/* ** Copyright 2011, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include <fcntl.h> #include <stdio.h> #include <memory> #include <gtest/gtest.h> #include "BlobCache.h" namespace android { template<typename T> using sp = std::shared_ptr<T>; class BlobCacheTest : public ::testing::Test { protected: enum { OK = 0, BAD_VALUE = -EINVAL }; enum { MAX_KEY_SIZE = 6, MAX_VALUE_SIZE = 8, MAX_TOTAL_SIZE = 13, }; virtual void SetUp() { mBC.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE)); } virtual void TearDown() { mBC.reset(); } std::unique_ptr<BlobCache> mBC; }; TEST_F(BlobCacheTest, CacheSingleValueSucceeds) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); ASSERT_EQ('e', buf[0]); ASSERT_EQ('f', buf[1]); ASSERT_EQ('g', buf[2]); ASSERT_EQ('h', buf[3]); } TEST_F(BlobCacheTest, CacheTwoValuesSucceeds) { unsigned char buf[2] = { 0xee, 0xee }; mBC->set("ab", 2, "cd", 2); mBC->set("ef", 2, "gh", 2); ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2)); ASSERT_EQ('c', buf[0]); ASSERT_EQ('d', buf[1]); ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2)); ASSERT_EQ('g', buf[0]); ASSERT_EQ('h', buf[1]); } TEST_F(BlobCacheTest, GetOnlyWritesInsideBounds) { unsigned char buf[6] = { 0xee, 0xee, 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf+1, 4)); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ('e', buf[1]); ASSERT_EQ('f', buf[2]); ASSERT_EQ('g', buf[3]); ASSERT_EQ('h', buf[4]); ASSERT_EQ(0xee, buf[5]); } TEST_F(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) { unsigned char buf[3] = { 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3)); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ(0xee, buf[1]); ASSERT_EQ(0xee, buf[2]); } TEST_F(BlobCacheTest, GetDoesntAccessNullBuffer) { mBC->set("abcd", 4, "efgh", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0)); } TEST_F(BlobCacheTest, MultipleSetsCacheLatestValue) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); mBC->set("abcd", 4, "ijkl", 4); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); ASSERT_EQ('i', buf[0]); ASSERT_EQ('j', buf[1]); ASSERT_EQ('k', buf[2]); ASSERT_EQ('l', buf[3]); } TEST_F(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) { unsigned char buf[MAX_VALUE_SIZE+1] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1); ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); ASSERT_EQ('e', buf[0]); ASSERT_EQ('f', buf[1]); ASSERT_EQ('g', buf[2]); ASSERT_EQ('h', buf[3]); } TEST_F(BlobCacheTest, DoesntCacheIfKeyIsTooBig) { char key[MAX_KEY_SIZE+1]; unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; for (int i = 0; i < MAX_KEY_SIZE+1; i++) { key[i] = 'a'; } mBC->set(key, MAX_KEY_SIZE+1, "bbbb", 4); ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE+1, buf, 4)); ASSERT_EQ(0xee, buf[0]); ASSERT_EQ(0xee, buf[1]); ASSERT_EQ(0xee, buf[2]); ASSERT_EQ(0xee, buf[3]); } TEST_F(BlobCacheTest, DoesntCacheIfValueIsTooBig) { char buf[MAX_VALUE_SIZE+1]; for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { buf[i] = 'b'; } mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1); for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { buf[i] = 0xee; } ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE+1)); for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { SCOPED_TRACE(i); ASSERT_EQ(0xee, buf[i]); } } TEST_F(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) { // Check a testing assumptions ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE); ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 }; char key[MAX_KEY_SIZE]; char buf[bufSize]; for (int i = 0; i < MAX_KEY_SIZE; i++) { key[i] = 'a'; } for (int i = 0; i < bufSize; i++) { buf[i] = 'b'; } mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE); ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); } TEST_F(BlobCacheTest, CacheMaxKeySizeSucceeds) { char key[MAX_KEY_SIZE]; unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; for (int i = 0; i < MAX_KEY_SIZE; i++) { key[i] = 'a'; } mBC->set(key, MAX_KEY_SIZE, "wxyz", 4); ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4)); ASSERT_EQ('w', buf[0]); ASSERT_EQ('x', buf[1]); ASSERT_EQ('y', buf[2]); ASSERT_EQ('z', buf[3]); } TEST_F(BlobCacheTest, CacheMaxValueSizeSucceeds) { char buf[MAX_VALUE_SIZE]; for (int i = 0; i < MAX_VALUE_SIZE; i++) { buf[i] = 'b'; } mBC->set("abcd", 4, buf, MAX_VALUE_SIZE); for (int i = 0; i < MAX_VALUE_SIZE; i++) { buf[i] = 0xee; } ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE)); for (int i = 0; i < MAX_VALUE_SIZE; i++) { SCOPED_TRACE(i); ASSERT_EQ('b', buf[i]); } } TEST_F(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) { // Check a testing assumption ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE }; char key[MAX_KEY_SIZE]; char buf[bufSize]; for (int i = 0; i < MAX_KEY_SIZE; i++) { key[i] = 'a'; } for (int i = 0; i < bufSize; i++) { buf[i] = 'b'; } mBC->set(key, MAX_KEY_SIZE, buf, bufSize); ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); } TEST_F(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) { unsigned char buf[1] = { 0xee }; mBC->set("x", 1, "y", 1); ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1)); ASSERT_EQ('y', buf[0]); } TEST_F(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) { for (int i = 0; i < 256; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } int numCached = 0; for (int i = 0; i < 256; i++) { uint8_t k = i; if (mBC->get(&k, 1, NULL, 0) == 1) { numCached++; } } ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached); } TEST_F(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, "x", 1); } // Insert one more entry, causing a cache overflow. { uint8_t k = maxEntries; mBC->set(&k, 1, "x", 1); } // Count the number of entries in the cache. int numCached = 0; for (int i = 0; i < maxEntries+1; i++) { uint8_t k = i; if (mBC->get(&k, 1, NULL, 0) == 1) { numCached++; } } ASSERT_EQ(maxEntries/2 + 1, numCached); } class BlobCacheFlattenTest : public BlobCacheTest { protected: virtual void SetUp() { BlobCacheTest::SetUp(); mBC2.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE)); } virtual void TearDown() { mBC2.reset(); BlobCacheTest::TearDown(); } void roundTrip() { size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); ASSERT_EQ(OK, mBC2->unflatten(flat, size)); delete[] flat; } sp<BlobCache> mBC2; }; TEST_F(BlobCacheFlattenTest, FlattenOneValue) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); roundTrip(); ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4)); ASSERT_EQ('e', buf[0]); ASSERT_EQ('f', buf[1]); ASSERT_EQ('g', buf[2]); ASSERT_EQ('h', buf[3]); } TEST_F(BlobCacheFlattenTest, FlattenFullCache) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, &k, 1); } roundTrip(); // Verify the deserialized cache for (int i = 0; i < maxEntries; i++) { uint8_t k = i; uint8_t v = 0xee; ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1)); ASSERT_EQ(k, v); } } TEST_F(BlobCacheFlattenTest, FlattenDoesntChangeCache) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, &k, 1); } size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); delete[] flat; // Verify the cache that we just serialized for (int i = 0; i < maxEntries; i++) { uint8_t k = i; uint8_t v = 0xee; ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1)); ASSERT_EQ(k, v); } } TEST_F(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) { // Fill up the entire cache with 1 char key/value pairs. const int maxEntries = MAX_TOTAL_SIZE / 2; for (int i = 0; i < maxEntries; i++) { uint8_t k = i; mBC->set(&k, 1, &k, 1); } size_t size = mBC->getFlattenedSize() - 1; uint8_t* flat = new uint8_t[size]; // ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size)); // TODO: The above fails. I expect this is so because getFlattenedSize() // overstimates the size by using PROPERTY_VALUE_MAX. delete[] flat; } TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadMagic) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); flat[1] = ~flat[1]; // Bad magic should cause an error. ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size)); delete[] flat; // The error should cause the unflatten to result in an empty cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); flat[5] = ~flat[5]; // Version mismatches shouldn't cause errors, but should not use the // serialized entries ASSERT_EQ(OK, mBC2->unflatten(flat, size)); delete[] flat; // The version mismatch should cause the unflatten to result in an empty // cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } TEST_F(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); flat[10] = ~flat[10]; // Version mismatches shouldn't cause errors, but should not use the // serialized entries ASSERT_EQ(OK, mBC2->unflatten(flat, size)); delete[] flat; // The version mismatch should cause the unflatten to result in an empty // cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } TEST_F(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) { unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; mBC->set("abcd", 4, "efgh", 4); size_t size = mBC->getFlattenedSize(); uint8_t* flat = new uint8_t[size]; ASSERT_EQ(OK, mBC->flatten(flat, size)); // A buffer truncation shouldt cause an error // ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1)); // TODO: The above appears to fail because getFlattenedSize() is // conservative. delete[] flat; // The error should cause the unflatten to result in an empty cache ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); } } // namespace android