/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Sensors" #include <sensor/SensorEventQueue.h> #include <algorithm> #include <sys/socket.h> #include <utils/RefBase.h> #include <utils/Looper.h> #include <sensor/Sensor.h> #include <sensor/BitTube.h> #include <sensor/ISensorEventConnection.h> #include <android/sensor.h> using std::min; // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- SensorEventQueue::SensorEventQueue(const sp<ISensorEventConnection>& connection) : mSensorEventConnection(connection), mRecBuffer(NULL), mAvailable(0), mConsumed(0), mNumAcksToSend(0) { mRecBuffer = new ASensorEvent[MAX_RECEIVE_BUFFER_EVENT_COUNT]; } SensorEventQueue::~SensorEventQueue() { delete [] mRecBuffer; } void SensorEventQueue::onFirstRef() { mSensorChannel = mSensorEventConnection->getSensorChannel(); } int SensorEventQueue::getFd() const { return mSensorChannel->getFd(); } ssize_t SensorEventQueue::write(const sp<BitTube>& tube, ASensorEvent const* events, size_t numEvents) { return BitTube::sendObjects(tube, events, numEvents); } ssize_t SensorEventQueue::read(ASensorEvent* events, size_t numEvents) { if (mAvailable == 0) { ssize_t err = BitTube::recvObjects(mSensorChannel, mRecBuffer, MAX_RECEIVE_BUFFER_EVENT_COUNT); if (err < 0) { return err; } mAvailable = static_cast<size_t>(err); mConsumed = 0; } size_t count = min(numEvents, mAvailable); memcpy(events, mRecBuffer + mConsumed, count * sizeof(ASensorEvent)); mAvailable -= count; mConsumed += count; return static_cast<ssize_t>(count); } sp<Looper> SensorEventQueue::getLooper() const { Mutex::Autolock _l(mLock); if (mLooper == 0) { mLooper = new Looper(true); mLooper->addFd(getFd(), getFd(), ALOOPER_EVENT_INPUT, NULL, NULL); } return mLooper; } status_t SensorEventQueue::waitForEvent() const { const int fd = getFd(); sp<Looper> looper(getLooper()); int events; int32_t result; do { result = looper->pollOnce(-1, NULL, &events, NULL); if (result == ALOOPER_POLL_ERROR) { ALOGE("SensorEventQueue::waitForEvent error (errno=%d)", errno); result = -EPIPE; // unknown error, so we make up one break; } if (events & ALOOPER_EVENT_HANGUP) { // the other-side has died ALOGE("SensorEventQueue::waitForEvent error HANGUP"); result = -EPIPE; // unknown error, so we make up one break; } } while (result != fd); return (result == fd) ? status_t(NO_ERROR) : result; } status_t SensorEventQueue::wake() const { sp<Looper> looper(getLooper()); looper->wake(); return NO_ERROR; } status_t SensorEventQueue::enableSensor(Sensor const* sensor) const { return enableSensor(sensor, SENSOR_DELAY_NORMAL); } status_t SensorEventQueue::enableSensor(Sensor const* sensor, int32_t samplingPeriodUs) const { return mSensorEventConnection->enableDisable(sensor->getHandle(), true, us2ns(samplingPeriodUs), 0, 0); } status_t SensorEventQueue::disableSensor(Sensor const* sensor) const { return mSensorEventConnection->enableDisable(sensor->getHandle(), false, 0, 0, 0); } status_t SensorEventQueue::enableSensor(int32_t handle, int32_t samplingPeriodUs, int64_t maxBatchReportLatencyUs, int reservedFlags) const { return mSensorEventConnection->enableDisable(handle, true, us2ns(samplingPeriodUs), us2ns(maxBatchReportLatencyUs), reservedFlags); } status_t SensorEventQueue::flush() const { return mSensorEventConnection->flush(); } status_t SensorEventQueue::disableSensor(int32_t handle) const { return mSensorEventConnection->enableDisable(handle, false, 0, 0, false); } status_t SensorEventQueue::setEventRate(Sensor const* sensor, nsecs_t ns) const { return mSensorEventConnection->setEventRate(sensor->getHandle(), ns); } status_t SensorEventQueue::injectSensorEvent(const ASensorEvent& event) { do { // Blocking call. ssize_t size = ::send(mSensorChannel->getFd(), &event, sizeof(event), MSG_NOSIGNAL); if (size >= 0) { return NO_ERROR; } else if (size < 0 && errno == EAGAIN) { // If send is returning a "Try again" error, sleep for 100ms and try again. In all // other cases log a failure and exit. usleep(100000); } else { ALOGE("injectSensorEvent failure %s %zd", strerror(errno), size); return INVALID_OPERATION; } } while (true); } void SensorEventQueue::sendAck(const ASensorEvent* events, int count) { for (int i = 0; i < count; ++i) { if (events[i].flags & WAKE_UP_SENSOR_EVENT_NEEDS_ACK) { ++mNumAcksToSend; } } // Send mNumAcksToSend to acknowledge for the wake up sensor events received. if (mNumAcksToSend > 0) { ssize_t size = ::send(mSensorChannel->getFd(), &mNumAcksToSend, sizeof(mNumAcksToSend), MSG_DONTWAIT | MSG_NOSIGNAL); if (size < 0) { ALOGE("sendAck failure %zd %d", size, mNumAcksToSend); } else { mNumAcksToSend = 0; } } return; } // ---------------------------------------------------------------------------- }; // namespace android