// Copyright 2009 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <ETC1/etc1.h> #include <string.h> /* From http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt The number of bits that represent a 4x4 texel block is 64 bits if <internalformat> is given by ETC1_RGB8_OES. The data for a block is a number of bytes, {q0, q1, q2, q3, q4, q5, q6, q7} where byte q0 is located at the lowest memory address and q7 at the highest. The 64 bits specifying the block is then represented by the following 64 bit integer: int64bit = 256*(256*(256*(256*(256*(256*(256*q0+q1)+q2)+q3)+q4)+q5)+q6)+q7; ETC1_RGB8_OES: a) bit layout in bits 63 through 32 if diffbit = 0 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 ----------------------------------------------- | base col1 | base col2 | base col1 | base col2 | | R1 (4bits)| R2 (4bits)| G1 (4bits)| G2 (4bits)| ----------------------------------------------- 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 --------------------------------------------------- | base col1 | base col2 | table | table |diff|flip| | B1 (4bits)| B2 (4bits)| cw 1 | cw 2 |bit |bit | --------------------------------------------------- b) bit layout in bits 63 through 32 if diffbit = 1 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 ----------------------------------------------- | base col1 | dcol 2 | base col1 | dcol 2 | | R1' (5 bits) | dR2 | G1' (5 bits) | dG2 | ----------------------------------------------- 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 --------------------------------------------------- | base col 1 | dcol 2 | table | table |diff|flip| | B1' (5 bits) | dB2 | cw 1 | cw 2 |bit |bit | --------------------------------------------------- c) bit layout in bits 31 through 0 (in both cases) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ----------------------------------------------- | most significant pixel index bits | | p| o| n| m| l| k| j| i| h| g| f| e| d| c| b| a| ----------------------------------------------- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -------------------------------------------------- | least significant pixel index bits | | p| o| n| m| l| k| j| i| h| g| f| e| d| c | b | a | -------------------------------------------------- Add table 3.17.2: Intensity modifier sets for ETC1 compressed textures: table codeword modifier table ------------------ ---------------------- 0 -8 -2 2 8 1 -17 -5 5 17 2 -29 -9 9 29 3 -42 -13 13 42 4 -60 -18 18 60 5 -80 -24 24 80 6 -106 -33 33 106 7 -183 -47 47 183 Add table 3.17.3 Mapping from pixel index values to modifier values for ETC1 compressed textures: pixel index value --------------- msb lsb resulting modifier value ----- ----- ------------------------- 1 1 -b (large negative value) 1 0 -a (small negative value) 0 0 a (small positive value) 0 1 b (large positive value) */ static const int kModifierTable[] = { /* 0 */2, 8, -2, -8, /* 1 */5, 17, -5, -17, /* 2 */9, 29, -9, -29, /* 3 */13, 42, -13, -42, /* 4 */18, 60, -18, -60, /* 5 */24, 80, -24, -80, /* 6 */33, 106, -33, -106, /* 7 */47, 183, -47, -183 }; static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 }; static inline etc1_byte clamp(int x) { return (etc1_byte) (x >= 0 ? (x < 255 ? x : 255) : 0); } static inline int convert4To8(int b) { int c = b & 0xf; return (c << 4) | c; } static inline int convert5To8(int b) { int c = b & 0x1f; return (c << 3) | (c >> 2); } static inline int convert6To8(int b) { int c = b & 0x3f; return (c << 2) | (c >> 4); } static inline int divideBy255(int d) { return (d + 128 + (d >> 8)) >> 8; } static inline int convert8To4(int b) { int c = b & 0xff; return divideBy255(c * 15); } static inline int convert8To5(int b) { int c = b & 0xff; return divideBy255(c * 31); } static inline int convertDiff(int base, int diff) { return convert5To8((0x1f & base) + kLookup[0x7 & diff]); } static void decode_subblock(etc1_byte* pOut, int r, int g, int b, const int* table, etc1_uint32 low, bool second, bool flipped) { int baseX = 0; int baseY = 0; if (second) { if (flipped) { baseY = 2; } else { baseX = 2; } } for (int i = 0; i < 8; i++) { int x, y; if (flipped) { x = baseX + (i >> 1); y = baseY + (i & 1); } else { x = baseX + (i >> 2); y = baseY + (i & 3); } int k = y + (x * 4); int offset = ((low >> k) & 1) | ((low >> (k + 15)) & 2); int delta = table[offset]; etc1_byte* q = pOut + 3 * (x + 4 * y); *q++ = clamp(r + delta); *q++ = clamp(g + delta); *q++ = clamp(b + delta); } } // Input is an ETC1 compressed version of the data. // Output is a 4 x 4 square of 3-byte pixels in form R, G, B void etc1_decode_block(const etc1_byte* pIn, etc1_byte* pOut) { etc1_uint32 high = (pIn[0] << 24) | (pIn[1] << 16) | (pIn[2] << 8) | pIn[3]; etc1_uint32 low = (pIn[4] << 24) | (pIn[5] << 16) | (pIn[6] << 8) | pIn[7]; int r1, r2, g1, g2, b1, b2; if (high & 2) { // differential int rBase = high >> 27; int gBase = high >> 19; int bBase = high >> 11; r1 = convert5To8(rBase); r2 = convertDiff(rBase, high >> 24); g1 = convert5To8(gBase); g2 = convertDiff(gBase, high >> 16); b1 = convert5To8(bBase); b2 = convertDiff(bBase, high >> 8); } else { // not differential r1 = convert4To8(high >> 28); r2 = convert4To8(high >> 24); g1 = convert4To8(high >> 20); g2 = convert4To8(high >> 16); b1 = convert4To8(high >> 12); b2 = convert4To8(high >> 8); } int tableIndexA = 7 & (high >> 5); int tableIndexB = 7 & (high >> 2); const int* tableA = kModifierTable + tableIndexA * 4; const int* tableB = kModifierTable + tableIndexB * 4; bool flipped = (high & 1) != 0; decode_subblock(pOut, r1, g1, b1, tableA, low, false, flipped); decode_subblock(pOut, r2, g2, b2, tableB, low, true, flipped); } typedef struct { etc1_uint32 high; etc1_uint32 low; etc1_uint32 score; // Lower is more accurate } etc_compressed; static inline void take_best(etc_compressed* a, const etc_compressed* b) { if (a->score > b->score) { *a = *b; } } static void etc_average_colors_subblock(const etc1_byte* pIn, etc1_uint32 inMask, etc1_byte* pColors, bool flipped, bool second) { int r = 0; int g = 0; int b = 0; if (flipped) { int by = 0; if (second) { by = 2; } for (int y = 0; y < 2; y++) { int yy = by + y; for (int x = 0; x < 4; x++) { int i = x + 4 * yy; if (inMask & (1 << i)) { const etc1_byte* p = pIn + i * 3; r += *(p++); g += *(p++); b += *(p++); } } } } else { int bx = 0; if (second) { bx = 2; } for (int y = 0; y < 4; y++) { for (int x = 0; x < 2; x++) { int xx = bx + x; int i = xx + 4 * y; if (inMask & (1 << i)) { const etc1_byte* p = pIn + i * 3; r += *(p++); g += *(p++); b += *(p++); } } } } pColors[0] = (etc1_byte)((r + 4) >> 3); pColors[1] = (etc1_byte)((g + 4) >> 3); pColors[2] = (etc1_byte)((b + 4) >> 3); } static inline int square(int x) { return x * x; } static etc1_uint32 chooseModifier(const etc1_byte* pBaseColors, const etc1_byte* pIn, etc1_uint32 *pLow, int bitIndex, const int* pModifierTable) { etc1_uint32 bestScore = ~0; int bestIndex = 0; int pixelR = pIn[0]; int pixelG = pIn[1]; int pixelB = pIn[2]; int r = pBaseColors[0]; int g = pBaseColors[1]; int b = pBaseColors[2]; for (int i = 0; i < 4; i++) { int modifier = pModifierTable[i]; int decodedG = clamp(g + modifier); etc1_uint32 score = (etc1_uint32) (6 * square(decodedG - pixelG)); if (score >= bestScore) { continue; } int decodedR = clamp(r + modifier); score += (etc1_uint32) (3 * square(decodedR - pixelR)); if (score >= bestScore) { continue; } int decodedB = clamp(b + modifier); score += (etc1_uint32) square(decodedB - pixelB); if (score < bestScore) { bestScore = score; bestIndex = i; } } etc1_uint32 lowMask = (((bestIndex >> 1) << 16) | (bestIndex & 1)) << bitIndex; *pLow |= lowMask; return bestScore; } static void etc_encode_subblock_helper(const etc1_byte* pIn, etc1_uint32 inMask, etc_compressed* pCompressed, bool flipped, bool second, const etc1_byte* pBaseColors, const int* pModifierTable) { int score = pCompressed->score; if (flipped) { int by = 0; if (second) { by = 2; } for (int y = 0; y < 2; y++) { int yy = by + y; for (int x = 0; x < 4; x++) { int i = x + 4 * yy; if (inMask & (1 << i)) { score += chooseModifier(pBaseColors, pIn + i * 3, &pCompressed->low, yy + x * 4, pModifierTable); } } } } else { int bx = 0; if (second) { bx = 2; } for (int y = 0; y < 4; y++) { for (int x = 0; x < 2; x++) { int xx = bx + x; int i = xx + 4 * y; if (inMask & (1 << i)) { score += chooseModifier(pBaseColors, pIn + i * 3, &pCompressed->low, y + xx * 4, pModifierTable); } } } } pCompressed->score = score; } static bool inRange4bitSigned(int color) { return color >= -4 && color <= 3; } static void etc_encodeBaseColors(etc1_byte* pBaseColors, const etc1_byte* pColors, etc_compressed* pCompressed) { int r1, g1, b1, r2, g2, b2; // 8 bit base colors for sub-blocks bool differential; { int r51 = convert8To5(pColors[0]); int g51 = convert8To5(pColors[1]); int b51 = convert8To5(pColors[2]); int r52 = convert8To5(pColors[3]); int g52 = convert8To5(pColors[4]); int b52 = convert8To5(pColors[5]); r1 = convert5To8(r51); g1 = convert5To8(g51); b1 = convert5To8(b51); int dr = r52 - r51; int dg = g52 - g51; int db = b52 - b51; differential = inRange4bitSigned(dr) && inRange4bitSigned(dg) && inRange4bitSigned(db); if (differential) { r2 = convert5To8(r51 + dr); g2 = convert5To8(g51 + dg); b2 = convert5To8(b51 + db); pCompressed->high |= (r51 << 27) | ((7 & dr) << 24) | (g51 << 19) | ((7 & dg) << 16) | (b51 << 11) | ((7 & db) << 8) | 2; } } if (!differential) { int r41 = convert8To4(pColors[0]); int g41 = convert8To4(pColors[1]); int b41 = convert8To4(pColors[2]); int r42 = convert8To4(pColors[3]); int g42 = convert8To4(pColors[4]); int b42 = convert8To4(pColors[5]); r1 = convert4To8(r41); g1 = convert4To8(g41); b1 = convert4To8(b41); r2 = convert4To8(r42); g2 = convert4To8(g42); b2 = convert4To8(b42); pCompressed->high |= (r41 << 28) | (r42 << 24) | (g41 << 20) | (g42 << 16) | (b41 << 12) | (b42 << 8); } pBaseColors[0] = r1; pBaseColors[1] = g1; pBaseColors[2] = b1; pBaseColors[3] = r2; pBaseColors[4] = g2; pBaseColors[5] = b2; } static void etc_encode_block_helper(const etc1_byte* pIn, etc1_uint32 inMask, const etc1_byte* pColors, etc_compressed* pCompressed, bool flipped) { pCompressed->score = ~0; pCompressed->high = (flipped ? 1 : 0); pCompressed->low = 0; etc1_byte pBaseColors[6]; etc_encodeBaseColors(pBaseColors, pColors, pCompressed); int originalHigh = pCompressed->high; const int* pModifierTable = kModifierTable; for (int i = 0; i < 8; i++, pModifierTable += 4) { etc_compressed temp; temp.score = 0; temp.high = originalHigh | (i << 5); temp.low = 0; etc_encode_subblock_helper(pIn, inMask, &temp, flipped, false, pBaseColors, pModifierTable); take_best(pCompressed, &temp); } pModifierTable = kModifierTable; etc_compressed firstHalf = *pCompressed; for (int i = 0; i < 8; i++, pModifierTable += 4) { etc_compressed temp; temp.score = firstHalf.score; temp.high = firstHalf.high | (i << 2); temp.low = firstHalf.low; etc_encode_subblock_helper(pIn, inMask, &temp, flipped, true, pBaseColors + 3, pModifierTable); if (i == 0) { *pCompressed = temp; } else { take_best(pCompressed, &temp); } } } static void writeBigEndian(etc1_byte* pOut, etc1_uint32 d) { pOut[0] = (etc1_byte)(d >> 24); pOut[1] = (etc1_byte)(d >> 16); pOut[2] = (etc1_byte)(d >> 8); pOut[3] = (etc1_byte) d; } // Input is a 4 x 4 square of 3-byte pixels in form R, G, B // inmask is a 16-bit mask where bit (1 << (x + y * 4)) tells whether the corresponding (x,y) // pixel is valid or not. Invalid pixel color values are ignored when compressing. // Output is an ETC1 compressed version of the data. void etc1_encode_block(const etc1_byte* pIn, etc1_uint32 inMask, etc1_byte* pOut) { etc1_byte colors[6]; etc1_byte flippedColors[6]; etc_average_colors_subblock(pIn, inMask, colors, false, false); etc_average_colors_subblock(pIn, inMask, colors + 3, false, true); etc_average_colors_subblock(pIn, inMask, flippedColors, true, false); etc_average_colors_subblock(pIn, inMask, flippedColors + 3, true, true); etc_compressed a, b; etc_encode_block_helper(pIn, inMask, colors, &a, false); etc_encode_block_helper(pIn, inMask, flippedColors, &b, true); take_best(&a, &b); writeBigEndian(pOut, a.high); writeBigEndian(pOut + 4, a.low); } // Return the size of the encoded image data (does not include size of PKM header). etc1_uint32 etc1_get_encoded_data_size(etc1_uint32 width, etc1_uint32 height) { return (((width + 3) & ~3) * ((height + 3) & ~3)) >> 1; } // Encode an entire image. // pIn - pointer to the image data. Formatted such that the Red component of // pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset; // pOut - pointer to encoded data. Must be large enough to store entire encoded image. int etc1_encode_image(const etc1_byte* pIn, etc1_uint32 width, etc1_uint32 height, etc1_uint32 pixelSize, etc1_uint32 stride, etc1_byte* pOut) { if (pixelSize < 2 || pixelSize > 3) { return -1; } static const unsigned short kYMask[] = { 0x0, 0xf, 0xff, 0xfff, 0xffff }; static const unsigned short kXMask[] = { 0x0, 0x1111, 0x3333, 0x7777, 0xffff }; etc1_byte block[ETC1_DECODED_BLOCK_SIZE]; etc1_byte encoded[ETC1_ENCODED_BLOCK_SIZE]; etc1_uint32 encodedWidth = (width + 3) & ~3; etc1_uint32 encodedHeight = (height + 3) & ~3; for (etc1_uint32 y = 0; y < encodedHeight; y += 4) { etc1_uint32 yEnd = height - y; if (yEnd > 4) { yEnd = 4; } int ymask = kYMask[yEnd]; for (etc1_uint32 x = 0; x < encodedWidth; x += 4) { etc1_uint32 xEnd = width - x; if (xEnd > 4) { xEnd = 4; } int mask = ymask & kXMask[xEnd]; for (etc1_uint32 cy = 0; cy < yEnd; cy++) { etc1_byte* q = block + (cy * 4) * 3; const etc1_byte* p = pIn + pixelSize * x + stride * (y + cy); if (pixelSize == 3) { memcpy(q, p, xEnd * 3); } else { for (etc1_uint32 cx = 0; cx < xEnd; cx++) { int pixel = (p[1] << 8) | p[0]; *q++ = convert5To8(pixel >> 11); *q++ = convert6To8(pixel >> 5); *q++ = convert5To8(pixel); p += pixelSize; } } } etc1_encode_block(block, mask, encoded); memcpy(pOut, encoded, sizeof(encoded)); pOut += sizeof(encoded); } } return 0; } // Decode an entire image. // pIn - pointer to encoded data. // pOut - pointer to the image data. Will be written such that the Red component of // pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset. Must be // large enough to store entire image. int etc1_decode_image(const etc1_byte* pIn, etc1_byte* pOut, etc1_uint32 width, etc1_uint32 height, etc1_uint32 pixelSize, etc1_uint32 stride) { if (pixelSize < 2 || pixelSize > 3) { return -1; } etc1_byte block[ETC1_DECODED_BLOCK_SIZE]; etc1_uint32 encodedWidth = (width + 3) & ~3; etc1_uint32 encodedHeight = (height + 3) & ~3; for (etc1_uint32 y = 0; y < encodedHeight; y += 4) { etc1_uint32 yEnd = height - y; if (yEnd > 4) { yEnd = 4; } for (etc1_uint32 x = 0; x < encodedWidth; x += 4) { etc1_uint32 xEnd = width - x; if (xEnd > 4) { xEnd = 4; } etc1_decode_block(pIn, block); pIn += ETC1_ENCODED_BLOCK_SIZE; for (etc1_uint32 cy = 0; cy < yEnd; cy++) { const etc1_byte* q = block + (cy * 4) * 3; etc1_byte* p = pOut + pixelSize * x + stride * (y + cy); if (pixelSize == 3) { memcpy(p, q, xEnd * 3); } else { for (etc1_uint32 cx = 0; cx < xEnd; cx++) { etc1_byte r = *q++; etc1_byte g = *q++; etc1_byte b = *q++; etc1_uint32 pixel = ((r >> 3) << 11) | ((g >> 2) << 5) | (b >> 3); *p++ = (etc1_byte) pixel; *p++ = (etc1_byte) (pixel >> 8); } } } } } return 0; } static const char kMagic[] = { 'P', 'K', 'M', ' ', '1', '0' }; static const etc1_uint32 ETC1_PKM_FORMAT_OFFSET = 6; static const etc1_uint32 ETC1_PKM_ENCODED_WIDTH_OFFSET = 8; static const etc1_uint32 ETC1_PKM_ENCODED_HEIGHT_OFFSET = 10; static const etc1_uint32 ETC1_PKM_WIDTH_OFFSET = 12; static const etc1_uint32 ETC1_PKM_HEIGHT_OFFSET = 14; static const etc1_uint32 ETC1_RGB_NO_MIPMAPS = 0; static void writeBEUint16(etc1_byte* pOut, etc1_uint32 data) { pOut[0] = (etc1_byte) (data >> 8); pOut[1] = (etc1_byte) data; } static etc1_uint32 readBEUint16(const etc1_byte* pIn) { return (pIn[0] << 8) | pIn[1]; } // Format a PKM header void etc1_pkm_format_header(etc1_byte* pHeader, etc1_uint32 width, etc1_uint32 height) { memcpy(pHeader, kMagic, sizeof(kMagic)); etc1_uint32 encodedWidth = (width + 3) & ~3; etc1_uint32 encodedHeight = (height + 3) & ~3; writeBEUint16(pHeader + ETC1_PKM_FORMAT_OFFSET, ETC1_RGB_NO_MIPMAPS); writeBEUint16(pHeader + ETC1_PKM_ENCODED_WIDTH_OFFSET, encodedWidth); writeBEUint16(pHeader + ETC1_PKM_ENCODED_HEIGHT_OFFSET, encodedHeight); writeBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET, width); writeBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET, height); } // Check if a PKM header is correctly formatted. etc1_bool etc1_pkm_is_valid(const etc1_byte* pHeader) { if (memcmp(pHeader, kMagic, sizeof(kMagic))) { return false; } etc1_uint32 format = readBEUint16(pHeader + ETC1_PKM_FORMAT_OFFSET); etc1_uint32 encodedWidth = readBEUint16(pHeader + ETC1_PKM_ENCODED_WIDTH_OFFSET); etc1_uint32 encodedHeight = readBEUint16(pHeader + ETC1_PKM_ENCODED_HEIGHT_OFFSET); etc1_uint32 width = readBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET); etc1_uint32 height = readBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET); return format == ETC1_RGB_NO_MIPMAPS && encodedWidth >= width && encodedWidth - width < 4 && encodedHeight >= height && encodedHeight - height < 4; } // Read the image width from a PKM header etc1_uint32 etc1_pkm_get_width(const etc1_byte* pHeader) { return readBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET); } // Read the image height from a PKM header etc1_uint32 etc1_pkm_get_height(const etc1_byte* pHeader){ return readBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET); }