#include <gtest/gtest.h> #include <poll.h> #include <private/dvr/buffer_hub_client.h> #include <private/dvr/bufferhub_rpc.h> #include <private/dvr/detached_buffer.h> #include <sys/epoll.h> #include <sys/eventfd.h> #include <ui/DetachedBufferHandle.h> #include <mutex> #include <thread> #define RETRY_EINTR(fnc_call) \ ([&]() -> decltype(fnc_call) { \ decltype(fnc_call) result; \ do { \ result = (fnc_call); \ } while (result == -1 && errno == EINTR); \ return result; \ })() using android::GraphicBuffer; using android::sp; using android::dvr::BufferConsumer; using android::dvr::BufferProducer; using android::dvr::DetachedBuffer; using android::dvr::BufferHubDefs::IsBufferAcquired; using android::dvr::BufferHubDefs::IsBufferGained; using android::dvr::BufferHubDefs::IsBufferPosted; using android::dvr::BufferHubDefs::IsBufferReleased; using android::dvr::BufferHubDefs::kConsumerStateMask; using android::dvr::BufferHubDefs::kMetadataHeaderSize; using android::dvr::BufferHubDefs::kProducerStateBit; using android::pdx::LocalChannelHandle; using android::pdx::LocalHandle; using android::pdx::Status; const int kWidth = 640; const int kHeight = 480; const int kLayerCount = 1; const int kFormat = HAL_PIXEL_FORMAT_RGBA_8888; const int kUsage = 0; const size_t kUserMetadataSize = 0; const uint64_t kContext = 42; const size_t kMaxConsumerCount = 63; const int kPollTimeoutMs = 100; using LibBufferHubTest = ::testing::Test; TEST_F(LibBufferHubTest, TestBasicUsage) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); // Check that consumers can spawn other consumers. std::unique_ptr<BufferConsumer> c2 = BufferConsumer::Import(c->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); // Producer state mask is unique, i.e. 1. EXPECT_EQ(p->buffer_state_bit(), kProducerStateBit); // Consumer state mask cannot have producer bit on. EXPECT_EQ(c->buffer_state_bit() & kProducerStateBit, 0U); // Consumer state mask must be a single, i.e. power of 2. EXPECT_NE(c->buffer_state_bit(), 0U); EXPECT_EQ(c->buffer_state_bit() & (c->buffer_state_bit() - 1), 0U); // Consumer state mask cannot have producer bit on. EXPECT_EQ(c2->buffer_state_bit() & kProducerStateBit, 0U); // Consumer state mask must be a single, i.e. power of 2. EXPECT_NE(c2->buffer_state_bit(), 0U); EXPECT_EQ(c2->buffer_state_bit() & (c2->buffer_state_bit() - 1), 0U); // Each consumer should have unique bit. EXPECT_EQ(c->buffer_state_bit() & c2->buffer_state_bit(), 0U); // Initial state: producer not available, consumers not available. EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); EXPECT_EQ(0, p->Post(LocalHandle(), kContext)); // New state: producer not available, consumers available. EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(1, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); uint64_t context; LocalHandle fence; EXPECT_EQ(0, c->Acquire(&fence, &context)); EXPECT_EQ(kContext, context); EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c2->Acquire(&fence, &context)); EXPECT_EQ(kContext, context); EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c->Release(LocalHandle())); EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c2->Discard()); EXPECT_EQ(1, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(0, p->Gain(&fence)); EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); } TEST_F(LibBufferHubTest, TestEpoll) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); LocalHandle epoll_fd{epoll_create1(EPOLL_CLOEXEC)}; ASSERT_TRUE(epoll_fd.IsValid()); epoll_event event; std::array<epoll_event, 64> events; auto event_sources = p->GetEventSources(); ASSERT_LT(event_sources.size(), events.size()); for (const auto& event_source : event_sources) { event = {.events = event_source.event_mask | EPOLLET, .data = {.fd = p->event_fd()}}; ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, &event)); } event_sources = c->GetEventSources(); ASSERT_LT(event_sources.size(), events.size()); for (const auto& event_source : event_sources) { event = {.events = event_source.event_mask | EPOLLET, .data = {.fd = c->event_fd()}}; ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, &event)); } // No events should be signaled initially. ASSERT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 0)); // Post the producer and check for consumer signal. EXPECT_EQ(0, p->Post({}, kContext)); ASSERT_EQ(1, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); ASSERT_TRUE(events[0].events & EPOLLIN); ASSERT_EQ(c->event_fd(), events[0].data.fd); // Save the event bits to translate later. event = events[0]; // Check for events again. Edge-triggered mode should prevent any. EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); // Translate the events. auto event_status = c->GetEventMask(event.events); ASSERT_TRUE(event_status); ASSERT_TRUE(event_status.get() & EPOLLIN); // Check for events again. Edge-triggered mode should prevent any. EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), kPollTimeoutMs)); } TEST_F(LibBufferHubTest, TestStateMask) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); // It's ok to create up to kMaxConsumerCount consumer buffers. uint64_t buffer_state_bits = p->buffer_state_bit(); std::array<std::unique_ptr<BufferConsumer>, kMaxConsumerCount> cs; for (size_t i = 0; i < kMaxConsumerCount; i++) { cs[i] = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(cs[i].get() != nullptr); // Expect all buffers have unique state mask. EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U); buffer_state_bits |= cs[i]->buffer_state_bit(); } EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask); // The 64th creation will fail with out-of-memory error. auto state = p->CreateConsumer(); EXPECT_EQ(state.error(), E2BIG); // Release any consumer should allow us to re-create. for (size_t i = 0; i < kMaxConsumerCount; i++) { buffer_state_bits &= ~cs[i]->buffer_state_bit(); cs[i] = nullptr; cs[i] = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(cs[i].get() != nullptr); // The released state mask will be reused. EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U); buffer_state_bits |= cs[i]->buffer_state_bit(); EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask); } } TEST_F(LibBufferHubTest, TestStateTransitions) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); uint64_t context; LocalHandle fence; // The producer buffer starts in gained state. // Acquire, release, and gain in gained state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); EXPECT_EQ(-EALREADY, p->Gain(&fence)); // Post in gained state should succeed. EXPECT_EQ(0, p->Post(LocalHandle(), kContext)); // Post, release, and gain in posted state should fail. EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext)); EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); EXPECT_EQ(-EBUSY, p->Gain(&fence)); // Acquire in posted state should succeed. EXPECT_LE(0, c->Acquire(&fence, &context)); // Acquire, post, and gain in acquired state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext)); EXPECT_EQ(-EBUSY, p->Gain(&fence)); // Release in acquired state should succeed. EXPECT_EQ(0, c->Release(LocalHandle())); EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); // Release, acquire, and post in released state should fail. EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext)); // Gain in released state should succeed. EXPECT_EQ(0, p->Gain(&fence)); // Acquire, release, and gain in gained state should fail. EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); EXPECT_EQ(-EALREADY, p->Gain(&fence)); } TEST_F(LibBufferHubTest, TestAsyncStateTransitions) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // The producer buffer starts in gained state. // Acquire, release, and gain in gained state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); // Post in gained state should succeed. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(IsBufferPosted(p->buffer_state())); // Post, release, and gain in posted state should fail. EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); // Acquire in posted state should succeed. EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(IsBufferAcquired(p->buffer_state())); // Acquire, post, and gain in acquired state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); // Release in acquired state should succeed. EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(IsBufferReleased(p->buffer_state())); // Release, acquire, and post in released state should fail. EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); // Gain in released state should succeed. EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(p->buffer_state(), c->buffer_state()); EXPECT_TRUE(IsBufferGained(p->buffer_state())); // Acquire, release, and gain in gained state should fail. EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence)); EXPECT_FALSE(invalid_fence.IsValid()); } TEST_F(LibBufferHubTest, TestZeroConsumer) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Newly created. EXPECT_TRUE(IsBufferGained(p->buffer_state())); EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(IsBufferPosted(p->buffer_state())); // The buffer should stay in posted stay until a consumer picks it up. EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); // A new consumer should still be able to acquire the buffer immediately. std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); } TEST_F(LibBufferHubTest, TestMaxConsumers) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::array<std::unique_ptr<BufferConsumer>, kMaxConsumerCount> cs; for (size_t i = 0; i < kMaxConsumerCount; i++) { cs[i] = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(cs[i].get() != nullptr); EXPECT_TRUE(IsBufferGained(cs[i]->buffer_state())); } DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post the producer should trigger all consumers to be available. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(IsBufferPosted(p->buffer_state())); for (size_t i = 0; i < kMaxConsumerCount; i++) { EXPECT_TRUE( IsBufferPosted(cs[i]->buffer_state(), cs[i]->buffer_state_bit())); EXPECT_LT(0, RETRY_EINTR(cs[i]->Poll(kPollTimeoutMs))); EXPECT_EQ(0, cs[i]->AcquireAsync(&metadata, &invalid_fence)); EXPECT_TRUE(IsBufferAcquired(p->buffer_state())); } // All consumers have to release before the buffer is considered to be // released. for (size_t i = 0; i < kMaxConsumerCount; i++) { EXPECT_FALSE(IsBufferReleased(p->buffer_state())); EXPECT_EQ(0, cs[i]->ReleaseAsync(&metadata, invalid_fence)); } EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_TRUE(IsBufferReleased(p->buffer_state())); // Buffer state cross all clients must be consistent. for (size_t i = 0; i < kMaxConsumerCount; i++) { EXPECT_EQ(p->buffer_state(), cs[i]->buffer_state()); } } TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferGained) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); EXPECT_TRUE(IsBufferGained(p->buffer_state())); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_TRUE(IsBufferGained(c->buffer_state())); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post the gained buffer should signal already created consumer. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(IsBufferPosted(p->buffer_state())); EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); } TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferPosted) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); EXPECT_TRUE(IsBufferGained(p->buffer_state())); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post the gained buffer before any consumer gets created. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_TRUE(IsBufferPosted(p->buffer_state())); // Newly created consumer should be automatically sigalled. std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); EXPECT_TRUE(IsBufferPosted(c->buffer_state())); EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); } TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferReleased) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c1 = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c1.get() != nullptr); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; // Post, acquire, and release the buffer.. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c1->AcquireAsync(&metadata, &invalid_fence)); EXPECT_EQ(0, c1->ReleaseAsync(&metadata, invalid_fence)); // Note that the next PDX call is on the producer channel, which may be // executed before Release impulse gets executed by bufferhubd. Thus, here we // need to wait until the releasd is confirmed before creating another // consumer. EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_TRUE(IsBufferReleased(p->buffer_state())); // Create another consumer immediately after the release, should not make the // buffer un-released. std::unique_ptr<BufferConsumer> c2 = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); EXPECT_TRUE(IsBufferReleased(p->buffer_state())); EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); EXPECT_TRUE(IsBufferGained(p->buffer_state())); } TEST_F(LibBufferHubTest, TestWithCustomMetadata) { struct Metadata { int64_t field1; int64_t field2; }; std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); Metadata m = {1, 3}; EXPECT_EQ(0, p->Post(LocalHandle(), m)); EXPECT_LE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); LocalHandle fence; Metadata m2 = {}; EXPECT_EQ(0, c->Acquire(&fence, &m2)); EXPECT_EQ(m.field1, m2.field1); EXPECT_EQ(m.field2, m2.field2); EXPECT_EQ(0, c->Release(LocalHandle())); EXPECT_LT(0, RETRY_EINTR(p->Poll(0))); } TEST_F(LibBufferHubTest, TestPostWithWrongMetaSize) { struct Metadata { int64_t field1; int64_t field2; }; struct OverSizedMetadata { int64_t field1; int64_t field2; int64_t field3; }; std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); // It is illegal to post metadata larger than originally requested during // buffer allocation. OverSizedMetadata evil_meta = {}; EXPECT_NE(0, p->Post(LocalHandle(), evil_meta)); EXPECT_GE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); // It is ok to post metadata smaller than originally requested during // buffer allocation. int64_t sequence = 42; EXPECT_EQ(0, p->Post(LocalHandle(), sequence)); } TEST_F(LibBufferHubTest, TestAcquireWithWrongMetaSize) { struct Metadata { int64_t field1; int64_t field2; }; struct OverSizedMetadata { int64_t field1; int64_t field2; int64_t field3; }; std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); Metadata m = {1, 3}; EXPECT_EQ(0, p->Post(LocalHandle(), m)); LocalHandle fence; int64_t sequence; OverSizedMetadata e; // It is illegal to acquire metadata larger than originally requested during // buffer allocation. EXPECT_NE(0, c->Acquire(&fence, &e)); // It is ok to acquire metadata smaller than originally requested during // buffer allocation. EXPECT_EQ(0, c->Acquire(&fence, &sequence)); EXPECT_EQ(m.field1, sequence); } TEST_F(LibBufferHubTest, TestAcquireWithNoMeta) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); int64_t sequence = 3; EXPECT_EQ(0, p->Post(LocalHandle(), sequence)); LocalHandle fence; EXPECT_EQ(0, c->Acquire(&fence)); } TEST_F(LibBufferHubTest, TestWithNoMeta) { std::unique_ptr<BufferProducer> p = BufferProducer::Create(kWidth, kHeight, kFormat, kUsage); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); LocalHandle fence; EXPECT_EQ(0, p->Post<void>(LocalHandle())); EXPECT_EQ(0, c->Acquire(&fence)); } TEST_F(LibBufferHubTest, TestFailureToPostMetaFromABufferWithoutMeta) { std::unique_ptr<BufferProducer> p = BufferProducer::Create(kWidth, kHeight, kFormat, kUsage); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); int64_t sequence = 3; EXPECT_NE(0, p->Post(LocalHandle(), sequence)); } namespace { int PollFd(int fd, int timeout_ms) { pollfd p = {fd, POLLIN, 0}; return poll(&p, 1, timeout_ms); } } // namespace TEST_F(LibBufferHubTest, TestAcquireFence) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, /*metadata_size=*/0); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c.get() != nullptr); DvrNativeBufferMetadata meta; LocalHandle f1(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); // Post with unsignaled fence. EXPECT_EQ(0, p->PostAsync(&meta, f1)); // Should acquire a valid fence. LocalHandle f2; EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c->AcquireAsync(&meta, &f2)); EXPECT_TRUE(f2.IsValid()); // The original fence and acquired fence should have different fd number. EXPECT_NE(f1.Get(), f2.Get()); EXPECT_GE(0, PollFd(f2.Get(), 0)); // Signal the original fence will trigger the new fence. eventfd_write(f1.Get(), 1); // Now the original FD has been signaled. EXPECT_LT(0, PollFd(f2.Get(), kPollTimeoutMs)); // Release the consumer with an invalid fence. EXPECT_EQ(0, c->ReleaseAsync(&meta, LocalHandle())); // Should gain an invalid fence. LocalHandle f3; EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(0, p->GainAsync(&meta, &f3)); EXPECT_FALSE(f3.IsValid()); // Post with a signaled fence. EXPECT_EQ(0, p->PostAsync(&meta, f1)); // Should acquire a valid fence and it's already signalled. LocalHandle f4; EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); EXPECT_EQ(0, c->AcquireAsync(&meta, &f4)); EXPECT_TRUE(f4.IsValid()); EXPECT_LT(0, PollFd(f4.Get(), kPollTimeoutMs)); // Release with an unsignalled fence and signal it immediately after release // without producer gainning. LocalHandle f5(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); EXPECT_EQ(0, c->ReleaseAsync(&meta, f5)); eventfd_write(f5.Get(), 1); // Should gain a valid fence, which is already signaled. LocalHandle f6; EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); EXPECT_EQ(0, p->GainAsync(&meta, &f6)); EXPECT_TRUE(f6.IsValid()); EXPECT_LT(0, PollFd(f6.Get(), kPollTimeoutMs)); } TEST_F(LibBufferHubTest, TestOrphanedAcquire) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p.get() != nullptr); std::unique_ptr<BufferConsumer> c1 = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c1.get() != nullptr); const uint64_t consumer_state_bit1 = c1->buffer_state_bit(); DvrNativeBufferMetadata meta; EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle())); LocalHandle fence; EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs))); EXPECT_LE(0, c1->AcquireAsync(&meta, &fence)); // Destroy the consumer now will make it orphaned and the buffer is still // acquired. c1 = nullptr; EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); std::unique_ptr<BufferConsumer> c2 = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c2.get() != nullptr); const uint64_t consumer_state_bit2 = c2->buffer_state_bit(); EXPECT_NE(consumer_state_bit1, consumer_state_bit2); // The new consumer is available for acquire. EXPECT_LT(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); EXPECT_LE(0, c2->AcquireAsync(&meta, &fence)); // Releasing the consumer makes the buffer gainable. EXPECT_EQ(0, c2->ReleaseAsync(&meta, LocalHandle())); // The buffer is now available for the producer to gain. EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); // But if another consumer is created in released state. std::unique_ptr<BufferConsumer> c3 = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(c3.get() != nullptr); const uint64_t consumer_state_bit3 = c3->buffer_state_bit(); EXPECT_NE(consumer_state_bit2, consumer_state_bit3); // The consumer buffer is not acquirable. EXPECT_GE(0, RETRY_EINTR(c3->Poll(kPollTimeoutMs))); EXPECT_EQ(-EBUSY, c3->AcquireAsync(&meta, &fence)); // Producer should be able to gain no matter what. EXPECT_EQ(0, p->GainAsync(&meta, &fence)); } TEST_F(LibBufferHubTest, TestDetachBufferFromProducer) { std::unique_ptr<BufferProducer> p = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); std::unique_ptr<BufferConsumer> c = BufferConsumer::Import(p->CreateConsumer()); ASSERT_TRUE(p.get() != nullptr); ASSERT_TRUE(c.get() != nullptr); DvrNativeBufferMetadata metadata; LocalHandle invalid_fence; int p_id = p->id(); // Detach in posted state should fail. EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0); auto s1 = p->Detach(); EXPECT_FALSE(s1); // Detach in acquired state should fail. EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); s1 = p->Detach(); EXPECT_FALSE(s1); // Detach in released state should fail. EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0); s1 = p->Detach(); EXPECT_FALSE(s1); // Detach in gained state should succeed. EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); s1 = p->Detach(); EXPECT_TRUE(s1); LocalChannelHandle handle = s1.take(); EXPECT_TRUE(handle.valid()); // Both producer and consumer should have hangup. EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0); auto s2 = p->GetEventMask(POLLHUP); EXPECT_TRUE(s2); EXPECT_EQ(s2.get(), POLLHUP); EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0); s2 = p->GetEventMask(POLLHUP); EXPECT_TRUE(s2); EXPECT_EQ(s2.get(), POLLHUP); auto s3 = p->CreateConsumer(); EXPECT_FALSE(s3); // Note that here the expected error code is EOPNOTSUPP as the socket towards // ProducerChannel has been teared down. EXPECT_EQ(s3.error(), EOPNOTSUPP); s3 = c->CreateConsumer(); EXPECT_FALSE(s3); // Note that here the expected error code is EPIPE returned from // ConsumerChannel::HandleMessage as the socket is still open but the producer // is gone. EXPECT_EQ(s3.error(), EPIPE); // Detached buffer handle can be use to construct a new DetachedBuffer object. auto d = DetachedBuffer::Import(std::move(handle)); EXPECT_FALSE(handle.valid()); EXPECT_TRUE(d->IsConnected()); EXPECT_TRUE(d->IsValid()); ASSERT_TRUE(d->buffer() != nullptr); EXPECT_EQ(d->buffer()->initCheck(), 0); EXPECT_EQ(d->id(), p_id); } TEST_F(LibBufferHubTest, TestCreateDetachedBufferFails) { // Buffer Creation will fail: BLOB format requires height to be 1. auto b1 = DetachedBuffer::Create(kWidth, /*height=2*/ 2, kLayerCount, /*format=*/HAL_PIXEL_FORMAT_BLOB, kUsage, kUserMetadataSize); EXPECT_FALSE(b1->IsConnected()); EXPECT_FALSE(b1->IsValid()); EXPECT_TRUE(b1->buffer() == nullptr); // Buffer Creation will fail: user metadata size too large. auto b2 = DetachedBuffer::Create( kWidth, kHeight, kLayerCount, kFormat, kUsage, /*user_metadata_size=*/std::numeric_limits<size_t>::max()); EXPECT_FALSE(b2->IsConnected()); EXPECT_FALSE(b2->IsValid()); EXPECT_TRUE(b2->buffer() == nullptr); // Buffer Creation will fail: user metadata size too large. auto b3 = DetachedBuffer::Create( kWidth, kHeight, kLayerCount, kFormat, kUsage, /*user_metadata_size=*/std::numeric_limits<size_t>::max() - kMetadataHeaderSize); EXPECT_FALSE(b3->IsConnected()); EXPECT_FALSE(b3->IsValid()); EXPECT_TRUE(b3->buffer() == nullptr); } TEST_F(LibBufferHubTest, TestCreateDetachedBuffer) { auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, kUsage, kUserMetadataSize); int b1_id = b1->id(); EXPECT_TRUE(b1->IsConnected()); EXPECT_TRUE(b1->IsValid()); ASSERT_TRUE(b1->buffer() != nullptr); EXPECT_NE(b1->id(), 0); EXPECT_EQ(b1->buffer()->initCheck(), 0); EXPECT_FALSE(b1->buffer()->isDetachedBuffer()); // Takes a standalone GraphicBuffer which still holds on an // PDX::LocalChannelHandle towards BufferHub. sp<GraphicBuffer> g1 = b1->TakeGraphicBuffer(); ASSERT_TRUE(g1 != nullptr); EXPECT_TRUE(g1->isDetachedBuffer()); EXPECT_FALSE(b1->IsConnected()); EXPECT_FALSE(b1->IsValid()); EXPECT_TRUE(b1->buffer() == nullptr); sp<GraphicBuffer> g2 = b1->TakeGraphicBuffer(); ASSERT_TRUE(g2 == nullptr); auto h1 = g1->takeDetachedBufferHandle(); ASSERT_TRUE(h1 != nullptr); ASSERT_TRUE(h1->isValid()); EXPECT_FALSE(g1->isDetachedBuffer()); auto b2 = DetachedBuffer::Import(std::move(h1->handle())); ASSERT_FALSE(h1->isValid()); EXPECT_TRUE(b2->IsConnected()); EXPECT_TRUE(b2->IsValid()); ASSERT_TRUE(b2->buffer() != nullptr); EXPECT_EQ(b2->buffer()->initCheck(), 0); // The newly created DetachedBuffer should share the original buffer_id. EXPECT_EQ(b2->id(), b1_id); EXPECT_FALSE(b2->buffer()->isDetachedBuffer()); } TEST_F(LibBufferHubTest, TestPromoteDetachedBuffer) { auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, kUsage, kUserMetadataSize); int b1_id = b1->id(); EXPECT_TRUE(b1->IsValid()); auto status_or_handle = b1->Promote(); EXPECT_TRUE(status_or_handle); // The detached buffer should have hangup. EXPECT_GT(RETRY_EINTR(b1->Poll(kPollTimeoutMs)), 0); auto status_or_int = b1->GetEventMask(POLLHUP); EXPECT_TRUE(status_or_int.ok()); EXPECT_EQ(status_or_int.get(), POLLHUP); // The buffer client is still considered as connected but invalid. EXPECT_TRUE(b1->IsConnected()); EXPECT_FALSE(b1->IsValid()); // Gets the channel handle for the producer. LocalChannelHandle h1 = status_or_handle.take(); EXPECT_TRUE(h1.valid()); std::unique_ptr<BufferProducer> p1 = BufferProducer::Import(std::move(h1)); EXPECT_FALSE(h1.valid()); ASSERT_TRUE(p1 != nullptr); int p1_id = p1->id(); // A newly promoted ProducerBuffer should inherit the same buffer id. EXPECT_EQ(b1_id, p1_id); EXPECT_TRUE(IsBufferGained(p1->buffer_state())); } TEST_F(LibBufferHubTest, TestDetachThenPromote) { std::unique_ptr<BufferProducer> p1 = BufferProducer::Create( kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); ASSERT_TRUE(p1.get() != nullptr); int p1_id = p1->id(); // Detached the producer. auto status_or_handle = p1->Detach(); EXPECT_TRUE(status_or_handle.ok()); LocalChannelHandle h1 = status_or_handle.take(); EXPECT_TRUE(h1.valid()); // Detached buffer handle can be use to construct a new DetachedBuffer object. auto b1 = DetachedBuffer::Import(std::move(h1)); EXPECT_FALSE(h1.valid()); EXPECT_TRUE(b1->IsValid()); int b1_id = b1->id(); EXPECT_EQ(b1_id, p1_id); // Promote the detached buffer. status_or_handle = b1->Promote(); // The buffer client is still considered as connected but invalid. EXPECT_TRUE(b1->IsConnected()); EXPECT_FALSE(b1->IsValid()); EXPECT_TRUE(status_or_handle.ok()); // Gets the channel handle for the producer. LocalChannelHandle h2 = status_or_handle.take(); EXPECT_TRUE(h2.valid()); std::unique_ptr<BufferProducer> p2 = BufferProducer::Import(std::move(h2)); EXPECT_FALSE(h2.valid()); ASSERT_TRUE(p2 != nullptr); int p2_id = p2->id(); // A newly promoted ProducerBuffer should inherit the same buffer id. EXPECT_EQ(b1_id, p2_id); EXPECT_TRUE(IsBufferGained(p2->buffer_state())); }