/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsContext.h" #include "rsAllocation.h" #include "rs_hal.h" #ifndef RS_COMPATIBILITY_LIB #include "rsGrallocConsumer.h" #endif namespace android { namespace renderscript { Allocation::Allocation(Context *rsc, const Type *type, uint32_t usages, RsAllocationMipmapControl mc, void * ptr) : ObjectBase(rsc) { memset(&mHal, 0, sizeof(mHal)); mHal.state.mipmapControl = RS_ALLOCATION_MIPMAP_NONE; mHal.state.usageFlags = usages; mHal.state.mipmapControl = mc; mHal.state.userProvidedPtr = ptr; setType(type); updateCache(); } Allocation::Allocation(Context *rsc, const Allocation *alloc, const Type *type) : ObjectBase(rsc) { memset(&mHal, 0, sizeof(mHal)); mHal.state.baseAlloc = alloc; mHal.state.usageFlags = alloc->mHal.state.usageFlags; mHal.state.mipmapControl = RS_ALLOCATION_MIPMAP_NONE; setType(type); updateCache(); } void Allocation::operator delete(void* ptr) { if (ptr) { Allocation *a = (Allocation*) ptr; a->getContext()->mHal.funcs.freeRuntimeMem(ptr); } } Allocation * Allocation::createAllocationStrided(Context *rsc, const Type *type, uint32_t usages, RsAllocationMipmapControl mc, void * ptr, size_t requiredAlignment) { // Allocation objects must use allocator specified by the driver void* allocMem = rsc->mHal.funcs.allocRuntimeMem(sizeof(Allocation), 0); if (!allocMem) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Couldn't allocate memory for Allocation"); return nullptr; } bool success = false; Allocation *a = nullptr; if (usages & RS_ALLOCATION_USAGE_OEM) { if (rsc->mHal.funcs.allocation.initOem != nullptr) { a = new (allocMem) Allocation(rsc, type, usages, mc, nullptr); success = rsc->mHal.funcs.allocation.initOem(rsc, a, type->getElement()->getHasReferences(), ptr); } else { rsc->setError(RS_ERROR_FATAL_DRIVER, "Allocation Init called with USAGE_OEM but driver does not support it"); return nullptr; } #ifdef RS_COMPATIBILITY_LIB } else if (usages & RS_ALLOCATION_USAGE_INCREMENTAL_SUPPORT){ a = new (allocMem) Allocation(rsc, type, usages, mc, ptr); success = rsc->mHal.funcs.allocation.initStrided(rsc, a, type->getElement()->getHasReferences(), requiredAlignment); #endif } else { a = new (allocMem) Allocation(rsc, type, usages, mc, ptr); success = rsc->mHal.funcs.allocation.init(rsc, a, type->getElement()->getHasReferences()); } if (!success) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Allocation::Allocation, alloc failure"); delete a; return nullptr; } return a; } Allocation * Allocation::createAllocation(Context *rsc, const Type *type, uint32_t usages, RsAllocationMipmapControl mc, void * ptr) { return Allocation::createAllocationStrided(rsc, type, usages, mc, ptr, kMinimumRSAlignment); } Allocation * Allocation::createAdapter(Context *rsc, const Allocation *alloc, const Type *type) { // Allocation objects must use allocator specified by the driver void* allocMem = rsc->mHal.funcs.allocRuntimeMem(sizeof(Allocation), 0); if (!allocMem) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Couldn't allocate memory for Allocation"); return nullptr; } Allocation *a = new (allocMem) Allocation(rsc, alloc, type); if (!rsc->mHal.funcs.allocation.initAdapter(rsc, a)) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Allocation::Allocation, alloc failure"); delete a; return nullptr; } return a; } void Allocation::adapterOffset(Context *rsc, const uint32_t *offsets, size_t len) { if (len >= sizeof(uint32_t) * 9) { mHal.state.originX = offsets[0]; mHal.state.originY = offsets[1]; mHal.state.originZ = offsets[2]; mHal.state.originLOD = offsets[3]; mHal.state.originFace = offsets[4]; mHal.state.originArray[0] = offsets[5]; mHal.state.originArray[1] = offsets[6]; mHal.state.originArray[2] = offsets[7]; mHal.state.originArray[3] = offsets[8]; } rsc->mHal.funcs.allocation.adapterOffset(rsc, this); } void Allocation::updateCache() { const Type *type = mHal.state.type; mHal.state.yuv = type->getDimYuv(); mHal.state.hasFaces = type->getDimFaces(); mHal.state.hasMipmaps = type->getDimLOD(); mHal.state.elementSizeBytes = type->getElementSizeBytes(); mHal.state.hasReferences = mHal.state.type->getElement()->getHasReferences(); } Allocation::~Allocation() { #ifndef RS_COMPATIBILITY_LIB if (mGrallocConsumer) { mGrallocConsumer->releaseIdx(mCurrentIdx); if (!mGrallocConsumer->isActive()) { delete mGrallocConsumer; } mGrallocConsumer = nullptr; } #endif freeChildrenUnlocked(); mRSC->mHal.funcs.allocation.destroy(mRSC, this); } void Allocation::syncAll(Context *rsc, RsAllocationUsageType src) { rsc->mHal.funcs.allocation.syncAll(rsc, this, src); } void * Allocation::getPointer(const Context *rsc, uint32_t lod, RsAllocationCubemapFace face, uint32_t z, uint32_t array, size_t *stride) { if ((lod >= mHal.drvState.lodCount) || (z && (z >= mHal.drvState.lod[lod].dimZ)) || ((face != RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X) && !mHal.state.hasFaces) || (array != 0)) { return nullptr; } if (mRSC->mHal.funcs.allocation.getPointer != nullptr) { // Notify the driver, if present that the user is mapping the buffer mRSC->mHal.funcs.allocation.getPointer(rsc, this, lod, face, z, array); } size_t s = 0; if ((stride != nullptr) && mHal.drvState.lod[0].dimY) { *stride = mHal.drvState.lod[lod].stride; } return mHal.drvState.lod[lod].mallocPtr; } void Allocation::data(Context *rsc, uint32_t xoff, uint32_t lod, uint32_t count, const void *data, size_t sizeBytes) { const size_t eSize = mHal.state.type->getElementSizeBytes(); if ((count * eSize) != sizeBytes) { char buf[1024]; snprintf(buf, sizeof(buf), "Allocation::subData called with mismatched size expected %zu, got %zu", (count * eSize), sizeBytes); rsc->setError(RS_ERROR_BAD_VALUE, buf); mHal.state.type->dumpLOGV("type info"); return; } rsc->mHal.funcs.allocation.data1D(rsc, this, xoff, lod, count, data, sizeBytes); sendDirty(rsc); } void Allocation::data(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) { rsc->mHal.funcs.allocation.data2D(rsc, this, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); sendDirty(rsc); } void Allocation::data(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes, size_t stride) { rsc->mHal.funcs.allocation.data3D(rsc, this, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); sendDirty(rsc); } void Allocation::read(Context *rsc, uint32_t xoff, uint32_t lod, uint32_t count, void *data, size_t sizeBytes) { const size_t eSize = mHal.state.type->getElementSizeBytes(); if ((count * eSize) != sizeBytes) { char buf[1024]; snprintf(buf, sizeof(buf), "Allocation::read called with mismatched size expected %zu, got %zu", (count * eSize), sizeBytes); rsc->setError(RS_ERROR_BAD_VALUE, buf); mHal.state.type->dumpLOGV("type info"); return; } rsc->mHal.funcs.allocation.read1D(rsc, this, xoff, lod, count, data, sizeBytes); } void Allocation::read(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, void *data, size_t sizeBytes, size_t stride) { const size_t eSize = mHal.state.elementSizeBytes; const size_t lineSize = eSize * w; if (!stride) { stride = lineSize; } else { if ((lineSize * h) != sizeBytes) { char buf[1024]; snprintf(buf, sizeof(buf), "Allocation size mismatch, expected %zu, got %zu", (lineSize * h), sizeBytes); rsc->setError(RS_ERROR_BAD_VALUE, buf); return; } } rsc->mHal.funcs.allocation.read2D(rsc, this, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); } void Allocation::read(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes, size_t stride) { const size_t eSize = mHal.state.elementSizeBytes; const size_t lineSize = eSize * w; if (!stride) { stride = lineSize; } rsc->mHal.funcs.allocation.read3D(rsc, this, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); } void Allocation::elementData(Context *rsc, uint32_t x, uint32_t y, uint32_t z, const void *data, uint32_t cIdx, size_t sizeBytes) { if (x >= mHal.drvState.lod[0].dimX) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData X offset out of range."); return; } if (y > 0 && y >= mHal.drvState.lod[0].dimY) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Y offset out of range."); return; } if (z > 0 && z >= mHal.drvState.lod[0].dimZ) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Z offset out of range."); return; } if (cIdx >= mHal.state.type->getElement()->getFieldCount()) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData component out of range."); return; } const Element * e = mHal.state.type->getElement()->getField(cIdx); uint32_t elemArraySize = mHal.state.type->getElement()->getFieldArraySize(cIdx); if (sizeBytes != e->getSizeBytes() * elemArraySize) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData bad size."); return; } rsc->mHal.funcs.allocation.elementData(rsc, this, x, y, z, data, cIdx, sizeBytes); sendDirty(rsc); } void Allocation::elementRead(Context *rsc, uint32_t x, uint32_t y, uint32_t z, void *data, uint32_t cIdx, size_t sizeBytes) { if (x >= mHal.drvState.lod[0].dimX) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData X offset out of range."); return; } if (y > 0 && y >= mHal.drvState.lod[0].dimY) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Y offset out of range."); return; } if (z > 0 && z >= mHal.drvState.lod[0].dimZ) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Z offset out of range."); return; } if (cIdx >= mHal.state.type->getElement()->getFieldCount()) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData component out of range."); return; } const Element * e = mHal.state.type->getElement()->getField(cIdx); uint32_t elemArraySize = mHal.state.type->getElement()->getFieldArraySize(cIdx); if (sizeBytes != e->getSizeBytes() * elemArraySize) { rsc->setError(RS_ERROR_BAD_VALUE, "subElementData bad size."); return; } rsc->mHal.funcs.allocation.elementRead(rsc, this, x, y, z, data, cIdx, sizeBytes); } void Allocation::addProgramToDirty(const Program *p) { mToDirtyList.push_back(p); } void Allocation::removeProgramToDirty(const Program *p) { for (size_t ct=0; ct < mToDirtyList.size(); ct++) { if (mToDirtyList[ct] == p) { mToDirtyList.erase(mToDirtyList.begin() + ct); return; } } rsAssert(0); } void Allocation::dumpLOGV(const char *prefix) const { ObjectBase::dumpLOGV(prefix); char buf[1024]; if ((strlen(prefix) + 10) < sizeof(buf)) { snprintf(buf, sizeof(buf), "%s type ", prefix); if (mHal.state.type) { mHal.state.type->dumpLOGV(buf); } } ALOGV("%s allocation ptr=%p mUsageFlags=0x04%x, mMipmapControl=0x%04x", prefix, mHal.drvState.lod[0].mallocPtr, mHal.state.usageFlags, mHal.state.mipmapControl); } uint32_t Allocation::getPackedSize() const { uint32_t numItems = mHal.state.type->getCellCount(); return numItems * mHal.state.type->getElement()->getSizeBytesUnpadded(); } void Allocation::writePackedData(Context *rsc, const Type *type, uint8_t *dst, const uint8_t *src, bool dstPadded) { const Element *elem = type->getElement(); uint32_t unpaddedBytes = elem->getSizeBytesUnpadded(); uint32_t paddedBytes = elem->getSizeBytes(); uint32_t numItems = type->getPackedSizeBytes() / paddedBytes; uint32_t srcInc = !dstPadded ? paddedBytes : unpaddedBytes; uint32_t dstInc = dstPadded ? paddedBytes : unpaddedBytes; // no sub-elements uint32_t fieldCount = elem->getFieldCount(); if (fieldCount == 0) { for (uint32_t i = 0; i < numItems; i ++) { memcpy(dst, src, unpaddedBytes); src += srcInc; dst += dstInc; } return; } // Cache offsets uint32_t *offsetsPadded = new uint32_t[fieldCount]; uint32_t *offsetsUnpadded = new uint32_t[fieldCount]; uint32_t *sizeUnpadded = new uint32_t[fieldCount]; for (uint32_t i = 0; i < fieldCount; i++) { offsetsPadded[i] = elem->getFieldOffsetBytes(i); offsetsUnpadded[i] = elem->getFieldOffsetBytesUnpadded(i); sizeUnpadded[i] = elem->getField(i)->getSizeBytesUnpadded(); } uint32_t *srcOffsets = !dstPadded ? offsetsPadded : offsetsUnpadded; uint32_t *dstOffsets = dstPadded ? offsetsPadded : offsetsUnpadded; // complex elements, need to copy subelem after subelem for (uint32_t i = 0; i < numItems; i ++) { for (uint32_t fI = 0; fI < fieldCount; fI++) { memcpy(dst + dstOffsets[fI], src + srcOffsets[fI], sizeUnpadded[fI]); } src += srcInc; dst += dstInc; } delete[] offsetsPadded; delete[] offsetsUnpadded; delete[] sizeUnpadded; } void Allocation::unpackVec3Allocation(Context *rsc, const void *data, size_t dataSize) { const uint8_t *src = (const uint8_t*)data; uint8_t *dst = (uint8_t *)rsc->mHal.funcs.allocation.lock1D(rsc, this); writePackedData(rsc, getType(), dst, src, true); rsc->mHal.funcs.allocation.unlock1D(rsc, this); } void Allocation::packVec3Allocation(Context *rsc, OStream *stream) const { uint32_t unpaddedBytes = getType()->getElement()->getSizeBytesUnpadded(); uint32_t numItems = mHal.state.type->getCellCount(); const uint8_t *src = (const uint8_t*)rsc->mHal.funcs.allocation.lock1D(rsc, this); uint8_t *dst = new uint8_t[numItems * unpaddedBytes]; writePackedData(rsc, getType(), dst, src, false); stream->addByteArray(dst, getPackedSize()); delete[] dst; rsc->mHal.funcs.allocation.unlock1D(rsc, this); } void Allocation::serialize(Context *rsc, OStream *stream) const { // Need to identify ourselves stream->addU32((uint32_t)getClassId()); stream->addString(getName()); // First thing we need to serialize is the type object since it will be needed // to initialize the class mHal.state.type->serialize(rsc, stream); uint32_t dataSize = mHal.state.type->getPackedSizeBytes(); // 3 element vectors are padded to 4 in memory, but padding isn't serialized uint32_t packedSize = getPackedSize(); // Write how much data we are storing stream->addU32(packedSize); if (dataSize == packedSize) { // Now write the data stream->addByteArray(rsc->mHal.funcs.allocation.lock1D(rsc, this), dataSize); rsc->mHal.funcs.allocation.unlock1D(rsc, this); } else { // Now write the data packVec3Allocation(rsc, stream); } } Allocation *Allocation::createFromStream(Context *rsc, IStream *stream) { // First make sure we are reading the correct object RsA3DClassID classID = (RsA3DClassID)stream->loadU32(); if (classID != RS_A3D_CLASS_ID_ALLOCATION) { rsc->setError(RS_ERROR_FATAL_DRIVER, "allocation loading failed due to corrupt file. (invalid id)\n"); return nullptr; } const char *name = stream->loadString(); Type *type = Type::createFromStream(rsc, stream); if (!type) { return nullptr; } type->compute(); Allocation *alloc = Allocation::createAllocation(rsc, type, RS_ALLOCATION_USAGE_SCRIPT); type->decUserRef(); // Number of bytes we wrote out for this allocation uint32_t dataSize = stream->loadU32(); // 3 element vectors are padded to 4 in memory, but padding isn't serialized uint32_t packedSize = alloc->getPackedSize(); if (dataSize != type->getPackedSizeBytes() && dataSize != packedSize) { rsc->setError(RS_ERROR_FATAL_DRIVER, "allocation loading failed due to corrupt file. (invalid size)\n"); ObjectBase::checkDelete(alloc); ObjectBase::checkDelete(type); return nullptr; } alloc->assignName(name); if (dataSize == type->getPackedSizeBytes()) { uint32_t count = dataSize / type->getElementSizeBytes(); // Read in all of our allocation data alloc->data(rsc, 0, 0, count, stream->getPtr() + stream->getPos(), dataSize); } else { alloc->unpackVec3Allocation(rsc, stream->getPtr() + stream->getPos(), dataSize); } stream->reset(stream->getPos() + dataSize); return alloc; } void Allocation::sendDirty(const Context *rsc) const { #ifndef RS_COMPATIBILITY_LIB for (size_t ct=0; ct < mToDirtyList.size(); ct++) { mToDirtyList[ct]->forceDirty(); } #endif mRSC->mHal.funcs.allocation.markDirty(rsc, this); } void Allocation::incRefs(const void *ptr, size_t ct, size_t startOff) const { mHal.state.type->incRefs(ptr, ct, startOff); } void Allocation::decRefs(const void *ptr, size_t ct, size_t startOff) const { if (!mHal.state.hasReferences || !getIsScript()) { return; } mHal.state.type->decRefs(ptr, ct, startOff); } void Allocation::callUpdateCacheObject(const Context *rsc, void *dstObj) const { if (rsc->mHal.funcs.allocation.updateCachedObject != nullptr) { rsc->mHal.funcs.allocation.updateCachedObject(rsc, this, (rs_allocation *)dstObj); } else { *((const void **)dstObj) = this; } } void Allocation::freeChildrenUnlocked () { void *ptr = mRSC->mHal.funcs.allocation.lock1D(mRSC, this); decRefs(ptr, mHal.state.type->getCellCount(), 0); mRSC->mHal.funcs.allocation.unlock1D(mRSC, this); } bool Allocation::freeChildren() { if (mHal.state.hasReferences) { incSysRef(); freeChildrenUnlocked(); return decSysRef(); } return false; } void Allocation::copyRange1D(Context *rsc, const Allocation *src, int32_t srcOff, int32_t destOff, int32_t len) { } void Allocation::resize1D(Context *rsc, uint32_t dimX) { uint32_t oldDimX = mHal.drvState.lod[0].dimX; if (dimX == oldDimX) { return; } ObjectBaseRef<Type> t = mHal.state.type->cloneAndResize1D(rsc, dimX); if (dimX < oldDimX) { decRefs(rsc->mHal.funcs.allocation.lock1D(rsc, this), oldDimX - dimX, dimX); rsc->mHal.funcs.allocation.unlock1D(rsc, this); } rsc->mHal.funcs.allocation.resize(rsc, this, t.get(), mHal.state.hasReferences); setType(t.get()); updateCache(); } void Allocation::resize2D(Context *rsc, uint32_t dimX, uint32_t dimY) { rsc->setError(RS_ERROR_FATAL_DRIVER, "resize2d not implemented"); } void Allocation::setupGrallocConsumer(const Context *rsc, uint32_t numAlloc) { #ifndef RS_COMPATIBILITY_LIB // Configure GrallocConsumer to be in asynchronous mode if (numAlloc > MAX_NUM_ALLOC || numAlloc <= 0) { rsc->setError(RS_ERROR_FATAL_DRIVER, "resize2d not implemented"); return; } mGrallocConsumer = new GrallocConsumer(rsc, this, numAlloc); mCurrentIdx = 0; mBufferQueueInited = true; #endif } void * Allocation::getSurface(const Context *rsc) { #ifndef RS_COMPATIBILITY_LIB // Configure GrallocConsumer to be in asynchronous mode if (!mBufferQueueInited) { // This case is only used for single frame processing, // since we will always call setupGrallocConsumer first in // multi-frame case. setupGrallocConsumer(rsc, 1); } return mGrallocConsumer->getNativeWindow(); #else return nullptr; #endif } void Allocation::shareBufferQueue(const Context *rsc, const Allocation *alloc) { #ifndef RS_COMPATIBILITY_LIB mGrallocConsumer = alloc->mGrallocConsumer; mCurrentIdx = mGrallocConsumer->getNextAvailableIdx(this); if (mCurrentIdx >= mGrallocConsumer->mNumAlloc) { rsc->setError(RS_ERROR_DRIVER, "Maximum allocations attached to a BufferQueue"); return; } mBufferQueueInited = true; #endif } void Allocation::setSurface(const Context *rsc, RsNativeWindow sur) { ANativeWindow *nw = (ANativeWindow *)sur; rsc->mHal.funcs.allocation.setSurface(rsc, this, nw); } void Allocation::ioSend(const Context *rsc) { rsc->mHal.funcs.allocation.ioSend(rsc, this); } void Allocation::ioReceive(const Context *rsc) { void *ptr = nullptr; size_t stride = 0; #ifndef RS_COMPATIBILITY_LIB if (mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT) { media_status_t ret = mGrallocConsumer->lockNextBuffer(mCurrentIdx); if (ret == AMEDIA_OK) { rsc->mHal.funcs.allocation.ioReceive(rsc, this); } else if (ret == AMEDIA_IMGREADER_NO_BUFFER_AVAILABLE) { // No new frame, don't do anything } else { rsc->setError(RS_ERROR_DRIVER, "Error receiving IO input buffer."); } } #endif } bool Allocation::hasSameDims(const Allocation *other) const { const Type *type0 = this->getType(), *type1 = other->getType(); return (type0->getCellCount() == type1->getCellCount()) && (type0->getDimLOD() == type1->getDimLOD()) && (type0->getDimFaces() == type1->getDimFaces()) && (type0->getDimYuv() == type1->getDimYuv()) && (type0->getDimX() == type1->getDimX()) && (type0->getDimY() == type1->getDimY()) && (type0->getDimZ() == type1->getDimZ()); } ///////////////// // void rsi_AllocationSyncAll(Context *rsc, RsAllocation va, RsAllocationUsageType src) { Allocation *a = static_cast<Allocation *>(va); a->sendDirty(rsc); a->syncAll(rsc, src); } void rsi_AllocationGenerateMipmaps(Context *rsc, RsAllocation va) { Allocation *alloc = static_cast<Allocation *>(va); rsc->mHal.funcs.allocation.generateMipmaps(rsc, alloc); } void rsi_AllocationCopyToBitmap(Context *rsc, RsAllocation va, void *data, size_t sizeBytes) { Allocation *a = static_cast<Allocation *>(va); const Type * t = a->getType(); a->read(rsc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, t->getDimX(), t->getDimY(), data, sizeBytes, 0); } void rsi_Allocation1DData(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t lod, uint32_t count, const void *data, size_t sizeBytes) { Allocation *a = static_cast<Allocation *>(va); a->data(rsc, xoff, lod, count, data, sizeBytes); } void rsi_Allocation1DElementData(Context *rsc, RsAllocation va, uint32_t x, uint32_t lod, const void *data, size_t sizeBytes, size_t eoff) { Allocation *a = static_cast<Allocation *>(va); a->elementData(rsc, x, 0, 0, data, eoff, sizeBytes); } void rsi_AllocationElementData(Context *rsc, RsAllocation va, uint32_t x, uint32_t y, uint32_t z, uint32_t lod, const void *data, size_t sizeBytes, size_t eoff) { Allocation *a = static_cast<Allocation *>(va); a->elementData(rsc, x, y, z, data, eoff, sizeBytes); } void rsi_Allocation2DData(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) { Allocation *a = static_cast<Allocation *>(va); a->data(rsc, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); } void rsi_Allocation3DData(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes, size_t stride) { Allocation *a = static_cast<Allocation *>(va); a->data(rsc, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); } void rsi_AllocationRead(Context *rsc, RsAllocation va, void *data, size_t sizeBytes) { Allocation *a = static_cast<Allocation *>(va); const Type * t = a->getType(); if(t->getDimZ()) { a->read(rsc, 0, 0, 0, 0, t->getDimX(), t->getDimY(), t->getDimZ(), data, sizeBytes, 0); } else if(t->getDimY()) { a->read(rsc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, t->getDimX(), t->getDimY(), data, sizeBytes, 0); } else { a->read(rsc, 0, 0, t->getDimX(), data, sizeBytes); } } void rsi_AllocationResize1D(Context *rsc, RsAllocation va, uint32_t dimX) { Allocation *a = static_cast<Allocation *>(va); a->resize1D(rsc, dimX); } void rsi_AllocationResize2D(Context *rsc, RsAllocation va, uint32_t dimX, uint32_t dimY) { Allocation *a = static_cast<Allocation *>(va); a->resize2D(rsc, dimX, dimY); } RsAllocation rsi_AllocationCreateTyped(Context *rsc, RsType vtype, RsAllocationMipmapControl mipmaps, uint32_t usages, uintptr_t ptr) { Allocation * alloc = Allocation::createAllocation(rsc, static_cast<Type *>(vtype), usages, mipmaps, (void*)ptr); if (!alloc) { return nullptr; } alloc->incUserRef(); return alloc; } RsAllocation rsi_AllocationCreateStrided(Context *rsc, RsType vtype, RsAllocationMipmapControl mipmaps, uint32_t usages, uintptr_t ptr, size_t requiredAlignment) { Allocation * alloc = Allocation::createAllocationStrided(rsc, static_cast<Type *>(vtype), usages, mipmaps, (void*)ptr, requiredAlignment); if (!alloc) { return nullptr; } alloc->incUserRef(); return alloc; } RsAllocation rsi_AllocationCreateFromBitmap(Context *rsc, RsType vtype, RsAllocationMipmapControl mipmaps, const void *data, size_t sizeBytes, uint32_t usages) { Type *t = static_cast<Type *>(vtype); RsAllocation vTexAlloc = rsi_AllocationCreateTyped(rsc, vtype, mipmaps, usages, 0); Allocation *texAlloc = static_cast<Allocation *>(vTexAlloc); if (texAlloc == nullptr) { ALOGE("Memory allocation failure"); return nullptr; } texAlloc->data(rsc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, t->getDimX(), t->getDimY(), data, sizeBytes, 0); if (mipmaps == RS_ALLOCATION_MIPMAP_FULL) { rsc->mHal.funcs.allocation.generateMipmaps(rsc, texAlloc); } texAlloc->sendDirty(rsc); return texAlloc; } RsAllocation rsi_AllocationCubeCreateFromBitmap(Context *rsc, RsType vtype, RsAllocationMipmapControl mipmaps, const void *data, size_t sizeBytes, uint32_t usages) { Type *t = static_cast<Type *>(vtype); // Cubemap allocation's faces should be Width by Width each. // Source data should have 6 * Width by Width pixels // Error checking is done in the java layer RsAllocation vTexAlloc = rsi_AllocationCreateTyped(rsc, vtype, mipmaps, usages, 0); Allocation *texAlloc = static_cast<Allocation *>(vTexAlloc); if (texAlloc == nullptr) { ALOGE("Memory allocation failure"); return nullptr; } uint32_t faceSize = t->getDimX(); uint32_t strideBytes = faceSize * 6 * t->getElementSizeBytes(); uint32_t copySize = faceSize * t->getElementSizeBytes(); uint8_t *sourcePtr = (uint8_t*)data; for (uint32_t face = 0; face < 6; face ++) { for (uint32_t dI = 0; dI < faceSize; dI ++) { texAlloc->data(rsc, 0, dI, 0, (RsAllocationCubemapFace)face, t->getDimX(), 1, sourcePtr + strideBytes * dI, copySize, 0); } // Move the data pointer to the next cube face sourcePtr += copySize; } if (mipmaps == RS_ALLOCATION_MIPMAP_FULL) { rsc->mHal.funcs.allocation.generateMipmaps(rsc, texAlloc); } texAlloc->sendDirty(rsc); return texAlloc; } void rsi_AllocationCopy2DRange(Context *rsc, RsAllocation dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstMip, uint32_t dstFace, uint32_t width, uint32_t height, RsAllocation srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcMip, uint32_t srcFace) { Allocation *dst = static_cast<Allocation *>(dstAlloc); Allocation *src= static_cast<Allocation *>(srcAlloc); rsc->mHal.funcs.allocation.allocData2D(rsc, dst, dstXoff, dstYoff, dstMip, (RsAllocationCubemapFace)dstFace, width, height, src, srcXoff, srcYoff,srcMip, (RsAllocationCubemapFace)srcFace); } void rsi_AllocationCopy3DRange(Context *rsc, RsAllocation dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, uint32_t dstMip, uint32_t width, uint32_t height, uint32_t depth, RsAllocation srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, uint32_t srcMip) { Allocation *dst = static_cast<Allocation *>(dstAlloc); Allocation *src= static_cast<Allocation *>(srcAlloc); rsc->mHal.funcs.allocation.allocData3D(rsc, dst, dstXoff, dstYoff, dstZoff, dstMip, width, height, depth, src, srcXoff, srcYoff, srcZoff, srcMip); } void rsi_AllocationSetupBufferQueue(Context *rsc, RsAllocation valloc, uint32_t numAlloc) { Allocation *alloc = static_cast<Allocation *>(valloc); alloc->setupGrallocConsumer(rsc, numAlloc); } void * rsi_AllocationGetSurface(Context *rsc, RsAllocation valloc) { Allocation *alloc = static_cast<Allocation *>(valloc); void *s = alloc->getSurface(rsc); return s; } void rsi_AllocationShareBufferQueue(Context *rsc, RsAllocation valloc1, RsAllocation valloc2) { Allocation *alloc1 = static_cast<Allocation *>(valloc1); Allocation *alloc2 = static_cast<Allocation *>(valloc2); alloc1->shareBufferQueue(rsc, alloc2); } void rsi_AllocationSetSurface(Context *rsc, RsAllocation valloc, RsNativeWindow sur) { Allocation *alloc = static_cast<Allocation *>(valloc); alloc->setSurface(rsc, sur); } void rsi_AllocationIoSend(Context *rsc, RsAllocation valloc) { Allocation *alloc = static_cast<Allocation *>(valloc); alloc->ioSend(rsc); } int64_t rsi_AllocationIoReceive(Context *rsc, RsAllocation valloc) { Allocation *alloc = static_cast<Allocation *>(valloc); alloc->ioReceive(rsc); return alloc->getTimeStamp(); } void *rsi_AllocationGetPointer(Context *rsc, RsAllocation valloc, uint32_t lod, RsAllocationCubemapFace face, uint32_t z, uint32_t array, size_t *stride, size_t strideLen) { Allocation *alloc = static_cast<Allocation *>(valloc); rsAssert(strideLen == sizeof(size_t)); return alloc->getPointer(rsc, lod, face, z, array, stride); } void rsi_Allocation1DRead(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t lod, uint32_t count, void *data, size_t sizeBytes) { Allocation *a = static_cast<Allocation *>(va); rsc->mHal.funcs.allocation.read1D(rsc, a, xoff, lod, count, data, sizeBytes); } void rsi_AllocationElementRead(Context *rsc, RsAllocation va, uint32_t x, uint32_t y, uint32_t z, uint32_t lod, void *data, size_t sizeBytes, size_t eoff) { Allocation *a = static_cast<Allocation *>(va); a->elementRead(rsc, x, y, z, data, eoff, sizeBytes); } void rsi_Allocation2DRead(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, void *data, size_t sizeBytes, size_t stride) { Allocation *a = static_cast<Allocation *>(va); a->read(rsc, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); } void rsi_Allocation3DRead(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes, size_t stride) { Allocation *a = static_cast<Allocation *>(va); a->read(rsc, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); } RsAllocation rsi_AllocationAdapterCreate(Context *rsc, RsType vwindow, RsAllocation vbase) { Allocation * alloc = Allocation::createAdapter(rsc, static_cast<Allocation *>(vbase), static_cast<Type *>(vwindow)); if (!alloc) { return nullptr; } alloc->incUserRef(); return alloc; } void rsi_AllocationAdapterOffset(Context *rsc, RsAllocation va, const uint32_t *offsets, size_t len) { Allocation *a = static_cast<Allocation *>(va); a->adapterOffset(rsc, offsets, len); } } // namespace renderscript } // namespace android