; while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum) WIDomCandidate = NodeToInfo[WIDomCandidate].IDom; WInfo.IDom = WIDomCandidate; } } // PostDominatorTree always has a virtual root that represents a virtual CFG // node that serves as a single exit from the function. All the other exits // (CFG nodes with terminators and nodes in infinite loops are logically // connected to this virtual CFG exit node). // This functions maps a nullptr CFG node to the virtual root tree node. void addVirtualRoot() { assert(IsPostDom && "Only postdominators have a virtual root"); assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed"); auto &BBInfo = NodeToInfo[nullptr]; BBInfo.DFSNum = BBInfo.Semi = 1; BBInfo.Label = nullptr; NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; } // For postdominators, nodes with no forward successors are trivial roots that // are always selected as tree roots. Roots with forward successors correspond // to CFG nodes within infinite loops. static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { assert(N && "N must be a valid node"); return !ChildrenGetter<false>::Get(N, BUI).empty(); } static NodePtr GetEntryNode(const DomTreeT &DT) { assert(DT.Parent && "Parent not set"); return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); } // Finds all roots without relaying on the set of roots already stored in the // tree. // We define roots to be some non-redundant set of the CFG nodes static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { assert(DT.Parent && "Parent pointer is not set"); RootsT Roots; // For dominators, function entry CFG node is always a tree root node. if (!IsPostDom) { Roots.push_back(GetEntryNode(DT)); return Roots; } SemiNCAInfo SNCA(BUI); // PostDominatorTree always has a virtual root. SNCA.addVirtualRoot(); unsigned Num = 1; DEBUG(dbgs() << "\t\tLooking for trivial roots\n"); // Step #1: Find all the trivial roots that are going to will definitely // remain tree roots. unsigned Total = 0; // It may happen that there are some new nodes in the CFG that are result of // the ongoing batch update, but we cannot really pretend that they don't // exist -- we won't see any outgoing or incoming edges to them, so it's // fine to discover them here, as they would end up appearing in the CFG at // some point anyway. for (const NodePtr N : nodes(DT.Parent)) { ++Total; // If it has no *successors*, it is definitely a root. if (!HasForwardSuccessors(N, BUI)) { Roots.push_back(N); // Run DFS not to walk this part of CFG later. Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) << "\n"); DEBUG(dbgs() << "Last visited node: " << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n"); } } DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n"); // Step #2: Find all non-trivial root candidates. Those are CFG nodes that // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG // nodes in infinite loops). bool HasNonTrivialRoots = false; // Accounting for the virtual exit, see if we had any reverse-unreachable // nodes. if (Total + 1 != Num) { HasNonTrivialRoots = true; // Make another DFS pass over all other nodes to find the // reverse-unreachable blocks, and find the furthest paths we'll be able // to make. // Note that this looks N^2, but it's really 2N worst case, if every node // is unreachable. This is because we are still going to only visit each // unreachable node once, we may just visit it in two directions, // depending on how lucky we get. SmallPtrSet<NodePtr, 4> ConnectToExitBlock; for (const NodePtr I : nodes(DT.Parent)) { if (SNCA.NodeToInfo.count(I) == 0) { DEBUG(dbgs() << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n"); // Find the furthest away we can get by following successors, then // follow them in reverse. This gives us some reasonable answer about // the post-dom tree inside any infinite loop. In particular, it // guarantees we get to the farthest away point along *some* // path. This also matches the GCC's behavior. // If we really wanted a totally complete picture of dominance inside // this infinite loop, we could do it with SCC-like algorithms to find // the lowest and highest points in the infinite loop. In theory, it // would be nice to give the canonical backedge for the loop, but it's // expensive and does not always lead to a minimal set of roots. DEBUG(dbgs() << "\t\t\tRunning forward DFS\n"); const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num); const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; DEBUG(dbgs() << "\t\t\tFound a new furthest away node " << "(non-trivial root): " << BlockNamePrinter(FurthestAway) << "\n"); ConnectToExitBlock.insert(FurthestAway); Roots.push_back(FurthestAway); DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " << NewNum << "\n\t\t\tRemoving DFS info\n"); for (unsigned i = NewNum; i > Num; --i) { const NodePtr N = SNCA.NumToNode[i]; DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " << BlockNamePrinter(N) << "\n"); SNCA.NodeToInfo.erase(N); SNCA.NumToNode.pop_back(); } const unsigned PrevNum = Num; DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n"); Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); for (unsigned i = PrevNum + 1; i <= Num; ++i) DEBUG(dbgs() << "\t\t\t\tfound node " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); } } } DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n"); DEBUG(dbgs() << "Discovered CFG nodes:\n"); DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); assert((Total + 1 == Num) && "Everything should have been visited"); // Step #3: If we found some non-trivial roots, make them non-redundant. if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots); DEBUG(dbgs() << "Found roots: "); DEBUG(for (auto *Root : Roots) dbgs() << BlockNamePrinter(Root) << " "); DEBUG(dbgs() << "\n"); return Roots; } // This function only makes sense for postdominators. // We define roots to be some set of CFG nodes where (reverse) DFS walks have // to start in order to visit all the CFG nodes (including the // reverse-unreachable ones). // When the search for non-trivial roots is done it may happen that some of // the non-trivial roots are reverse-reachable from other non-trivial roots, // which makes them redundant. This function removes them from the set of // input roots. static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, RootsT &Roots) { assert(IsPostDom && "This function is for postdominators only"); DEBUG(dbgs() << "Removing redundant roots\n"); SemiNCAInfo SNCA(BUI); for (unsigned i = 0; i < Roots.size(); ++i) { auto &Root = Roots[i]; // Trivial roots are always non-redundant. if (!HasForwardSuccessors(Root, BUI)) continue; DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) << " remains a root\n"); SNCA.clear(); // Do a forward walk looking for the other roots. const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); // Skip the start node and begin from the second one (note that DFS uses // 1-based indexing). for (unsigned x = 2; x <= Num; ++x) { const NodePtr N = SNCA.NumToNode[x]; // If we wound another root in a (forward) DFS walk, remove the current // root from the set of roots, as it is reverse-reachable from the other // one. if (llvm::find(Roots, N) != Roots.end()) { DEBUG(dbgs() << "\tForward DFS walk found another root " << BlockNamePrinter(N) << "\n\tRemoving root " << BlockNamePrinter(Root) << "\n"); std::swap(Root, Roots.back()); Roots.pop_back(); // Root at the back takes the current root's place. // Start the next loop iteration with the same index. --i; break; } } } } template <typename DescendCondition> void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { if (!IsPostDom) { assert(DT.Roots.size() == 1 && "Dominators should have a singe root"); runDFS(DT.Roots[0], 0, DC, 0); return; } addVirtualRoot(); unsigned Num = 1; for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0); } static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { auto *Parent = DT.Parent; DT.reset(); DT.Parent = Parent; SemiNCAInfo SNCA(nullptr); // Since we are rebuilding the whole tree, // there's no point doing it incrementally. // Step #0: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. DT.Roots = FindRoots(DT, nullptr); SNCA.doFullDFSWalk(DT, AlwaysDescend); SNCA.runSemiNCA(DT); if (BUI) { BUI->IsRecalculated = true; DEBUG(dbgs() << "DomTree recalculated, skipping future batch updates\n"); } if (DT.Roots.empty()) return; // Add a node for the root. If the tree is a PostDominatorTree it will be // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates // all real exits (including multiple exit blocks, infinite loops). NodePtr Root = IsPostDom ? nullptr : DT.Roots[0]; DT.RootNode = (DT.DomTreeNodes[Root] = llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr)) .get(); SNCA.attachNewSubtree(DT, DT.RootNode); } void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { // Attach the first unreachable block to AttachTo. NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); // Loop over all of the discovered blocks in the function... for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { NodePtr W = NumToNode[i]; DEBUG(dbgs() << "\tdiscovered a new reachable node " << BlockNamePrinter(W) << "\n"); // Don't replace this with 'count', the insertion side effect is important if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet? NodePtr ImmDom = getIDom(W); // Get or calculate the node for the immediate dominator. TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode. DT.DomTreeNodes[W] = IDomNode->addChild( llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode)); } } void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { const NodePtr N = NumToNode[i]; const TreeNodePtr TN = DT.getNode(N); assert(TN); const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom); TN->setIDom(NewIDom); } } // Helper struct used during edge insertions. struct InsertionInfo { using BucketElementTy = std::pair<unsigned, TreeNodePtr>; struct DecreasingLevel { bool operator()(const BucketElementTy &First, const BucketElementTy &Second) const { return First.first > Second.first; } }; std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>, DecreasingLevel> Bucket; // Queue of tree nodes sorted by level in descending order. SmallDenseSet<TreeNodePtr, 8> Affected; SmallDenseSet<TreeNodePtr, 8> Visited; SmallVector<TreeNodePtr, 8> AffectedQueue; SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue; }; static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr From, const NodePtr To) { assert((From || IsPostDom) && "From has to be a valid CFG node or a virtual root"); assert(To && "Cannot be a nullptr"); DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " << BlockNamePrinter(To) << "\n"); TreeNodePtr FromTN = DT.getNode(From); if (!FromTN) { // Ignore edges from unreachable nodes for (forward) dominators. if (!IsPostDom) return; // The unreachable node becomes a new root -- a tree node for it. TreeNodePtr VirtualRoot = DT.getNode(nullptr); FromTN = (DT.DomTreeNodes[From] = VirtualRoot->addChild( llvm::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot))) .get(); DT.Roots.push_back(From); } DT.DFSInfoValid = false; const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) InsertUnreachable(DT, BUI, FromTN, To); else InsertReachable(DT, BUI, FromTN, ToTN); } // Determines if some existing root becomes reverse-reachable after the // insertion. Rebuilds the whole tree if that situation happens. static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr From, const TreeNodePtr To) { assert(IsPostDom && "This function is only for postdominators"); // Destination node is not attached to the virtual root, so it cannot be a // root. if (!DT.isVirtualRoot(To->getIDom())) return false; auto RIt = llvm::find(DT.Roots, To->getBlock()); if (RIt == DT.Roots.end()) return false; // To is not a root, nothing to update. DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) << " is no longer a root\n\t\tRebuilding the tree!!!\n"); CalculateFromScratch(DT, BUI); return true; } // Updates the set of roots after insertion or deletion. This ensures that // roots are the same when after a series of updates and when the tree would // be built from scratch. static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { assert(IsPostDom && "This function is only for postdominators"); // The tree has only trivial roots -- nothing to update. if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) { return HasForwardSuccessors(N, BUI); })) return; // Recalculate the set of roots. DT.Roots = FindRoots(DT, BUI); for (const NodePtr R : DT.Roots) { const TreeNodePtr TN = DT.getNode(R); // A CFG node was selected as a tree root, but the corresponding tree node // is not connected to the virtual root. This is because the incremental // algorithm does not really know or use the set of roots and can make a // different (implicit) decision about which nodes within an infinite loop // becomes a root. if (DT.isVirtualRoot(TN->getIDom())) { DEBUG(dbgs() << "Root " << BlockNamePrinter(R) << " is not virtual root's child\n" << "The entire tree needs to be rebuilt\n"); // It should be possible to rotate the subtree instead of recalculating // the whole tree, but this situation happens extremely rarely in // practice. CalculateFromScratch(DT, BUI); return; } } } // Handles insertion to a node already in the dominator tree. static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr From, const TreeNodePtr To) { DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) << " -> " << BlockNamePrinter(To->getBlock()) << "\n"); if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; // DT.findNCD expects both pointers to be valid. When From is a virtual // root, then its CFG block pointer is a nullptr, so we have to 'compute' // the NCD manually. const NodePtr NCDBlock = (From->getBlock() && To->getBlock()) ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) : nullptr; assert(NCDBlock || DT.isPostDominator()); const TreeNodePtr NCD = DT.getNode(NCDBlock); assert(NCD); DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n"); const TreeNodePtr ToIDom = To->getIDom(); // Nothing affected -- NCA property holds. // (Based on the lemma 2.5 from the second paper.) if (NCD == To || NCD == ToIDom) return; // Identify and collect affected nodes. InsertionInfo II; DEBUG(dbgs() << "Marking " << BlockNamePrinter(To) << " as affected\n"); II.Affected.insert(To); const unsigned ToLevel = To->getLevel(); DEBUG(dbgs() << "Putting " << BlockNamePrinter(To) << " into a Bucket\n"); II.Bucket.push({ToLevel, To}); while (!II.Bucket.empty()) { const TreeNodePtr CurrentNode = II.Bucket.top().second; II.Bucket.pop(); DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: " << BlockNamePrinter(CurrentNode) << "\n"); II.Visited.insert(CurrentNode); II.AffectedQueue.push_back(CurrentNode); // Discover and collect affected successors of the current node. VisitInsertion(DT, BUI, CurrentNode, CurrentNode->getLevel(), NCD, II); } // Finish by updating immediate dominators and levels. UpdateInsertion(DT, BUI, NCD, II); } // Visits an affected node and collect its affected successors. static void VisitInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr TN, const unsigned RootLevel, const TreeNodePtr NCD, InsertionInfo &II) { const unsigned NCDLevel = NCD->getLevel(); DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << "\n"); SmallVector<TreeNodePtr, 8> Stack = {TN}; assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!"); do { TreeNodePtr Next = Stack.pop_back_val(); for (const NodePtr Succ : ChildrenGetter<IsPostDom>::Get(Next->getBlock(), BUI)) { const TreeNodePtr SuccTN = DT.getNode(Succ); assert(SuccTN && "Unreachable successor found at reachable insertion"); const unsigned SuccLevel = SuccTN->getLevel(); DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) << ", level = " << SuccLevel << "\n"); // Succ dominated by subtree From -- not affected. // (Based on the lemma 2.5 from the second paper.) if (SuccLevel > RootLevel) { DEBUG(dbgs() << "\t\tDominated by subtree From\n"); if (II.Visited.count(SuccTN) != 0) continue; DEBUG(dbgs() << "\t\tMarking visited not affected " << BlockNamePrinter(Succ) << "\n"); II.Visited.insert(SuccTN); II.VisitedNotAffectedQueue.push_back(SuccTN); Stack.push_back(SuccTN); } else if ((SuccLevel > NCDLevel + 1) && II.Affected.count(SuccTN) == 0) { DEBUG(dbgs() << "\t\tMarking affected and adding " << BlockNamePrinter(Succ) << " to a Bucket\n"); II.Affected.insert(SuccTN); II.Bucket.push({SuccLevel, SuccTN}); } } } while (!Stack.empty()); } // Updates immediate dominators and levels after insertion. static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr NCD, InsertionInfo &II) { DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n"); for (const TreeNodePtr TN : II.AffectedQueue) { DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) << ") = " << BlockNamePrinter(NCD) << "\n"); TN->setIDom(NCD); } UpdateLevelsAfterInsertion(II); if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); } static void UpdateLevelsAfterInsertion(InsertionInfo &II) { DEBUG(dbgs() << "Updating levels for visited but not affected nodes\n"); for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) { DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = (" << BlockNamePrinter(TN->getIDom()) << ") " << TN->getIDom()->getLevel() << " + 1\n"); TN->UpdateLevel(); } } // Handles insertion to previously unreachable nodes. static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr From, const NodePtr To) { DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) << " -> (unreachable) " << BlockNamePrinter(To) << "\n"); // Collect discovered edges to already reachable nodes. SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; // Discover and connect nodes that became reachable with the insertion. ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable); DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) << " -> (prev unreachable) " << BlockNamePrinter(To) << "\n"); // Used the discovered edges and inset discovered connecting (incoming) // edges. for (const auto &Edge : DiscoveredEdgesToReachable) { DEBUG(dbgs() << "\tInserting discovered connecting edge " << BlockNamePrinter(Edge.first) << " -> " << BlockNamePrinter(Edge.second) << "\n"); InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second); } } // Connects nodes that become reachable with an insertion. static void ComputeUnreachableDominators( DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, const TreeNodePtr Incoming, SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> &DiscoveredConnectingEdges) { assert(!DT.getNode(Root) && "Root must not be reachable"); // Visit only previously unreachable nodes. auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, NodePtr To) { const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) return true; DiscoveredConnectingEdges.push_back({From, ToTN}); return false; }; SemiNCAInfo SNCA(BUI); SNCA.runDFS(Root, 0, UnreachableDescender, 0); SNCA.runSemiNCA(DT); SNCA.attachNewSubtree(DT, Incoming); DEBUG(dbgs() << "After adding unreachable nodes\n"); } static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr From, const NodePtr To) { assert(From && To && "Cannot disconnect nullptrs"); DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " << BlockNamePrinter(To) << "\n"); #ifndef NDEBUG // Ensure that the edge was in fact deleted from the CFG before informing // the DomTree about it. // The check is O(N), so run it only in debug configuration. auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI); return llvm::find(Successors, SuccCandidate) != Successors.end(); }; (void)IsSuccessor; assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!"); #endif const TreeNodePtr FromTN = DT.getNode(From); // Deletion in an unreachable subtree -- nothing to do. if (!FromTN) return; const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) { DEBUG(dbgs() << "\tTo (" << BlockNamePrinter(To) << ") already unreachable -- there is no edge to delete\n"); return; } const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); const TreeNodePtr NCD = DT.getNode(NCDBlock); // To dominates From -- nothing to do. if (ToTN == NCD) return; DT.DFSInfoValid = false; const TreeNodePtr ToIDom = ToTN->getIDom(); DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " << BlockNamePrinter(ToIDom) << "\n"); // To remains reachable after deletion. // (Based on the caption under Figure 4. from the second paper.) if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN)) DeleteReachable(DT, BUI, FromTN, ToTN); else DeleteUnreachable(DT, BUI, ToTN); if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); } // Handles deletions that leave destination nodes reachable. static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr FromTN, const TreeNodePtr ToTN) { DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) << " -> " << BlockNamePrinter(ToTN) << "\n"); DEBUG(dbgs() << "\tRebuilding subtree\n"); // Find the top of the subtree that needs to be rebuilt. // (Based on the lemma 2.6 from the second paper.) const NodePtr ToIDom = DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); assert(ToIDom || DT.isPostDominator()); const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); assert(ToIDomTN); const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); // Top of the subtree to rebuild is the root node. Rebuild the tree from // scratch. if (!PrevIDomSubTree) { DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); CalculateFromScratch(DT, BUI); return; } // Only visit nodes in the subtree starting at To. const unsigned Level = ToIDomTN->getLevel(); auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { return DT.getNode(To)->getLevel() > Level; }; DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) << "\n"); SemiNCAInfo SNCA(BUI); SNCA.runDFS(ToIDom, 0, DescendBelow, 0); DEBUG(dbgs() << "\tRunning Semi-NCA\n"); SNCA.runSemiNCA(DT, Level); SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); } // Checks if a node has proper support, as defined on the page 3 and later // explained on the page 7 of the second paper. static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr TN) { DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) << "\n"); for (const NodePtr Pred : ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) { DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n"); if (!DT.getNode(Pred)) continue; const NodePtr Support = DT.findNearestCommonDominator(TN->getBlock(), Pred); DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n"); if (Support != TN->getBlock()) { DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) << " is reachable from support " << BlockNamePrinter(Support) << "\n"); return true; } } return false; } // Handle deletions that make destination node unreachable. // (Based on the lemma 2.7 from the second paper.) static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, const TreeNodePtr ToTN) { DEBUG(dbgs() << "Deleting unreachable subtree " << BlockNamePrinter(ToTN) << "\n"); assert(ToTN); assert(ToTN->getBlock()); if (IsPostDom) { // Deletion makes a region reverse-unreachable and creates a new root. // Simulate that by inserting an edge from the virtual root to ToTN and // adding it as a new root. DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n"); DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) << "\n"); DT.Roots.push_back(ToTN->getBlock()); InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN); return; } SmallVector<NodePtr, 16> AffectedQueue; const unsigned Level = ToTN->getLevel(); // Traverse destination node's descendants with greater level in the tree // and collect visited nodes. auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { const TreeNodePtr TN = DT.getNode(To); assert(TN); if (TN->getLevel() > Level) return true; if (llvm::find(AffectedQueue, To) == AffectedQueue.end()) AffectedQueue.push_back(To); return false; }; SemiNCAInfo SNCA(BUI); unsigned LastDFSNum = SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); TreeNodePtr MinNode = ToTN; // Identify the top of the subtree to rebuild by finding the NCD of all // the affected nodes. for (const NodePtr N : AffectedQueue) { const TreeNodePtr TN = DT.getNode(N); const NodePtr NCDBlock = DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); assert(NCDBlock || DT.isPostDominator()); const TreeNodePtr NCD = DT.getNode(NCDBlock); assert(NCD); DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) << " with NCD = " << BlockNamePrinter(NCD) << ", MinNode =" << BlockNamePrinter(MinNode) << "\n"); if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; } // Root reached, rebuild the whole tree from scratch. if (!MinNode->getIDom()) { DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); CalculateFromScratch(DT, BUI); return; } // Erase the unreachable subtree in reverse preorder to process all children // before deleting their parent. for (unsigned i = LastDFSNum; i > 0; --i) { const NodePtr N = SNCA.NumToNode[i]; const TreeNodePtr TN = DT.getNode(N); DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n"); EraseNode(DT, TN); } // The affected subtree start at the To node -- there's no extra work to do. if (MinNode == ToTN) return; DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " << BlockNamePrinter(MinNode) << "\n"); const unsigned MinLevel = MinNode->getLevel(); const TreeNodePtr PrevIDom = MinNode->getIDom(); assert(PrevIDom); SNCA.clear(); // Identify nodes that remain in the affected subtree. auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { const TreeNodePtr ToTN = DT.getNode(To); return ToTN && ToTN->getLevel() > MinLevel; }; SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); DEBUG(dbgs() << "Previous IDom(MinNode) = " << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n"); // Rebuild the remaining part of affected subtree. SNCA.runSemiNCA(DT, MinLevel); SNCA.reattachExistingSubtree(DT, PrevIDom); } // Removes leaf tree nodes from the dominator tree. static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) { assert(TN); assert(TN->getNumChildren() == 0 && "Not a tree leaf"); const TreeNodePtr IDom = TN->getIDom(); assert(IDom); auto ChIt = llvm::find(IDom->Children, TN); assert(ChIt != IDom->Children.end()); std::swap(*ChIt, IDom->Children.back()); IDom->Children.pop_back(); DT.DomTreeNodes.erase(TN->getBlock()); } //~~ //===--------------------- DomTree Batch Updater --------------------------=== //~~ static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) { const size_t NumUpdates = Updates.size(); if (NumUpdates == 0) return; // Take the fast path for a single update and avoid running the batch update // machinery. if (NumUpdates == 1) { const auto &Update = Updates.front(); if (Update.getKind() == UpdateKind::Insert) DT.insertEdge(Update.getFrom(), Update.getTo()); else DT.deleteEdge(Update.getFrom(), Update.getTo()); return; } BatchUpdateInfo BUI; LegalizeUpdates(Updates, BUI.Updates); const size_t NumLegalized = BUI.Updates.size(); BUI.FutureSuccessors.reserve(NumLegalized); BUI.FuturePredecessors.reserve(NumLegalized); // Use the legalized future updates to initialize future successors and // predecessors. Note that these sets will only decrease size over time, as // the next CFG snapshots slowly approach the actual (current) CFG. for (UpdateT &U : BUI.Updates) { BUI.FutureSuccessors[U.getFrom()].insert({U.getTo(), U.getKind()}); BUI.FuturePredecessors[U.getTo()].insert({U.getFrom(), U.getKind()}); } DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n"); DEBUG(if (NumLegalized < 32) for (const auto &U : reverse(BUI.Updates)) dbgs() << '\t' << U << "\n"); DEBUG(dbgs() << "\n"); // If the DominatorTree was recalculated at some point, stop the batch // updates. Full recalculations ignore batch updates and look at the actual // CFG. for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i) ApplyNextUpdate(DT, BUI); } // This function serves double purpose: // a) It removes redundant updates, which makes it easier to reverse-apply // them when traversing CFG. // b) It optimizes away updates that cancel each other out, as the end result // is the same. // // It relies on the property of the incremental updates that says that the // order of updates doesn't matter. This allows us to reorder them and end up // with the exact same DomTree every time. // // Following the same logic, the function doesn't care about the order of // input updates, so it's OK to pass it an unordered sequence of updates, that // doesn't make sense when applied sequentially, eg. performing double // insertions or deletions and then doing an opposite update. // // In the future, it should be possible to schedule updates in way that // minimizes the amount of work needed done during incremental updates. static void LegalizeUpdates(ArrayRef<UpdateT> AllUpdates, SmallVectorImpl<UpdateT> &Result) { DEBUG(dbgs() << "Legalizing " << AllUpdates.size() << " updates\n"); // Count the total number of inserions of each edge. // Each insertion adds 1 and deletion subtracts 1. The end number should be // one of {-1 (deletion), 0 (NOP), +1 (insertion)}. Otherwise, the sequence // of updates contains multiple updates of the same kind and we assert for // that case. SmallDenseMap<std::pair<NodePtr, NodePtr>, int, 4> Operations; Operations.reserve(AllUpdates.size()); for (const auto &U : AllUpdates) { NodePtr From = U.getFrom(); NodePtr To = U.getTo(); if (IsPostDom) std::swap(From, To); // Reverse edge for postdominators. Operations[{From, To}] += (U.getKind() == UpdateKind::Insert ? 1 : -1); } Result.clear(); Result.reserve(Operations.size()); for (auto &Op : Operations) { const int NumInsertions = Op.second; assert(std::abs(NumInsertions) <= 1 && "Unbalanced operations!"); if (NumInsertions == 0) continue; const UpdateKind UK = NumInsertions > 0 ? UpdateKind::Insert : UpdateKind::Delete; Result.push_back({UK, Op.first.first, Op.first.second}); } // Make the order consistent by not relying on pointer values within the // set. Reuse the old Operations map. // In the future, we should sort by something else to minimize the amount // of work needed to perform the series of updates. for (size_t i = 0, e = AllUpdates.size(); i != e; ++i) { const auto &U = AllUpdates[i]; if (!IsPostDom) Operations[{U.getFrom(), U.getTo()}] = int(i); else Operations[{U.getTo(), U.getFrom()}] = int(i); } std::sort(Result.begin(), Result.end(), [&Operations](const UpdateT &A, const UpdateT &B) { return Operations[{A.getFrom(), A.getTo()}] > Operations[{B.getFrom(), B.getTo()}]; }); } static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { assert(!BUI.Updates.empty() && "No updates to apply!"); UpdateT CurrentUpdate = BUI.Updates.pop_back_val(); DEBUG(dbgs() << "Applying update: " << CurrentUpdate << "\n"); // Move to the next snapshot of the CFG by removing the reverse-applied // current update. auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()]; FS.erase({CurrentUpdate.getTo(), CurrentUpdate.getKind()}); if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom()); auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()]; FP.erase({CurrentUpdate.getFrom(), CurrentUpdate.getKind()}); if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo()); if (CurrentUpdate.getKind() == UpdateKind::Insert) InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); else DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); } //~~ //===--------------- DomTree correctness verification ---------------------=== //~~ // Check if the tree has correct roots. A DominatorTree always has a single // root which is the function's entry node. A PostDominatorTree can have // multiple roots - one for each node with no successors and for infinite // loops. bool verifyRoots(const DomTreeT &DT) { if (!DT.Parent && !DT.Roots.empty()) { errs() << "Tree has no parent but has roots!\n"; errs().flush(); return false; } if (!IsPostDom) { if (DT.Roots.empty()) { errs() << "Tree doesn't have a root!\n"; errs().flush(); return false; } if (DT.getRoot() != GetEntryNode(DT)) { errs() << "Tree's root is not its parent's entry node!\n"; errs().flush(); return false; } } RootsT ComputedRoots = FindRoots(DT, nullptr); if (DT.Roots.size() != ComputedRoots.size() || !std::is_permutation(DT.Roots.begin(), DT.Roots.end(), ComputedRoots.begin())) { errs() << "Tree has different roots than freshly computed ones!\n"; errs() << "\tPDT roots: "; for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", "; errs() << "\n\tComputed roots: "; for (const NodePtr N : ComputedRoots) errs() << BlockNamePrinter(N) << ", "; errs() << "\n"; errs().flush(); return false; } return true; } // Checks if the tree contains all reachable nodes in the input graph. bool verifyReachability(const DomTreeT &DT) { clear(); doFullDFSWalk(DT, AlwaysDescend); for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); // Virtual root has a corresponding virtual CFG node. if (DT.isVirtualRoot(TN)) continue; if (NodeToInfo.count(BB) == 0) { errs() << "DomTree node " << BlockNamePrinter(BB) << " not found by DFS walk!\n"; errs().flush(); return false; } } for (const NodePtr N : NumToNode) { if (N && !DT.getNode(N)) { errs() << "CFG node " << BlockNamePrinter(N) << " not found in the DomTree!\n"; errs().flush(); return false; } } return true; } // Check if for every parent with a level L in the tree all of its children // have level L + 1. static bool VerifyLevels(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB) continue; const TreeNodePtr IDom = TN->getIDom(); if (!IDom && TN->getLevel() != 0) { errs() << "Node without an IDom " << BlockNamePrinter(BB) << " has a nonzero level " << TN->getLevel() << "!\n"; errs().flush(); return false; } if (IDom && TN->getLevel() != IDom->getLevel() + 1) { errs() << "Node " << BlockNamePrinter(BB) << " has level " << TN->getLevel() << " while its IDom " << BlockNamePrinter(IDom->getBlock()) << " has level " << IDom->getLevel() << "!\n"; errs().flush(); return false; } } return true; } // Check if the computed DFS numbers are correct. Note that DFS info may not // be valid, and when that is the case, we don't verify the numbers. static bool VerifyDFSNumbers(const DomTreeT &DT) { if (!DT.DFSInfoValid || !DT.Parent) return true; const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0]; const TreeNodePtr Root = DT.getNode(RootBB); auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " << TN->getDFSNumOut() << '}'; }; // Verify the root's DFS In number. Although DFS numbering would also work // if we started from some other value, we assume 0-based numbering. if (Root->getDFSNumIn() != 0) { errs() << "DFSIn number for the tree root is not:\n\t"; PrintNodeAndDFSNums(Root); errs() << '\n'; errs().flush(); return false; } // For each tree node verify if children's DFS numbers cover their parent's // DFS numbers with no gaps. for (const auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr Node = NodeToTN.second.get(); // Handle tree leaves. if (Node->getChildren().empty()) { if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t"; PrintNodeAndDFSNums(Node); errs() << '\n'; errs().flush(); return false; } continue; } // Make a copy and sort it such that it is possible to check if there are // no gaps between DFS numbers of adjacent children. SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); std::sort(Children.begin(), Children.end(), [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); }); auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { assert(FirstCh); errs() << "Incorrect DFS numbers for:\n\tParent "; PrintNodeAndDFSNums(Node); errs() << "\n\tChild "; PrintNodeAndDFSNums(FirstCh); if (SecondCh) { errs() << "\n\tSecond child "; PrintNodeAndDFSNums(SecondCh); } errs() << "\nAll children: "; for (const TreeNodePtr Ch : Children) { PrintNodeAndDFSNums(Ch); errs() << ", "; } errs() << '\n'; errs().flush(); }; if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { PrintChildrenError(Children.front(), nullptr); return false; } if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { PrintChildrenError(Children.back(), nullptr); return false; } for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { PrintChildrenError(Children[i], Children[i + 1]); return false; } } } return true; } // The below routines verify the correctness of the dominator tree relative to // the CFG it's coming from. A tree is a dominator tree iff it has two // properties, called the parent property and the sibling property. Tarjan // and Lengauer prove (but don't explicitly name) the properties as part of // the proofs in their 1972 paper, but the proofs are mostly part of proving // things about semidominators and idoms, and some of them are simply asserted // based on even earlier papers (see, e.g., lemma 2). Some papers refer to // these properties as "valid" and "co-valid". See, e.g., "Dominators, // directed bipolar orders, and independent spanning trees" by Loukas // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification // and Vertex-Disjoint Paths " by the same authors. // A very simple and direct explanation of these properties can be found in // "An Experimental Study of Dynamic Dominators", found at // https://arxiv.org/abs/1604.02711 // The easiest way to think of the parent property is that it's a requirement // of being a dominator. Let's just take immediate dominators. For PARENT to // be an immediate dominator of CHILD, all paths in the CFG must go through // PARENT before they hit CHILD. This implies that if you were to cut PARENT // out of the CFG, there should be no paths to CHILD that are reachable. If // there are, then you now have a path from PARENT to CHILD that goes around // PARENT and still reaches CHILD, which by definition, means PARENT can't be // a dominator of CHILD (let alone an immediate one). // The sibling property is similar. It says that for each pair of sibling // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each // other. If sibling LEFT dominated sibling RIGHT, it means there are no // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of // RIGHT, not a sibling. // It is possible to verify the parent and sibling properties in // linear time, but the algorithms are complex. Instead, we do it in a // straightforward N^2 and N^3 way below, using direct path reachability. // Checks if the tree has the parent property: if for all edges from V to W in // the input graph, such that V is reachable, the parent of W in the tree is // an ancestor of V in the tree. // // This means that if a node gets disconnected from the graph, then all of // the nodes it dominated previously will now become unreachable. bool verifyParentProperty(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB || TN->getChildren().empty()) continue; DEBUG(dbgs() << "Verifying parent property of node " << BlockNamePrinter(TN) << "\n"); clear(); doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { return From != BB && To != BB; }); for (TreeNodePtr Child : TN->getChildren()) if (NodeToInfo.count(Child->getBlock()) != 0) { errs() << "Child " << BlockNamePrinter(Child) << " reachable after its parent " << BlockNamePrinter(BB) << " is removed!\n"; errs().flush(); return false; } } return true; } // Check if the tree has sibling property: if a node V does not dominate a // node W for all siblings V and W in the tree. // // This means that if a node gets disconnected from the graph, then all of its // siblings will now still be reachable. bool verifySiblingProperty(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB || TN->getChildren().empty()) continue; const auto &Siblings = TN->getChildren(); for (const TreeNodePtr N : Siblings) { clear(); NodePtr BBN = N->getBlock(); doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { return From != BBN && To != BBN; }); for (const TreeNodePtr S : Siblings) { if (S == N) continue; if (NodeToInfo.count(S->getBlock()) == 0) { errs() << "Node " << BlockNamePrinter(S) << " not reachable when its sibling " << BlockNamePrinter(N) << " is removed!\n"; errs().flush(); return false; } } } } return true; } }; template <class DomTreeT> void Calculate(DomTreeT &DT) { SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); } template <class DomTreeT> void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To) { if (DT.isPostDominator()) std::swap(From, To); SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); } template <class DomTreeT> void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To) { if (DT.isPostDominator()) std::swap(From, To); SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); } template <class DomTreeT> void ApplyUpdates(DomTreeT &DT, ArrayRef<typename DomTreeT::UpdateType> Updates) { SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates); } template <class DomTreeT> bool Verify(const DomTreeT &DT) { SemiNCAInfo<DomTreeT> SNCA(nullptr); return SNCA.verifyRoots(DT) && SNCA.verifyReachability(DT) && SNCA.VerifyLevels(DT) && SNCA.verifyParentProperty(DT) && SNCA.verifySiblingProperty(DT) && SNCA.VerifyDFSNumbers(DT); } } // namespace DomTreeBuilder } // namespace llvm #undef DEBUG_TYPE #endif