//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// @file /// This file contains the declarations for metadata subclasses. /// They represent the different flavors of metadata that live in LLVM. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_METADATA_H #define LLVM_IR_METADATA_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/None.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Constant.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Value.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <string> #include <type_traits> #include <utility> namespace llvm { class Module; class ModuleSlotTracker; class raw_ostream; class Type; enum LLVMConstants : uint32_t { DEBUG_METADATA_VERSION = 3 // Current debug info version number. }; /// \brief Root of the metadata hierarchy. /// /// This is a root class for typeless data in the IR. class Metadata { friend class ReplaceableMetadataImpl; /// \brief RTTI. const unsigned char SubclassID; protected: /// \brief Active type of storage. enum StorageType { Uniqued, Distinct, Temporary }; /// \brief Storage flag for non-uniqued, otherwise unowned, metadata. unsigned char Storage; // TODO: expose remaining bits to subclasses. unsigned short SubclassData16 = 0; unsigned SubclassData32 = 0; public: enum MetadataKind { #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind, #include "llvm/IR/Metadata.def" }; protected: Metadata(unsigned ID, StorageType Storage) : SubclassID(ID), Storage(Storage) { static_assert(sizeof(*this) == 8, "Metadata fields poorly packed"); } ~Metadata() = default; /// \brief Default handling of a changed operand, which asserts. /// /// If subclasses pass themselves in as owners to a tracking node reference, /// they must provide an implementation of this method. void handleChangedOperand(void *, Metadata *) { llvm_unreachable("Unimplemented in Metadata subclass"); } public: unsigned getMetadataID() const { return SubclassID; } /// \brief User-friendly dump. /// /// If \c M is provided, metadata nodes will be numbered canonically; /// otherwise, pointer addresses are substituted. /// /// Note: this uses an explicit overload instead of default arguments so that /// the nullptr version is easy to call from a debugger. /// /// @{ void dump() const; void dump(const Module *M) const; /// @} /// \brief Print. /// /// Prints definition of \c this. /// /// If \c M is provided, metadata nodes will be numbered canonically; /// otherwise, pointer addresses are substituted. /// @{ void print(raw_ostream &OS, const Module *M = nullptr, bool IsForDebug = false) const; void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr, bool IsForDebug = false) const; /// @} /// \brief Print as operand. /// /// Prints reference of \c this. /// /// If \c M is provided, metadata nodes will be numbered canonically; /// otherwise, pointer addresses are substituted. /// @{ void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const; void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr) const; /// @} }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef) // Specialized opaque metadata conversions. inline Metadata **unwrap(LLVMMetadataRef *MDs) { return reinterpret_cast<Metadata**>(MDs); } #define HANDLE_METADATA(CLASS) class CLASS; #include "llvm/IR/Metadata.def" // Provide specializations of isa so that we don't need definitions of // subclasses to see if the metadata is a subclass. #define HANDLE_METADATA_LEAF(CLASS) \ template <> struct isa_impl<CLASS, Metadata> { \ static inline bool doit(const Metadata &MD) { \ return MD.getMetadataID() == Metadata::CLASS##Kind; \ } \ }; #include "llvm/IR/Metadata.def" inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) { MD.print(OS); return OS; } /// \brief Metadata wrapper in the Value hierarchy. /// /// A member of the \a Value hierarchy to represent a reference to metadata. /// This allows, e.g., instrinsics to have metadata as operands. /// /// Notably, this is the only thing in either hierarchy that is allowed to /// reference \a LocalAsMetadata. class MetadataAsValue : public Value { friend class ReplaceableMetadataImpl; friend class LLVMContextImpl; Metadata *MD; MetadataAsValue(Type *Ty, Metadata *MD); /// \brief Drop use of metadata (during teardown). void dropUse() { MD = nullptr; } public: ~MetadataAsValue(); static MetadataAsValue *get(LLVMContext &Context, Metadata *MD); static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD); Metadata *getMetadata() const { return MD; } static bool classof(const Value *V) { return V->getValueID() == MetadataAsValueVal; } private: void handleChangedMetadata(Metadata *MD); void track(); void untrack(); }; /// \brief API for tracking metadata references through RAUW and deletion. /// /// Shared API for updating \a Metadata pointers in subclasses that support /// RAUW. /// /// This API is not meant to be used directly. See \a TrackingMDRef for a /// user-friendly tracking reference. class MetadataTracking { public: /// \brief Track the reference to metadata. /// /// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD /// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets /// deleted, \c MD will be set to \c nullptr. /// /// If tracking isn't supported, \c *MD will not change. /// /// \return true iff tracking is supported by \c MD. static bool track(Metadata *&MD) { return track(&MD, *MD, static_cast<Metadata *>(nullptr)); } /// \brief Track the reference to metadata for \a Metadata. /// /// As \a track(Metadata*&), but with support for calling back to \c Owner to /// tell it that its operand changed. This could trigger \c Owner being /// re-uniqued. static bool track(void *Ref, Metadata &MD, Metadata &Owner) { return track(Ref, MD, &Owner); } /// \brief Track the reference to metadata for \a MetadataAsValue. /// /// As \a track(Metadata*&), but with support for calling back to \c Owner to /// tell it that its operand changed. This could trigger \c Owner being /// re-uniqued. static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) { return track(Ref, MD, &Owner); } /// \brief Stop tracking a reference to metadata. /// /// Stops \c *MD from tracking \c MD. static void untrack(Metadata *&MD) { untrack(&MD, *MD); } static void untrack(void *Ref, Metadata &MD); /// \brief Move tracking from one reference to another. /// /// Semantically equivalent to \c untrack(MD) followed by \c track(New), /// except that ownership callbacks are maintained. /// /// Note: it is an error if \c *MD does not equal \c New. /// /// \return true iff tracking is supported by \c MD. static bool retrack(Metadata *&MD, Metadata *&New) { return retrack(&MD, *MD, &New); } static bool retrack(void *Ref, Metadata &MD, void *New); /// \brief Check whether metadata is replaceable. static bool isReplaceable(const Metadata &MD); using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>; private: /// \brief Track a reference to metadata for an owner. /// /// Generalized version of tracking. static bool track(void *Ref, Metadata &MD, OwnerTy Owner); }; /// \brief Shared implementation of use-lists for replaceable metadata. /// /// Most metadata cannot be RAUW'ed. This is a shared implementation of /// use-lists and associated API for the two that support it (\a ValueAsMetadata /// and \a TempMDNode). class ReplaceableMetadataImpl { friend class MetadataTracking; public: using OwnerTy = MetadataTracking::OwnerTy; private: LLVMContext &Context; uint64_t NextIndex = 0; SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap; public: ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {} ~ReplaceableMetadataImpl() { assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata"); } LLVMContext &getContext() const { return Context; } /// \brief Replace all uses of this with MD. /// /// Replace all uses of this with \c MD, which is allowed to be null. void replaceAllUsesWith(Metadata *MD); /// \brief Resolve all uses of this. /// /// Resolve all uses of this, turning off RAUW permanently. If \c /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand /// is resolved. void resolveAllUses(bool ResolveUsers = true); private: void addRef(void *Ref, OwnerTy Owner); void dropRef(void *Ref); void moveRef(void *Ref, void *New, const Metadata &MD); /// Lazily construct RAUW support on MD. /// /// If this is an unresolved MDNode, RAUW support will be created on-demand. /// ValueAsMetadata always has RAUW support. static ReplaceableMetadataImpl *getOrCreate(Metadata &MD); /// Get RAUW support on MD, if it exists. static ReplaceableMetadataImpl *getIfExists(Metadata &MD); /// Check whether this node will support RAUW. /// /// Returns \c true unless getOrCreate() would return null. static bool isReplaceable(const Metadata &MD); }; /// \brief Value wrapper in the Metadata hierarchy. /// /// This is a custom value handle that allows other metadata to refer to /// classes in the Value hierarchy. /// /// Because of full uniquing support, each value is only wrapped by a single \a /// ValueAsMetadata object, so the lookup maps are far more efficient than /// those using ValueHandleBase. class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl { friend class ReplaceableMetadataImpl; friend class LLVMContextImpl; Value *V; /// \brief Drop users without RAUW (during teardown). void dropUsers() { ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false); } protected: ValueAsMetadata(unsigned ID, Value *V) : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) { assert(V && "Expected valid value"); } ~ValueAsMetadata() = default; public: static ValueAsMetadata *get(Value *V); static ConstantAsMetadata *getConstant(Value *C) { return cast<ConstantAsMetadata>(get(C)); } static LocalAsMetadata *getLocal(Value *Local) { return cast<LocalAsMetadata>(get(Local)); } static ValueAsMetadata *getIfExists(Value *V); static ConstantAsMetadata *getConstantIfExists(Value *C) { return cast_or_null<ConstantAsMetadata>(getIfExists(C)); } static LocalAsMetadata *getLocalIfExists(Value *Local) { return cast_or_null<LocalAsMetadata>(getIfExists(Local)); } Value *getValue() const { return V; } Type *getType() const { return V->getType(); } LLVMContext &getContext() const { return V->getContext(); } static void handleDeletion(Value *V); static void handleRAUW(Value *From, Value *To); protected: /// \brief Handle collisions after \a Value::replaceAllUsesWith(). /// /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped /// \a Value gets RAUW'ed and the target already exists, this is used to /// merge the two metadata nodes. void replaceAllUsesWith(Metadata *MD) { ReplaceableMetadataImpl::replaceAllUsesWith(MD); } public: static bool classof(const Metadata *MD) { return MD->getMetadataID() == LocalAsMetadataKind || MD->getMetadataID() == ConstantAsMetadataKind; } }; class ConstantAsMetadata : public ValueAsMetadata { friend class ValueAsMetadata; ConstantAsMetadata(Constant *C) : ValueAsMetadata(ConstantAsMetadataKind, C) {} public: static ConstantAsMetadata *get(Constant *C) { return ValueAsMetadata::getConstant(C); } static ConstantAsMetadata *getIfExists(Constant *C) { return ValueAsMetadata::getConstantIfExists(C); } Constant *getValue() const { return cast<Constant>(ValueAsMetadata::getValue()); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == ConstantAsMetadataKind; } }; class LocalAsMetadata : public ValueAsMetadata { friend class ValueAsMetadata; LocalAsMetadata(Value *Local) : ValueAsMetadata(LocalAsMetadataKind, Local) { assert(!isa<Constant>(Local) && "Expected local value"); } public: static LocalAsMetadata *get(Value *Local) { return ValueAsMetadata::getLocal(Local); } static LocalAsMetadata *getIfExists(Value *Local) { return ValueAsMetadata::getLocalIfExists(Local); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == LocalAsMetadataKind; } }; /// \brief Transitional API for extracting constants from Metadata. /// /// This namespace contains transitional functions for metadata that points to /// \a Constants. /// /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode /// operands could refer to any \a Value. There's was a lot of code like this: /// /// \code /// MDNode *N = ...; /// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2)); /// \endcode /// /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and /// cast in the \a Value hierarchy. Besides creating boiler-plate, this /// requires subtle control flow changes. /// /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt, /// so that metadata can refer to numbers without traversing a bridge to the \a /// Value hierarchy. In this final state, the code above would look like this: /// /// \code /// MDNode *N = ...; /// auto *MI = dyn_cast<MDInt>(N->getOperand(2)); /// \endcode /// /// The API in this namespace supports the transition. \a MDInt doesn't exist /// yet, and even once it does, changing each metadata schema to use it is its /// own mini-project. In the meantime this API prevents us from introducing /// complex and bug-prone control flow that will disappear in the end. In /// particular, the above code looks like this: /// /// \code /// MDNode *N = ...; /// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2)); /// \endcode /// /// The full set of provided functions includes: /// /// mdconst::hasa <=> isa /// mdconst::extract <=> cast /// mdconst::extract_or_null <=> cast_or_null /// mdconst::dyn_extract <=> dyn_cast /// mdconst::dyn_extract_or_null <=> dyn_cast_or_null /// /// The target of the cast must be a subclass of \a Constant. namespace mdconst { namespace detail { template <class T> T &make(); template <class T, class Result> struct HasDereference { using Yes = char[1]; using No = char[2]; template <size_t N> struct SFINAE {}; template <class U, class V> static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0); template <class U, class V> static No &hasDereference(...); static const bool value = sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes); }; template <class V, class M> struct IsValidPointer { static const bool value = std::is_base_of<Constant, V>::value && HasDereference<M, const Metadata &>::value; }; template <class V, class M> struct IsValidReference { static const bool value = std::is_base_of<Constant, V>::value && std::is_convertible<M, const Metadata &>::value; }; } // end namespace detail /// \brief Check whether Metadata has a Value. /// /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of /// type \c X. template <class X, class Y> inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type hasa(Y &&MD) { assert(MD && "Null pointer sent into hasa"); if (auto *V = dyn_cast<ConstantAsMetadata>(MD)) return isa<X>(V->getValue()); return false; } template <class X, class Y> inline typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type hasa(Y &MD) { return hasa(&MD); } /// \brief Extract a Value from Metadata. /// /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD. template <class X, class Y> inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type extract(Y &&MD) { return cast<X>(cast<ConstantAsMetadata>(MD)->getValue()); } template <class X, class Y> inline typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type extract(Y &MD) { return extract(&MD); } /// \brief Extract a Value from Metadata, allowing null. /// /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X /// from \c MD, allowing \c MD to be null. template <class X, class Y> inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type extract_or_null(Y &&MD) { if (auto *V = cast_or_null<ConstantAsMetadata>(MD)) return cast<X>(V->getValue()); return nullptr; } /// \brief Extract a Value from Metadata, if any. /// /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a /// Value it does contain is of the wrong subclass. template <class X, class Y> inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type dyn_extract(Y &&MD) { if (auto *V = dyn_cast<ConstantAsMetadata>(MD)) return dyn_cast<X>(V->getValue()); return nullptr; } /// \brief Extract a Value from Metadata, if any, allowing null. /// /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a /// Value it does contain is of the wrong subclass, allowing \c MD to be null. template <class X, class Y> inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type dyn_extract_or_null(Y &&MD) { if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD)) return dyn_cast<X>(V->getValue()); return nullptr; } } // end namespace mdconst //===----------------------------------------------------------------------===// /// \brief A single uniqued string. /// /// These are used to efficiently contain a byte sequence for metadata. /// MDString is always unnamed. class MDString : public Metadata { friend class StringMapEntry<MDString>; StringMapEntry<MDString> *Entry = nullptr; MDString() : Metadata(MDStringKind, Uniqued) {} public: MDString(const MDString &) = delete; MDString &operator=(MDString &&) = delete; MDString &operator=(const MDString &) = delete; static MDString *get(LLVMContext &Context, StringRef Str); static MDString *get(LLVMContext &Context, const char *Str) { return get(Context, Str ? StringRef(Str) : StringRef()); } StringRef getString() const; unsigned getLength() const { return (unsigned)getString().size(); } using iterator = StringRef::iterator; /// \brief Pointer to the first byte of the string. iterator begin() const { return getString().begin(); } /// \brief Pointer to one byte past the end of the string. iterator end() const { return getString().end(); } const unsigned char *bytes_begin() const { return getString().bytes_begin(); } const unsigned char *bytes_end() const { return getString().bytes_end(); } /// \brief Methods for support type inquiry through isa, cast, and dyn_cast. static bool classof(const Metadata *MD) { return MD->getMetadataID() == MDStringKind; } }; /// \brief A collection of metadata nodes that might be associated with a /// memory access used by the alias-analysis infrastructure. struct AAMDNodes { explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr, MDNode *N = nullptr) : TBAA(T), Scope(S), NoAlias(N) {} bool operator==(const AAMDNodes &A) const { return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias; } bool operator!=(const AAMDNodes &A) const { return !(*this == A); } explicit operator bool() const { return TBAA || Scope || NoAlias; } /// \brief The tag for type-based alias analysis. MDNode *TBAA; /// \brief The tag for alias scope specification (used with noalias). MDNode *Scope; /// \brief The tag specifying the noalias scope. MDNode *NoAlias; /// \brief Given two sets of AAMDNodes that apply to the same pointer, /// give the best AAMDNodes that are compatible with both (i.e. a set of /// nodes whose allowable aliasing conclusions are a subset of those /// allowable by both of the inputs). However, for efficiency /// reasons, do not create any new MDNodes. AAMDNodes intersect(const AAMDNodes &Other) { AAMDNodes Result; Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr; Result.Scope = Other.Scope == Scope ? Scope : nullptr; Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr; return Result; } }; // Specialize DenseMapInfo for AAMDNodes. template<> struct DenseMapInfo<AAMDNodes> { static inline AAMDNodes getEmptyKey() { return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(), nullptr, nullptr); } static inline AAMDNodes getTombstoneKey() { return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(), nullptr, nullptr); } static unsigned getHashValue(const AAMDNodes &Val) { return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^ DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^ DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias); } static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) { return LHS == RHS; } }; /// \brief Tracking metadata reference owned by Metadata. /// /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance /// of \a Metadata, which has the option of registering itself for callbacks to /// re-unique itself. /// /// In particular, this is used by \a MDNode. class MDOperand { Metadata *MD = nullptr; public: MDOperand() = default; MDOperand(MDOperand &&) = delete; MDOperand(const MDOperand &) = delete; MDOperand &operator=(MDOperand &&) = delete; MDOperand &operator=(const MDOperand &) = delete; ~MDOperand() { untrack(); } Metadata *get() const { return MD; } operator Metadata *() const { return get(); } Metadata *operator->() const { return get(); } Metadata &operator*() const { return *get(); } void reset() { untrack(); MD = nullptr; } void reset(Metadata *MD, Metadata *Owner) { untrack(); this->MD = MD; track(Owner); } private: void track(Metadata *Owner) { if (MD) { if (Owner) MetadataTracking::track(this, *MD, *Owner); else MetadataTracking::track(MD); } } void untrack() { assert(static_cast<void *>(this) == &MD && "Expected same address"); if (MD) MetadataTracking::untrack(MD); } }; template <> struct simplify_type<MDOperand> { using SimpleType = Metadata *; static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); } }; template <> struct simplify_type<const MDOperand> { using SimpleType = Metadata *; static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); } }; /// \brief Pointer to the context, with optional RAUW support. /// /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext). class ContextAndReplaceableUses { PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr; public: ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {} ContextAndReplaceableUses( std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) : Ptr(ReplaceableUses.release()) { assert(getReplaceableUses() && "Expected non-null replaceable uses"); } ContextAndReplaceableUses() = delete; ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete; ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete; ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete; ContextAndReplaceableUses & operator=(const ContextAndReplaceableUses &) = delete; ~ContextAndReplaceableUses() { delete getReplaceableUses(); } operator LLVMContext &() { return getContext(); } /// \brief Whether this contains RAUW support. bool hasReplaceableUses() const { return Ptr.is<ReplaceableMetadataImpl *>(); } LLVMContext &getContext() const { if (hasReplaceableUses()) return getReplaceableUses()->getContext(); return *Ptr.get<LLVMContext *>(); } ReplaceableMetadataImpl *getReplaceableUses() const { if (hasReplaceableUses()) return Ptr.get<ReplaceableMetadataImpl *>(); return nullptr; } /// Ensure that this has RAUW support, and then return it. ReplaceableMetadataImpl *getOrCreateReplaceableUses() { if (!hasReplaceableUses()) makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext())); return getReplaceableUses(); } /// \brief Assign RAUW support to this. /// /// Make this replaceable, taking ownership of \c ReplaceableUses (which must /// not be null). void makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) { assert(ReplaceableUses && "Expected non-null replaceable uses"); assert(&ReplaceableUses->getContext() == &getContext() && "Expected same context"); delete getReplaceableUses(); Ptr = ReplaceableUses.release(); } /// \brief Drop RAUW support. /// /// Cede ownership of RAUW support, returning it. std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() { assert(hasReplaceableUses() && "Expected to own replaceable uses"); std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses( getReplaceableUses()); Ptr = &ReplaceableUses->getContext(); return ReplaceableUses; } }; struct TempMDNodeDeleter { inline void operator()(MDNode *Node) const; }; #define HANDLE_MDNODE_LEAF(CLASS) \ using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>; #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS) #include "llvm/IR/Metadata.def" /// \brief Metadata node. /// /// Metadata nodes can be uniqued, like constants, or distinct. Temporary /// metadata nodes (with full support for RAUW) can be used to delay uniquing /// until forward references are known. The basic metadata node is an \a /// MDTuple. /// /// There is limited support for RAUW at construction time. At construction /// time, if any operand is a temporary node (or an unresolved uniqued node, /// which indicates a transitive temporary operand), the node itself will be /// unresolved. As soon as all operands become resolved, it will drop RAUW /// support permanently. /// /// If an unresolved node is part of a cycle, \a resolveCycles() needs /// to be called on some member of the cycle once all temporary nodes have been /// replaced. class MDNode : public Metadata { friend class ReplaceableMetadataImpl; friend class LLVMContextImpl; unsigned NumOperands; unsigned NumUnresolved; ContextAndReplaceableUses Context; protected: MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None); ~MDNode() = default; void *operator new(size_t Size, unsigned NumOps); void operator delete(void *Mem); /// \brief Required by std, but never called. void operator delete(void *, unsigned) { llvm_unreachable("Constructor throws?"); } /// \brief Required by std, but never called. void operator delete(void *, unsigned, bool) { llvm_unreachable("Constructor throws?"); } void dropAllReferences(); MDOperand *mutable_begin() { return mutable_end() - NumOperands; } MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); } using mutable_op_range = iterator_range<MDOperand *>; mutable_op_range mutable_operands() { return mutable_op_range(mutable_begin(), mutable_end()); } public: MDNode(const MDNode &) = delete; void operator=(const MDNode &) = delete; void *operator new(size_t) = delete; static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs); static inline MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs); static inline MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs); static inline TempMDTuple getTemporary(LLVMContext &Context, ArrayRef<Metadata *> MDs); /// \brief Create a (temporary) clone of this. TempMDNode clone() const; /// \brief Deallocate a node created by getTemporary. /// /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining /// references will be reset. static void deleteTemporary(MDNode *N); LLVMContext &getContext() const { return Context.getContext(); } /// \brief Replace a specific operand. void replaceOperandWith(unsigned I, Metadata *New); /// \brief Check if node is fully resolved. /// /// If \a isTemporary(), this always returns \c false; if \a isDistinct(), /// this always returns \c true. /// /// If \a isUniqued(), returns \c true if this has already dropped RAUW /// support (because all operands are resolved). /// /// As forward declarations are resolved, their containers should get /// resolved automatically. However, if this (or one of its operands) is /// involved in a cycle, \a resolveCycles() needs to be called explicitly. bool isResolved() const { return !isTemporary() && !NumUnresolved; } bool isUniqued() const { return Storage == Uniqued; } bool isDistinct() const { return Storage == Distinct; } bool isTemporary() const { return Storage == Temporary; } /// \brief RAUW a temporary. /// /// \pre \a isTemporary() must be \c true. void replaceAllUsesWith(Metadata *MD) { assert(isTemporary() && "Expected temporary node"); if (Context.hasReplaceableUses()) Context.getReplaceableUses()->replaceAllUsesWith(MD); } /// \brief Resolve cycles. /// /// Once all forward declarations have been resolved, force cycles to be /// resolved. /// /// \pre No operands (or operands' operands, etc.) have \a isTemporary(). void resolveCycles(); /// \brief Replace a temporary node with a permanent one. /// /// Try to create a uniqued version of \c N -- in place, if possible -- and /// return it. If \c N cannot be uniqued, return a distinct node instead. template <class T> static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) { return cast<T>(N.release()->replaceWithPermanentImpl()); } /// \brief Replace a temporary node with a uniqued one. /// /// Create a uniqued version of \c N -- in place, if possible -- and return /// it. Takes ownership of the temporary node. /// /// \pre N does not self-reference. template <class T> static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) { return cast<T>(N.release()->replaceWithUniquedImpl()); } /// \brief Replace a temporary node with a distinct one. /// /// Create a distinct version of \c N -- in place, if possible -- and return /// it. Takes ownership of the temporary node. template <class T> static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) { return cast<T>(N.release()->replaceWithDistinctImpl()); } private: MDNode *replaceWithPermanentImpl(); MDNode *replaceWithUniquedImpl(); MDNode *replaceWithDistinctImpl(); protected: /// \brief Set an operand. /// /// Sets the operand directly, without worrying about uniquing. void setOperand(unsigned I, Metadata *New); void storeDistinctInContext(); template <class T, class StoreT> static T *storeImpl(T *N, StorageType Storage, StoreT &Store); template <class T> static T *storeImpl(T *N, StorageType Storage); private: void handleChangedOperand(void *Ref, Metadata *New); /// Resolve a unique, unresolved node. void resolve(); /// Drop RAUW support, if any. void dropReplaceableUses(); void resolveAfterOperandChange(Metadata *Old, Metadata *New); void decrementUnresolvedOperandCount(); void countUnresolvedOperands(); /// \brief Mutate this to be "uniqued". /// /// Mutate this so that \a isUniqued(). /// \pre \a isTemporary(). /// \pre already added to uniquing set. void makeUniqued(); /// \brief Mutate this to be "distinct". /// /// Mutate this so that \a isDistinct(). /// \pre \a isTemporary(). void makeDistinct(); void deleteAsSubclass(); MDNode *uniquify(); void eraseFromStore(); template <class NodeTy> struct HasCachedHash; template <class NodeTy> static void dispatchRecalculateHash(NodeTy *N, std::true_type) { N->recalculateHash(); } template <class NodeTy> static void dispatchRecalculateHash(NodeTy *, std::false_type) {} template <class NodeTy> static void dispatchResetHash(NodeTy *N, std::true_type) { N->setHash(0); } template <class NodeTy> static void dispatchResetHash(NodeTy *, std::false_type) {} public: using op_iterator = const MDOperand *; using op_range = iterator_range<op_iterator>; op_iterator op_begin() const { return const_cast<MDNode *>(this)->mutable_begin(); } op_iterator op_end() const { return const_cast<MDNode *>(this)->mutable_end(); } op_range operands() const { return op_range(op_begin(), op_end()); } const MDOperand &getOperand(unsigned I) const { assert(I < NumOperands && "Out of range"); return op_begin()[I]; } /// \brief Return number of MDNode operands. unsigned getNumOperands() const { return NumOperands; } /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Metadata *MD) { switch (MD->getMetadataID()) { default: return false; #define HANDLE_MDNODE_LEAF(CLASS) \ case CLASS##Kind: \ return true; #include "llvm/IR/Metadata.def" } } /// \brief Check whether MDNode is a vtable access. bool isTBAAVtableAccess() const; /// \brief Methods for metadata merging. static MDNode *concatenate(MDNode *A, MDNode *B); static MDNode *intersect(MDNode *A, MDNode *B); static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B); static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B); static MDNode *getMostGenericRange(MDNode *A, MDNode *B); static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B); static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B); }; /// \brief Tuple of metadata. /// /// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by /// default based on their operands. class MDTuple : public MDNode { friend class LLVMContextImpl; friend class MDNode; MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash, ArrayRef<Metadata *> Vals) : MDNode(C, MDTupleKind, Storage, Vals) { setHash(Hash); } ~MDTuple() { dropAllReferences(); } void setHash(unsigned Hash) { SubclassData32 = Hash; } void recalculateHash(); static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, StorageType Storage, bool ShouldCreate = true); TempMDTuple cloneImpl() const { return getTemporary(getContext(), SmallVector<Metadata *, 4>(op_begin(), op_end())); } public: /// \brief Get the hash, if any. unsigned getHash() const { return SubclassData32; } static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return getImpl(Context, MDs, Uniqued); } static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false); } /// \brief Return a distinct node. /// /// Return a distinct node -- i.e., a node that is not uniqued. static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return getImpl(Context, MDs, Distinct); } /// \brief Return a temporary node. /// /// For use in constructing cyclic MDNode structures. A temporary MDNode is /// not uniqued, may be RAUW'd, and must be manually deleted with /// deleteTemporary. static TempMDTuple getTemporary(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return TempMDTuple(getImpl(Context, MDs, Temporary)); } /// \brief Return a (temporary) clone of this. TempMDTuple clone() const { return cloneImpl(); } static bool classof(const Metadata *MD) { return MD->getMetadataID() == MDTupleKind; } }; MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return MDTuple::get(Context, MDs); } MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return MDTuple::getIfExists(Context, MDs); } MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return MDTuple::getDistinct(Context, MDs); } TempMDTuple MDNode::getTemporary(LLVMContext &Context, ArrayRef<Metadata *> MDs) { return MDTuple::getTemporary(Context, MDs); } void TempMDNodeDeleter::operator()(MDNode *Node) const { MDNode::deleteTemporary(Node); } /// \brief Typed iterator through MDNode operands. /// /// An iterator that transforms an \a MDNode::iterator into an iterator over a /// particular Metadata subclass. template <class T> class TypedMDOperandIterator : public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> { MDNode::op_iterator I = nullptr; public: TypedMDOperandIterator() = default; explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {} T *operator*() const { return cast_or_null<T>(*I); } TypedMDOperandIterator &operator++() { ++I; return *this; } TypedMDOperandIterator operator++(int) { TypedMDOperandIterator Temp(*this); ++I; return Temp; } bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; } bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; } }; /// \brief Typed, array-like tuple of metadata. /// /// This is a wrapper for \a MDTuple that makes it act like an array holding a /// particular type of metadata. template <class T> class MDTupleTypedArrayWrapper { const MDTuple *N = nullptr; public: MDTupleTypedArrayWrapper() = default; MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {} template <class U> MDTupleTypedArrayWrapper( const MDTupleTypedArrayWrapper<U> &Other, typename std::enable_if<std::is_convertible<U *, T *>::value>::type * = nullptr) : N(Other.get()) {} template <class U> explicit MDTupleTypedArrayWrapper( const MDTupleTypedArrayWrapper<U> &Other, typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * = nullptr) : N(Other.get()) {} explicit operator bool() const { return get(); } explicit operator MDTuple *() const { return get(); } MDTuple *get() const { return const_cast<MDTuple *>(N); } MDTuple *operator->() const { return get(); } MDTuple &operator*() const { return *get(); } // FIXME: Fix callers and remove condition on N. unsigned size() const { return N ? N->getNumOperands() : 0u; } bool empty() const { return N ? N->getNumOperands() == 0 : true; } T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); } // FIXME: Fix callers and remove condition on N. using iterator = TypedMDOperandIterator<T>; iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); } iterator end() const { return N ? iterator(N->op_end()) : iterator(); } }; #define HANDLE_METADATA(CLASS) \ using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>; #include "llvm/IR/Metadata.def" /// Placeholder metadata for operands of distinct MDNodes. /// /// This is a lightweight placeholder for an operand of a distinct node. It's /// purpose is to help track forward references when creating a distinct node. /// This allows distinct nodes involved in a cycle to be constructed before /// their operands without requiring a heavyweight temporary node with /// full-blown RAUW support. /// /// Each placeholder supports only a single MDNode user. Clients should pass /// an ID, retrieved via \a getID(), to indicate the "real" operand that this /// should be replaced with. /// /// While it would be possible to implement move operators, they would be /// fairly expensive. Leave them unimplemented to discourage their use /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.). class DistinctMDOperandPlaceholder : public Metadata { friend class MetadataTracking; Metadata **Use = nullptr; public: explicit DistinctMDOperandPlaceholder(unsigned ID) : Metadata(DistinctMDOperandPlaceholderKind, Distinct) { SubclassData32 = ID; } DistinctMDOperandPlaceholder() = delete; DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete; DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete; ~DistinctMDOperandPlaceholder() { if (Use) *Use = nullptr; } unsigned getID() const { return SubclassData32; } /// Replace the use of this with MD. void replaceUseWith(Metadata *MD) { if (!Use) return; *Use = MD; if (*Use) MetadataTracking::track(*Use); Metadata *T = cast<Metadata>(this); MetadataTracking::untrack(T); assert(!Use && "Use is still being tracked despite being untracked!"); } }; //===----------------------------------------------------------------------===// /// \brief A tuple of MDNodes. /// /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong /// to modules, have names, and contain lists of MDNodes. /// /// TODO: Inherit from Metadata. class NamedMDNode : public ilist_node<NamedMDNode> { friend class LLVMContextImpl; friend class Module; std::string Name; Module *Parent = nullptr; void *Operands; // SmallVector<TrackingMDRef, 4> void setParent(Module *M) { Parent = M; } explicit NamedMDNode(const Twine &N); template<class T1, class T2> class op_iterator_impl : public std::iterator<std::bidirectional_iterator_tag, T2> { friend class NamedMDNode; const NamedMDNode *Node = nullptr; unsigned Idx = 0; op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {} public: op_iterator_impl() = default; bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; } bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; } op_iterator_impl &operator++() { ++Idx; return *this; } op_iterator_impl operator++(int) { op_iterator_impl tmp(*this); operator++(); return tmp; } op_iterator_impl &operator--() { --Idx; return *this; } op_iterator_impl operator--(int) { op_iterator_impl tmp(*this); operator--(); return tmp; } T1 operator*() const { return Node->getOperand(Idx); } }; public: NamedMDNode(const NamedMDNode &) = delete; ~NamedMDNode(); /// \brief Drop all references and remove the node from parent module. void eraseFromParent(); /// Remove all uses and clear node vector. void dropAllReferences() { clearOperands(); } /// Drop all references to this node's operands. void clearOperands(); /// \brief Get the module that holds this named metadata collection. inline Module *getParent() { return Parent; } inline const Module *getParent() const { return Parent; } MDNode *getOperand(unsigned i) const; unsigned getNumOperands() const; void addOperand(MDNode *M); void setOperand(unsigned I, MDNode *New); StringRef getName() const; void print(raw_ostream &ROS, bool IsForDebug = false) const; void print(raw_ostream &ROS, ModuleSlotTracker &MST, bool IsForDebug = false) const; void dump() const; // --------------------------------------------------------------------------- // Operand Iterator interface... // using op_iterator = op_iterator_impl<MDNode *, MDNode>; op_iterator op_begin() { return op_iterator(this, 0); } op_iterator op_end() { return op_iterator(this, getNumOperands()); } using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>; const_op_iterator op_begin() const { return const_op_iterator(this, 0); } const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); } inline iterator_range<op_iterator> operands() { return make_range(op_begin(), op_end()); } inline iterator_range<const_op_iterator> operands() const { return make_range(op_begin(), op_end()); } }; } // end namespace llvm #endif // LLVM_IR_METADATA_H