/* * Copyright 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // #define LOG_NDEBUG 0 #include "VirtualDisplaySurface.h" #include <inttypes.h> #include "HWComposer.h" #include "SurfaceFlinger.h" #include <gui/BufferItem.h> #include <gui/BufferQueue.h> #include <gui/IProducerListener.h> #include <system/window.h> // --------------------------------------------------------------------------- namespace android { // --------------------------------------------------------------------------- #define VDS_LOGE(msg, ...) ALOGE("[%s] " msg, \ mDisplayName.string(), ##__VA_ARGS__) #define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] " msg, \ mDisplayName.string(), ##__VA_ARGS__) #define VDS_LOGV(msg, ...) ALOGV("[%s] " msg, \ mDisplayName.string(), ##__VA_ARGS__) static const char* dbgCompositionTypeStr(DisplaySurface::CompositionType type) { switch (type) { case DisplaySurface::COMPOSITION_UNKNOWN: return "UNKNOWN"; case DisplaySurface::COMPOSITION_GLES: return "GLES"; case DisplaySurface::COMPOSITION_HWC: return "HWC"; case DisplaySurface::COMPOSITION_MIXED: return "MIXED"; default: return "<INVALID>"; } } VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId, const sp<IGraphicBufferProducer>& sink, const sp<IGraphicBufferProducer>& bqProducer, const sp<IGraphicBufferConsumer>& bqConsumer, const String8& name) : ConsumerBase(bqConsumer), mHwc(hwc), mDisplayId(dispId), mDisplayName(name), mSource{}, mDefaultOutputFormat(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED), mOutputFormat(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED), mOutputUsage(GRALLOC_USAGE_HW_COMPOSER), mProducerSlotSource(0), mProducerBuffers(), mQueueBufferOutput(), mSinkBufferWidth(0), mSinkBufferHeight(0), mCompositionType(COMPOSITION_UNKNOWN), mFbFence(Fence::NO_FENCE), mOutputFence(Fence::NO_FENCE), mFbProducerSlot(BufferQueue::INVALID_BUFFER_SLOT), mOutputProducerSlot(BufferQueue::INVALID_BUFFER_SLOT), mDbgState(DBG_STATE_IDLE), mDbgLastCompositionType(COMPOSITION_UNKNOWN), mMustRecompose(false), mForceHwcCopy(SurfaceFlinger::useHwcForRgbToYuv) { mSource[SOURCE_SINK] = sink; mSource[SOURCE_SCRATCH] = bqProducer; resetPerFrameState(); int sinkWidth, sinkHeight; sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth); sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight); mSinkBufferWidth = sinkWidth; mSinkBufferHeight = sinkHeight; // Pick the buffer format to request from the sink when not rendering to it // with GLES. If the consumer needs CPU access, use the default format // set by the consumer. Otherwise allow gralloc to decide the format based // on usage bits. int sinkUsage; sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage); if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) { int sinkFormat; sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat); mDefaultOutputFormat = sinkFormat; } else { mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; } mOutputFormat = mDefaultOutputFormat; ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string()); mConsumer->setConsumerName(ConsumerBase::mName); mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER); mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight); sink->setAsyncMode(true); IGraphicBufferProducer::QueueBufferOutput output; mSource[SOURCE_SCRATCH]->connect(nullptr, NATIVE_WINDOW_API_EGL, false, &output); } VirtualDisplaySurface::~VirtualDisplaySurface() { mSource[SOURCE_SCRATCH]->disconnect(NATIVE_WINDOW_API_EGL); } status_t VirtualDisplaySurface::beginFrame(bool mustRecompose) { if (mDisplayId < 0) return NO_ERROR; mMustRecompose = mustRecompose; VDS_LOGW_IF(mDbgState != DBG_STATE_IDLE, "Unexpected beginFrame() in %s state", dbgStateStr()); mDbgState = DBG_STATE_BEGUN; return refreshOutputBuffer(); } status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) { if (mDisplayId < 0) return NO_ERROR; VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN, "Unexpected prepareFrame() in %s state", dbgStateStr()); mDbgState = DBG_STATE_PREPARED; mCompositionType = compositionType; if (mForceHwcCopy && mCompositionType == COMPOSITION_GLES) { // Some hardware can do RGB->YUV conversion more efficiently in hardware // controlled by HWC than in hardware controlled by the video encoder. // Forcing GLES-composed frames to go through an extra copy by the HWC // allows the format conversion to happen there, rather than passing RGB // directly to the consumer. // // On the other hand, when the consumer prefers RGB or can consume RGB // inexpensively, this forces an unnecessary copy. mCompositionType = COMPOSITION_MIXED; } if (mCompositionType != mDbgLastCompositionType) { VDS_LOGV("prepareFrame: composition type changed to %s", dbgCompositionTypeStr(mCompositionType)); mDbgLastCompositionType = mCompositionType; } if (mCompositionType != COMPOSITION_GLES && (mOutputFormat != mDefaultOutputFormat || mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) { // We must have just switched from GLES-only to MIXED or HWC // composition. Stop using the format and usage requested by the GLES // driver; they may be suboptimal when HWC is writing to the output // buffer. For example, if the output is going to a video encoder, and // HWC can write directly to YUV, some hardware can skip a // memory-to-memory RGB-to-YUV conversion step. // // If we just switched *to* GLES-only mode, we'll change the // format/usage and get a new buffer when the GLES driver calls // dequeueBuffer(). mOutputFormat = mDefaultOutputFormat; mOutputUsage = GRALLOC_USAGE_HW_COMPOSER; refreshOutputBuffer(); } return NO_ERROR; } status_t VirtualDisplaySurface::advanceFrame() { if (mDisplayId < 0) return NO_ERROR; if (mCompositionType == COMPOSITION_HWC) { VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED, "Unexpected advanceFrame() in %s state on HWC frame", dbgStateStr()); } else { VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE, "Unexpected advanceFrame() in %s state on GLES/MIXED frame", dbgStateStr()); } mDbgState = DBG_STATE_HWC; if (mOutputProducerSlot < 0 || (mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) { // Last chance bailout if something bad happened earlier. For example, // in a GLES configuration, if the sink disappears then dequeueBuffer // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger // will soldier on. So we end up here without a buffer. There should // be lots of scary messages in the log just before this. VDS_LOGE("advanceFrame: no buffer, bailing out"); return NO_MEMORY; } sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ? mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(nullptr); sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot]; VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)", mFbProducerSlot, fbBuffer.get(), mOutputProducerSlot, outBuffer.get()); // At this point we know the output buffer acquire fence, // so update HWC state with it. mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer); status_t result = NO_ERROR; if (fbBuffer != nullptr) { uint32_t hwcSlot = 0; sp<GraphicBuffer> hwcBuffer; mHwcBufferCache.getHwcBuffer(mFbProducerSlot, fbBuffer, &hwcSlot, &hwcBuffer); // TODO: Correctly propagate the dataspace from GL composition result = mHwc.setClientTarget(mDisplayId, hwcSlot, mFbFence, hwcBuffer, ui::Dataspace::UNKNOWN); } return result; } void VirtualDisplaySurface::onFrameCommitted() { if (mDisplayId < 0) return; VDS_LOGW_IF(mDbgState != DBG_STATE_HWC, "Unexpected onFrameCommitted() in %s state", dbgStateStr()); mDbgState = DBG_STATE_IDLE; sp<Fence> retireFence = mHwc.getPresentFence(mDisplayId); if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) { // release the scratch buffer back to the pool Mutex::Autolock lock(mMutex); int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot); VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot); addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], retireFence); releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot]); } if (mOutputProducerSlot >= 0) { int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot); QueueBufferOutput qbo; VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot); if (mMustRecompose) { status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot, QueueBufferInput( systemTime(), false /* isAutoTimestamp */, HAL_DATASPACE_UNKNOWN, Rect(mSinkBufferWidth, mSinkBufferHeight), NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */, retireFence), &qbo); if (result == NO_ERROR) { updateQueueBufferOutput(std::move(qbo)); } } else { // If the surface hadn't actually been updated, then we only went // through the motions of updating the display to keep our state // machine happy. We cancel the buffer to avoid triggering another // re-composition and causing an infinite loop. mSource[SOURCE_SINK]->cancelBuffer(sslot, retireFence); } } resetPerFrameState(); } void VirtualDisplaySurface::dumpAsString(String8& /* result */) const { } void VirtualDisplaySurface::resizeBuffers(const uint32_t w, const uint32_t h) { mQueueBufferOutput.width = w; mQueueBufferOutput.height = h; mSinkBufferWidth = w; mSinkBufferHeight = h; } const sp<Fence>& VirtualDisplaySurface::getClientTargetAcquireFence() const { return mFbFence; } status_t VirtualDisplaySurface::requestBuffer(int pslot, sp<GraphicBuffer>* outBuf) { if (mDisplayId < 0) return mSource[SOURCE_SINK]->requestBuffer(pslot, outBuf); VDS_LOGW_IF(mDbgState != DBG_STATE_GLES, "Unexpected requestBuffer pslot=%d in %s state", pslot, dbgStateStr()); *outBuf = mProducerBuffers[pslot]; return NO_ERROR; } status_t VirtualDisplaySurface::setMaxDequeuedBufferCount( int maxDequeuedBuffers) { return mSource[SOURCE_SINK]->setMaxDequeuedBufferCount(maxDequeuedBuffers); } status_t VirtualDisplaySurface::setAsyncMode(bool async) { return mSource[SOURCE_SINK]->setAsyncMode(async); } status_t VirtualDisplaySurface::dequeueBuffer(Source source, PixelFormat format, uint64_t usage, int* sslot, sp<Fence>* fence) { LOG_FATAL_IF(mDisplayId < 0, "mDisplayId=%d but should not be < 0.", mDisplayId); status_t result = mSource[source]->dequeueBuffer(sslot, fence, mSinkBufferWidth, mSinkBufferHeight, format, usage, nullptr, nullptr); if (result < 0) return result; int pslot = mapSource2ProducerSlot(source, *sslot); VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d", dbgSourceStr(source), *sslot, pslot, result); uint64_t sourceBit = static_cast<uint64_t>(source) << pslot; if ((mProducerSlotSource & (1ULL << pslot)) != sourceBit) { // This slot was previously dequeued from the other source; must // re-request the buffer. result |= BUFFER_NEEDS_REALLOCATION; mProducerSlotSource &= ~(1ULL << pslot); mProducerSlotSource |= sourceBit; } if (result & RELEASE_ALL_BUFFERS) { for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) { if ((mProducerSlotSource & (1ULL << i)) == sourceBit) mProducerBuffers[i].clear(); } } if (result & BUFFER_NEEDS_REALLOCATION) { result = mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]); if (result < 0) { mProducerBuffers[pslot].clear(); mSource[source]->cancelBuffer(*sslot, *fence); return result; } VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#" PRIx64, dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(), mProducerBuffers[pslot]->getPixelFormat(), mProducerBuffers[pslot]->getUsage()); } return result; } status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, uint32_t w, uint32_t h, PixelFormat format, uint64_t usage, uint64_t* outBufferAge, FrameEventHistoryDelta* outTimestamps) { if (mDisplayId < 0) { return mSource[SOURCE_SINK]->dequeueBuffer(pslot, fence, w, h, format, usage, outBufferAge, outTimestamps); } VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED, "Unexpected dequeueBuffer() in %s state", dbgStateStr()); mDbgState = DBG_STATE_GLES; VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#" PRIx64, w, h, format, usage); status_t result = NO_ERROR; Source source = fbSourceForCompositionType(mCompositionType); if (source == SOURCE_SINK) { if (mOutputProducerSlot < 0) { // Last chance bailout if something bad happened earlier. For example, // in a GLES configuration, if the sink disappears then dequeueBuffer // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger // will soldier on. So we end up here without a buffer. There should // be lots of scary messages in the log just before this. VDS_LOGE("dequeueBuffer: no buffer, bailing out"); return NO_MEMORY; } // We already dequeued the output buffer. If the GLES driver wants // something incompatible, we have to cancel and get a new one. This // will mean that HWC will see a different output buffer between // prepare and set, but since we're in GLES-only mode already it // shouldn't matter. usage |= GRALLOC_USAGE_HW_COMPOSER; const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot]; if ((usage & ~buf->getUsage()) != 0 || (format != 0 && format != buf->getPixelFormat()) || (w != 0 && w != mSinkBufferWidth) || (h != 0 && h != mSinkBufferHeight)) { VDS_LOGV("dequeueBuffer: dequeueing new output buffer: " "want %dx%d fmt=%d use=%#" PRIx64 ", " "have %dx%d fmt=%d use=%#" PRIx64, w, h, format, usage, mSinkBufferWidth, mSinkBufferHeight, buf->getPixelFormat(), buf->getUsage()); mOutputFormat = format; mOutputUsage = usage; result = refreshOutputBuffer(); if (result < 0) return result; } } if (source == SOURCE_SINK) { *pslot = mOutputProducerSlot; *fence = mOutputFence; } else { int sslot; result = dequeueBuffer(source, format, usage, &sslot, fence); if (result >= 0) { *pslot = mapSource2ProducerSlot(source, sslot); } } if (outBufferAge) { *outBufferAge = 0; } return result; } status_t VirtualDisplaySurface::detachBuffer(int /* slot */) { VDS_LOGE("detachBuffer is not available for VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::detachNextBuffer( sp<GraphicBuffer>* /* outBuffer */, sp<Fence>* /* outFence */) { VDS_LOGE("detachNextBuffer is not available for VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::attachBuffer(int* /* outSlot */, const sp<GraphicBuffer>& /* buffer */) { VDS_LOGE("attachBuffer is not available for VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::queueBuffer(int pslot, const QueueBufferInput& input, QueueBufferOutput* output) { if (mDisplayId < 0) return mSource[SOURCE_SINK]->queueBuffer(pslot, input, output); VDS_LOGW_IF(mDbgState != DBG_STATE_GLES, "Unexpected queueBuffer(pslot=%d) in %s state", pslot, dbgStateStr()); mDbgState = DBG_STATE_GLES_DONE; VDS_LOGV("queueBuffer pslot=%d", pslot); status_t result; if (mCompositionType == COMPOSITION_MIXED) { // Queue the buffer back into the scratch pool QueueBufferOutput scratchQBO; int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot); result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO); if (result != NO_ERROR) return result; // Now acquire the buffer from the scratch pool -- should be the same // slot and fence as we just queued. Mutex::Autolock lock(mMutex); BufferItem item; result = acquireBufferLocked(&item, 0); if (result != NO_ERROR) return result; VDS_LOGW_IF(item.mSlot != sslot, "queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d", item.mSlot, sslot); mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mSlot); mFbFence = mSlots[item.mSlot].mFence; } else { LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES, "Unexpected queueBuffer in state %s for compositionType %s", dbgStateStr(), dbgCompositionTypeStr(mCompositionType)); // Extract the GLES release fence for HWC to acquire int64_t timestamp; bool isAutoTimestamp; android_dataspace dataSpace; Rect crop; int scalingMode; uint32_t transform; input.deflate(×tamp, &isAutoTimestamp, &dataSpace, &crop, &scalingMode, &transform, &mFbFence); mFbProducerSlot = pslot; mOutputFence = mFbFence; } // This moves the frame timestamps and keeps a copy of all other fields. *output = std::move(mQueueBufferOutput); return NO_ERROR; } status_t VirtualDisplaySurface::cancelBuffer(int pslot, const sp<Fence>& fence) { if (mDisplayId < 0) return mSource[SOURCE_SINK]->cancelBuffer(mapProducer2SourceSlot(SOURCE_SINK, pslot), fence); VDS_LOGW_IF(mDbgState != DBG_STATE_GLES, "Unexpected cancelBuffer(pslot=%d) in %s state", pslot, dbgStateStr()); VDS_LOGV("cancelBuffer pslot=%d", pslot); Source source = fbSourceForCompositionType(mCompositionType); return mSource[source]->cancelBuffer( mapProducer2SourceSlot(source, pslot), fence); } int VirtualDisplaySurface::query(int what, int* value) { switch (what) { case NATIVE_WINDOW_WIDTH: *value = mSinkBufferWidth; break; case NATIVE_WINDOW_HEIGHT: *value = mSinkBufferHeight; break; default: return mSource[SOURCE_SINK]->query(what, value); } return NO_ERROR; } status_t VirtualDisplaySurface::connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp, QueueBufferOutput* output) { QueueBufferOutput qbo; status_t result = mSource[SOURCE_SINK]->connect(listener, api, producerControlledByApp, &qbo); if (result == NO_ERROR) { updateQueueBufferOutput(std::move(qbo)); // This moves the frame timestamps and keeps a copy of all other fields. *output = std::move(mQueueBufferOutput); } return result; } status_t VirtualDisplaySurface::disconnect(int api, DisconnectMode mode) { return mSource[SOURCE_SINK]->disconnect(api, mode); } status_t VirtualDisplaySurface::setSidebandStream(const sp<NativeHandle>& /*stream*/) { return INVALID_OPERATION; } void VirtualDisplaySurface::allocateBuffers(uint32_t /* width */, uint32_t /* height */, PixelFormat /* format */, uint64_t /* usage */) { // TODO: Should we actually allocate buffers for a virtual display? } status_t VirtualDisplaySurface::allowAllocation(bool /* allow */) { return INVALID_OPERATION; } status_t VirtualDisplaySurface::setGenerationNumber(uint32_t /* generation */) { ALOGE("setGenerationNumber not supported on VirtualDisplaySurface"); return INVALID_OPERATION; } String8 VirtualDisplaySurface::getConsumerName() const { return String8("VirtualDisplaySurface"); } status_t VirtualDisplaySurface::setSharedBufferMode(bool /*sharedBufferMode*/) { ALOGE("setSharedBufferMode not supported on VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::setAutoRefresh(bool /*autoRefresh*/) { ALOGE("setAutoRefresh not supported on VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::setDequeueTimeout(nsecs_t /* timeout */) { ALOGE("setDequeueTimeout not supported on VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::getLastQueuedBuffer( sp<GraphicBuffer>* /*outBuffer*/, sp<Fence>* /*outFence*/, float[16] /* outTransformMatrix*/) { ALOGE("getLastQueuedBuffer not supported on VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::getUniqueId(uint64_t* /*outId*/) const { ALOGE("getUniqueId not supported on VirtualDisplaySurface"); return INVALID_OPERATION; } status_t VirtualDisplaySurface::getConsumerUsage(uint64_t* outUsage) const { return mSource[SOURCE_SINK]->getConsumerUsage(outUsage); } void VirtualDisplaySurface::updateQueueBufferOutput( QueueBufferOutput&& qbo) { mQueueBufferOutput = std::move(qbo); mQueueBufferOutput.transformHint = 0; } void VirtualDisplaySurface::resetPerFrameState() { mCompositionType = COMPOSITION_UNKNOWN; mFbFence = Fence::NO_FENCE; mOutputFence = Fence::NO_FENCE; mOutputProducerSlot = -1; mFbProducerSlot = -1; } status_t VirtualDisplaySurface::refreshOutputBuffer() { if (mOutputProducerSlot >= 0) { mSource[SOURCE_SINK]->cancelBuffer( mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot), mOutputFence); } int sslot; status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage, &sslot, &mOutputFence); if (result < 0) return result; mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot); // On GLES-only frames, we don't have the right output buffer acquire fence // until after GLES calls queueBuffer(). So here we just set the buffer // (for use in HWC prepare) but not the fence; we'll call this again with // the proper fence once we have it. result = mHwc.setOutputBuffer(mDisplayId, Fence::NO_FENCE, mProducerBuffers[mOutputProducerSlot]); return result; } // This slot mapping function is its own inverse, so two copies are unnecessary. // Both are kept to make the intent clear where the function is called, and for // the (unlikely) chance that we switch to a different mapping function. int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) { if (source == SOURCE_SCRATCH) { return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1; } else { return sslot; } } int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) { return mapSource2ProducerSlot(source, pslot); } VirtualDisplaySurface::Source VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) { return type == COMPOSITION_MIXED ? SOURCE_SCRATCH : SOURCE_SINK; } const char* VirtualDisplaySurface::dbgStateStr() const { switch (mDbgState) { case DBG_STATE_IDLE: return "IDLE"; case DBG_STATE_PREPARED: return "PREPARED"; case DBG_STATE_GLES: return "GLES"; case DBG_STATE_GLES_DONE: return "GLES_DONE"; case DBG_STATE_HWC: return "HWC"; default: return "INVALID"; } } const char* VirtualDisplaySurface::dbgSourceStr(Source s) { switch (s) { case SOURCE_SINK: return "SINK"; case SOURCE_SCRATCH: return "SCRATCH"; default: return "INVALID"; } } // --------------------------------------------------------------------------- } // namespace android // ---------------------------------------------------------------------------