// Copyright 2017 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // distortion calculation // // Author: Skal (pascal.massimino@gmail.com) #include <assert.h> #include <stdlib.h> // for abs() #include "src/dsp/dsp.h" #if !defined(WEBP_REDUCE_SIZE) //------------------------------------------------------------------------------ // SSIM / PSNR // hat-shaped filter. Sum of coefficients is equal to 16. static const uint32_t kWeight[2 * VP8_SSIM_KERNEL + 1] = { 1, 2, 3, 4, 3, 2, 1 }; static const uint32_t kWeightSum = 16 * 16; // sum{kWeight}^2 static WEBP_INLINE double SSIMCalculation( const VP8DistoStats* const stats, uint32_t N /*num samples*/) { const uint32_t w2 = N * N; const uint32_t C1 = 20 * w2; const uint32_t C2 = 60 * w2; const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6 const uint64_t xmxm = (uint64_t)stats->xm * stats->xm; const uint64_t ymym = (uint64_t)stats->ym * stats->ym; if (xmxm + ymym >= C3) { const int64_t xmym = (int64_t)stats->xm * stats->ym; const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm; const uint64_t syy = (uint64_t)stats->yym * N - ymym; // we descale by 8 to prevent overflow during the fnum/fden multiply. const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8; const uint64_t den_S = (sxx + syy + C2) >> 8; const uint64_t fnum = (2 * xmym + C1) * num_S; const uint64_t fden = (xmxm + ymym + C1) * den_S; const double r = (double)fnum / fden; assert(r >= 0. && r <= 1.0); return r; } return 1.; // area is too dark to contribute meaningfully } double VP8SSIMFromStats(const VP8DistoStats* const stats) { return SSIMCalculation(stats, kWeightSum); } double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats) { return SSIMCalculation(stats, stats->w); } static double SSIMGetClipped_C(const uint8_t* src1, int stride1, const uint8_t* src2, int stride2, int xo, int yo, int W, int H) { VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; const int ymin = (yo - VP8_SSIM_KERNEL < 0) ? 0 : yo - VP8_SSIM_KERNEL; const int ymax = (yo + VP8_SSIM_KERNEL > H - 1) ? H - 1 : yo + VP8_SSIM_KERNEL; const int xmin = (xo - VP8_SSIM_KERNEL < 0) ? 0 : xo - VP8_SSIM_KERNEL; const int xmax = (xo + VP8_SSIM_KERNEL > W - 1) ? W - 1 : xo + VP8_SSIM_KERNEL; int x, y; src1 += ymin * stride1; src2 += ymin * stride2; for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) { for (x = xmin; x <= xmax; ++x) { const uint32_t w = kWeight[VP8_SSIM_KERNEL + x - xo] * kWeight[VP8_SSIM_KERNEL + y - yo]; const uint32_t s1 = src1[x]; const uint32_t s2 = src2[x]; stats.w += w; stats.xm += w * s1; stats.ym += w * s2; stats.xxm += w * s1 * s1; stats.xym += w * s1 * s2; stats.yym += w * s2 * s2; } } return VP8SSIMFromStatsClipped(&stats); } static double SSIMGet_C(const uint8_t* src1, int stride1, const uint8_t* src2, int stride2) { VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; int x, y; for (y = 0; y <= 2 * VP8_SSIM_KERNEL; ++y, src1 += stride1, src2 += stride2) { for (x = 0; x <= 2 * VP8_SSIM_KERNEL; ++x) { const uint32_t w = kWeight[x] * kWeight[y]; const uint32_t s1 = src1[x]; const uint32_t s2 = src2[x]; stats.xm += w * s1; stats.ym += w * s2; stats.xxm += w * s1 * s1; stats.xym += w * s1 * s2; stats.yym += w * s2 * s2; } } return VP8SSIMFromStats(&stats); } #endif // !defined(WEBP_REDUCE_SIZE) //------------------------------------------------------------------------------ #if !defined(WEBP_DISABLE_STATS) static uint32_t AccumulateSSE_C(const uint8_t* src1, const uint8_t* src2, int len) { int i; uint32_t sse2 = 0; assert(len <= 65535); // to ensure that accumulation fits within uint32_t for (i = 0; i < len; ++i) { const int32_t diff = src1[i] - src2[i]; sse2 += diff * diff; } return sse2; } #endif //------------------------------------------------------------------------------ #if !defined(WEBP_REDUCE_SIZE) VP8SSIMGetFunc VP8SSIMGet; VP8SSIMGetClippedFunc VP8SSIMGetClipped; #endif #if !defined(WEBP_DISABLE_STATS) VP8AccumulateSSEFunc VP8AccumulateSSE; #endif extern void VP8SSIMDspInitSSE2(void); static volatile VP8CPUInfo ssim_last_cpuinfo_used = (VP8CPUInfo)&ssim_last_cpuinfo_used; WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInit(void) { if (ssim_last_cpuinfo_used == VP8GetCPUInfo) return; #if !defined(WEBP_REDUCE_SIZE) VP8SSIMGetClipped = SSIMGetClipped_C; VP8SSIMGet = SSIMGet_C; #endif #if !defined(WEBP_DISABLE_STATS) VP8AccumulateSSE = AccumulateSSE_C; #endif if (VP8GetCPUInfo != NULL) { #if defined(WEBP_USE_SSE2) if (VP8GetCPUInfo(kSSE2)) { VP8SSIMDspInitSSE2(); } #endif } ssim_last_cpuinfo_used = VP8GetCPUInfo; }