//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Reduction Rules. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H #define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H #include "Graph.h" #include "Math.h" #include "Solution.h" #include <cassert> #include <limits> namespace llvm { namespace PBQP { /// \brief Reduce a node of degree one. /// /// Propagate costs from the given node, which must be of degree one, to its /// neighbor. Notify the problem domain. template <typename GraphT> void applyR1(GraphT &G, typename GraphT::NodeId NId) { using NodeId = typename GraphT::NodeId; using EdgeId = typename GraphT::EdgeId; using Vector = typename GraphT::Vector; using Matrix = typename GraphT::Matrix; using RawVector = typename GraphT::RawVector; assert(G.getNodeDegree(NId) == 1 && "R1 applied to node with degree != 1."); EdgeId EId = *G.adjEdgeIds(NId).begin(); NodeId MId = G.getEdgeOtherNodeId(EId, NId); const Matrix &ECosts = G.getEdgeCosts(EId); const Vector &XCosts = G.getNodeCosts(NId); RawVector YCosts = G.getNodeCosts(MId); // Duplicate a little to avoid transposing matrices. if (NId == G.getEdgeNode1Id(EId)) { for (unsigned j = 0; j < YCosts.getLength(); ++j) { PBQPNum Min = ECosts[0][j] + XCosts[0]; for (unsigned i = 1; i < XCosts.getLength(); ++i) { PBQPNum C = ECosts[i][j] + XCosts[i]; if (C < Min) Min = C; } YCosts[j] += Min; } } else { for (unsigned i = 0; i < YCosts.getLength(); ++i) { PBQPNum Min = ECosts[i][0] + XCosts[0]; for (unsigned j = 1; j < XCosts.getLength(); ++j) { PBQPNum C = ECosts[i][j] + XCosts[j]; if (C < Min) Min = C; } YCosts[i] += Min; } } G.setNodeCosts(MId, YCosts); G.disconnectEdge(EId, MId); } template <typename GraphT> void applyR2(GraphT &G, typename GraphT::NodeId NId) { using NodeId = typename GraphT::NodeId; using EdgeId = typename GraphT::EdgeId; using Vector = typename GraphT::Vector; using Matrix = typename GraphT::Matrix; using RawMatrix = typename GraphT::RawMatrix; assert(G.getNodeDegree(NId) == 2 && "R2 applied to node with degree != 2."); const Vector &XCosts = G.getNodeCosts(NId); typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin(); EdgeId YXEId = *AEItr, ZXEId = *(++AEItr); NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId), ZNId = G.getEdgeOtherNodeId(ZXEId, NId); bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId), FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId); const Matrix *YXECosts = FlipEdge1 ? new Matrix(G.getEdgeCosts(YXEId).transpose()) : &G.getEdgeCosts(YXEId); const Matrix *ZXECosts = FlipEdge2 ? new Matrix(G.getEdgeCosts(ZXEId).transpose()) : &G.getEdgeCosts(ZXEId); unsigned XLen = XCosts.getLength(), YLen = YXECosts->getRows(), ZLen = ZXECosts->getRows(); RawMatrix Delta(YLen, ZLen); for (unsigned i = 0; i < YLen; ++i) { for (unsigned j = 0; j < ZLen; ++j) { PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0]; for (unsigned k = 1; k < XLen; ++k) { PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k]; if (C < Min) { Min = C; } } Delta[i][j] = Min; } } if (FlipEdge1) delete YXECosts; if (FlipEdge2) delete ZXECosts; EdgeId YZEId = G.findEdge(YNId, ZNId); if (YZEId == G.invalidEdgeId()) { YZEId = G.addEdge(YNId, ZNId, Delta); } else { const Matrix &YZECosts = G.getEdgeCosts(YZEId); if (YNId == G.getEdgeNode1Id(YZEId)) { G.updateEdgeCosts(YZEId, Delta + YZECosts); } else { G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts); } } G.disconnectEdge(YXEId, YNId); G.disconnectEdge(ZXEId, ZNId); // TODO: Try to normalize newly added/modified edge. } #ifndef NDEBUG // Does this Cost vector have any register options ? template <typename VectorT> bool hasRegisterOptions(const VectorT &V) { unsigned VL = V.getLength(); // An empty or spill only cost vector does not provide any register option. if (VL <= 1) return false; // If there are registers in the cost vector, but all of them have infinite // costs, then ... there is no available register. for (unsigned i = 1; i < VL; ++i) if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity()) return true; return false; } #endif // \brief Find a solution to a fully reduced graph by backpropagation. // // Given a graph and a reduction order, pop each node from the reduction // order and greedily compute a minimum solution based on the node costs, and // the dependent costs due to previously solved nodes. // // Note - This does not return the graph to its original (pre-reduction) // state: the existing solvers destructively alter the node and edge // costs. Given that, the backpropagate function doesn't attempt to // replace the edges either, but leaves the graph in its reduced // state. template <typename GraphT, typename StackT> Solution backpropagate(GraphT& G, StackT stack) { using NodeId = GraphBase::NodeId; using Matrix = typename GraphT::Matrix; using RawVector = typename GraphT::RawVector; Solution s; while (!stack.empty()) { NodeId NId = stack.back(); stack.pop_back(); RawVector v = G.getNodeCosts(NId); #ifndef NDEBUG // Although a conservatively allocatable node can be allocated to a register, // spilling it may provide a lower cost solution. Assert here that spilling // is done by choice, not because there were no register available. if (G.getNodeMetadata(NId).wasConservativelyAllocatable()) assert(hasRegisterOptions(v) && "A conservatively allocatable node " "must have available register options"); #endif for (auto EId : G.adjEdgeIds(NId)) { const Matrix& edgeCosts = G.getEdgeCosts(EId); if (NId == G.getEdgeNode1Id(EId)) { NodeId mId = G.getEdgeNode2Id(EId); v += edgeCosts.getColAsVector(s.getSelection(mId)); } else { NodeId mId = G.getEdgeNode1Id(EId); v += edgeCosts.getRowAsVector(s.getSelection(mId)); } } s.setSelection(NId, v.minIndex()); } return s; } } // end namespace PBQP } // end namespace llvm #endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H