// Copyright 2017, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef VIXL_POOL_MANAGER_IMPL_H_ #define VIXL_POOL_MANAGER_IMPL_H_ #include "pool-manager.h" #include <algorithm> #include "assembler-base-vixl.h" namespace vixl { template <typename T> T PoolManager<T>::Emit(MacroAssemblerInterface* masm, T pc, int num_bytes, ForwardReference<T>* new_reference, LocationBase<T>* new_object, EmitOption option) { // Make sure that the buffer still has the alignment we think it does. VIXL_ASSERT(IsAligned(masm->AsAssemblerBase() ->GetBuffer() ->GetStartAddress<uintptr_t>(), buffer_alignment_)); // We should not call this method when the pools are blocked. VIXL_ASSERT(!IsBlocked()); if (objects_.empty()) return pc; // Emit header. if (option == kBranchRequired) { masm->EmitPoolHeader(); // TODO: The pc at this point might not actually be aligned according to // alignment_. This is to support the current AARCH32 MacroAssembler which // does not have a fixed size instruction set. In practice, the pc will be // aligned to the alignment instructions need for the current instruction // set, so we do not need to align it here. All other calculations do take // the alignment into account, which only makes the checkpoint calculations // more conservative when we use T32. Uncomment the following assertion if // the AARCH32 MacroAssembler is modified to only support one ISA at the // time. // VIXL_ASSERT(pc == AlignUp(pc, alignment_)); pc += header_size_; } else { // If the header is optional, we might need to add some extra padding to // meet the minimum location of the first object. if (pc < objects_[0].min_location_) { int32_t padding = objects_[0].min_location_ - pc; masm->EmitNopBytes(padding); pc += padding; } } PoolObject<T>* existing_object = GetObjectIfTracked(new_object); // Go through all objects and emit one by one. for (objects_iter iter = objects_.begin(); iter != objects_.end();) { PoolObject<T>& current = *iter; if (ShouldSkipObject(¤t, pc, num_bytes, new_reference, new_object, existing_object)) { ++iter; continue; } LocationBase<T>* label_base = current.label_base_; T aligned_pc = AlignUp(pc, current.alignment_); masm->EmitPaddingBytes(aligned_pc - pc); pc = aligned_pc; VIXL_ASSERT(pc >= current.min_location_); VIXL_ASSERT(pc <= current.max_location_); // First call SetLocation, which will also resolve the references, and then // call EmitPoolObject, which might add a new reference. label_base->SetLocation(masm->AsAssemblerBase(), pc); label_base->EmitPoolObject(masm); int object_size = label_base->GetPoolObjectSizeInBytes(); if (label_base->ShouldDeletePoolObjectOnPlacement()) { label_base->MarkBound(); iter = RemoveAndDelete(iter); } else { VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement()); current.label_base_->UpdatePoolObject(¤t); VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment()); ++iter; } pc += object_size; } // Recalculate the checkpoint before emitting the footer. The footer might // call Bind() which will check if we need to emit. RecalculateCheckpoint(); // Always emit footer - this might add some padding. masm->EmitPoolFooter(); pc = AlignUp(pc, alignment_); return pc; } template <typename T> bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object, T pc, int num_bytes, ForwardReference<T>* new_reference, LocationBase<T>* new_object, PoolObject<T>* existing_object) const { // We assume that all objects before this have been skipped and all objects // after this will be emitted, therefore we will emit the whole pool. Add // the header size and alignment, as well as the number of bytes we are // planning to emit. T max_actual_location = pc + num_bytes + max_pool_size_; if (new_reference != NULL) { // If we're adding a new object, also assume that it will have to be emitted // before the object we are considering to skip. VIXL_ASSERT(new_object != NULL); T new_object_alignment = std::max(new_reference->object_alignment_, new_object->GetPoolObjectAlignment()); if ((existing_object != NULL) && (existing_object->alignment_ > new_object_alignment)) { new_object_alignment = existing_object->alignment_; } max_actual_location += (new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1); } // Hard limit. if (max_actual_location >= pool_object->max_location_) return false; // Use heuristic. return (pc < pool_object->skip_until_location_hint_); } template <typename T> T PoolManager<T>::UpdateCheckpointForObject(T checkpoint, const PoolObject<T>* object) { checkpoint -= object->label_base_->GetPoolObjectSizeInBytes(); if (checkpoint > object->max_location_) checkpoint = object->max_location_; checkpoint = AlignDown(checkpoint, object->alignment_); return checkpoint; } template <typename T> static T MaxCheckpoint() { return std::numeric_limits<T>::max(); } template <typename T> static inline bool CheckCurrentPC(T pc, T checkpoint) { VIXL_ASSERT(pc <= checkpoint); // We must emit the pools if we are at the checkpoint now. return pc == checkpoint; } template <typename T> static inline bool CheckFuturePC(T pc, T checkpoint) { // We do not need to emit the pools now if the projected future PC will be // equal to the checkpoint (we will need to emit the pools then). return pc > checkpoint; } template <typename T> bool PoolManager<T>::MustEmit(T pc, int num_bytes, ForwardReference<T>* reference, LocationBase<T>* label_base) const { // Check if we are at or past the checkpoint. if (CheckCurrentPC(pc, checkpoint_)) return true; // Check if the future PC will be past the checkpoint. pc += num_bytes; if (CheckFuturePC(pc, checkpoint_)) return true; // No new reference - nothing to do. if (reference == NULL) { VIXL_ASSERT(label_base == NULL); return false; } if (objects_.empty()) { // Basic assertions that restrictions on the new (and only) reference are // possible to satisfy. VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >= reference->min_object_location_); VIXL_ASSERT(pc <= reference->max_object_location_); return false; } // Check if the object is already being tracked. const PoolObject<T>* existing_object = GetObjectIfTracked(label_base); if (existing_object != NULL) { // If the existing_object is already in existing_objects_ and its new // alignment and new location restrictions are not stricter, skip the more // expensive check. if ((reference->min_object_location_ <= existing_object->min_location_) && (reference->max_object_location_ >= existing_object->max_location_) && (reference->object_alignment_ <= existing_object->alignment_)) { return false; } } // Create a temporary object. PoolObject<T> temp(label_base); temp.RestrictRange(reference->min_object_location_, reference->max_object_location_); temp.RestrictAlignment(reference->object_alignment_); if (existing_object != NULL) { temp.RestrictRange(existing_object->min_location_, existing_object->max_location_); temp.RestrictAlignment(existing_object->alignment_); } // Check if the new reference can be added after the end of the current pool. // If yes, we don't need to emit. T last_reachable = AlignDown(temp.max_location_, temp.alignment_); const PoolObject<T>& last = objects_.back(); T after_pool = AlignDown(last.max_location_, last.alignment_) + last.label_base_->GetPoolObjectSizeInBytes(); // The current object can be placed at the end of the pool, even if the last // object is placed at the last possible location. if (last_reachable >= after_pool) return false; // The current object can be placed after the code we are about to emit and // after the existing pool (with a pessimistic size estimate). if (last_reachable >= pc + num_bytes + max_pool_size_) return false; // We're not in a trivial case, so we need to recalculate the checkpoint. // Check (conservatively) if we can fit it into the objects_ array, without // breaking our assumptions. Here we want to recalculate the checkpoint as // if the new reference was added to the PoolManager but without actually // adding it (as removing it is non-trivial). T checkpoint = MaxCheckpoint<T>(); // Will temp be the last object in objects_? if (PoolObjectLessThan(last, temp)) { checkpoint = UpdateCheckpointForObject(checkpoint, &temp); if (checkpoint < temp.min_location_) return true; } bool tempNotPlacedYet = true; for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) { const PoolObject<T>& current = objects_[i]; if (tempNotPlacedYet && PoolObjectLessThan(current, temp)) { checkpoint = UpdateCheckpointForObject(checkpoint, &temp); if (checkpoint < temp.min_location_) return true; if (CheckFuturePC(pc, checkpoint)) return true; tempNotPlacedYet = false; } if (current.label_base_ == label_base) continue; checkpoint = UpdateCheckpointForObject(checkpoint, ¤t); if (checkpoint < current.min_location_) return true; if (CheckFuturePC(pc, checkpoint)) return true; } // temp is the object with the smallest max_location_. if (tempNotPlacedYet) { checkpoint = UpdateCheckpointForObject(checkpoint, &temp); if (checkpoint < temp.min_location_) return true; } // Take the header into account. checkpoint -= header_size_; checkpoint = AlignDown(checkpoint, alignment_); return CheckFuturePC(pc, checkpoint); } template <typename T> void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) { // TODO: Improve the max_pool_size_ estimate by starting from the // min_location_ of the first object, calculating the end of the pool as if // all objects were placed starting from there, and in the end adding the // maximum object alignment found minus one (which is the maximum extra // padding we would need if we were to relocate the pool to a different // address). max_pool_size_ = 0; if (objects_.empty()) { checkpoint_ = MaxCheckpoint<T>(); return; } // Sort objects by their max_location_. if (sort_option == kSortRequired) { std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan); } // Add the header size and header and footer max alignment to the maximum // pool size. max_pool_size_ += header_size_ + 2 * (alignment_ - 1); T checkpoint = MaxCheckpoint<T>(); int last_object_index = static_cast<int>(objects_.size()) - 1; for (int i = last_object_index; i >= 0; --i) { // Bring back the checkpoint by the size of the current object, unless // we need to bring it back more, then align. PoolObject<T>& current = objects_[i]; checkpoint = UpdateCheckpointForObject(checkpoint, ¤t); VIXL_ASSERT(checkpoint >= current.min_location_); max_pool_size_ += (current.alignment_ - 1 + current.label_base_->GetPoolObjectSizeInBytes()); } // Take the header into account. checkpoint -= header_size_; checkpoint = AlignDown(checkpoint, alignment_); // Update the checkpoint of the pool manager. checkpoint_ = checkpoint; // NOTE: To handle min_location_ in the generic case, we could make a second // pass of the objects_ vector, increasing the checkpoint as needed, while // maintaining the alignment requirements. // It should not be possible to have any issues with min_location_ with actual // code, since there should always be some kind of branch over the pool, // whether introduced by the pool emission or by the user, which will make // sure the min_location_ requirement is satisfied. It's possible that the // user could emit code in the literal pool and intentionally load the first // value and then fall-through into the pool, but that is not a supported use // of VIXL and we will assert in that case. } template <typename T> bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a, const PoolObject<T>& b) { if (a.max_location_ != b.max_location_) return (a.max_location_ < b.max_location_); int a_size = a.label_base_->GetPoolObjectSizeInBytes(); int b_size = b.label_base_->GetPoolObjectSizeInBytes(); if (a_size != b_size) return (a_size < b_size); if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_); if (a.min_location_ != b.min_location_) return (a.min_location_ < b.min_location_); return false; } template <typename T> void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference, LocationBase<T>* label_base) { VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_); VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_); PoolObject<T>* object = GetObjectIfTracked(label_base); if (object == NULL) { PoolObject<T> new_object(label_base); new_object.RestrictRange(reference->min_object_location_, reference->max_object_location_); new_object.RestrictAlignment(reference->object_alignment_); Insert(new_object); } else { object->RestrictRange(reference->min_object_location_, reference->max_object_location_); object->RestrictAlignment(reference->object_alignment_); // Move the object, if needed. if (objects_.size() != 1) { PoolObject<T> new_object(*object); ptrdiff_t distance = std::distance(objects_.data(), object); objects_.erase(objects_.begin() + distance); Insert(new_object); } } // No need to sort, we inserted the object in an already sorted array. RecalculateCheckpoint(kNoSortRequired); } template <typename T> void PoolManager<T>::Insert(const PoolObject<T>& new_object) { bool inserted = false; // Place the object in the right position. for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) { PoolObject<T>& current = *iter; if (!PoolObjectLessThan(current, new_object)) { objects_.insert(iter, new_object); inserted = true; break; } } if (!inserted) { objects_.push_back(new_object); } } template <typename T> void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) { for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) { PoolObject<T>& current = *iter; if (current.label_base_ == object->label_base_) { (void)RemoveAndDelete(iter); return; } } VIXL_UNREACHABLE(); } template <typename T> typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete( objects_iter iter) { PoolObject<T>& object = *iter; LocationBase<T>* label_base = object.label_base_; // Check if we also need to delete the LocationBase object. if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) { delete_on_destruction_.push_back(label_base); } if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) { VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction()); delete label_base; } return objects_.erase(iter); } template <typename T> T PoolManager<T>::Bind(MacroAssemblerInterface* masm, LocationBase<T>* object, T location) { PoolObject<T>* existing_object = GetObjectIfTracked(object); int alignment; T min_location; if (existing_object == NULL) { alignment = object->GetMaxAlignment(); min_location = object->GetMinLocation(); } else { alignment = existing_object->alignment_; min_location = existing_object->min_location_; } // Align if needed, and add necessary padding to reach the min_location_. T aligned_location = AlignUp(location, alignment); masm->EmitNopBytes(aligned_location - location); location = aligned_location; while (location < min_location) { masm->EmitNopBytes(alignment); location += alignment; } object->SetLocation(masm->AsAssemblerBase(), location); object->MarkBound(); if (existing_object != NULL) { RemoveAndDelete(existing_object); // No need to sort, we removed the object from a sorted array. RecalculateCheckpoint(kNoSortRequired); } // We assume that the maximum padding we can possibly add here is less // than the header alignment - hence that we're not going to go past our // checkpoint. VIXL_ASSERT(!CheckFuturePC(location, checkpoint_)); return location; } template <typename T> void PoolManager<T>::Release(T pc) { USE(pc); if (--monitor_ == 0) { // Ensure the pool has not been blocked for too long. VIXL_ASSERT(pc <= checkpoint_); } } template <typename T> PoolManager<T>::~PoolManager<T>() { #ifdef VIXL_DEBUG // Check for unbound objects. for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) { // There should not be any bound objects left in the pool. For unbound // objects, we will check in the destructor of the object itself. VIXL_ASSERT(!(*iter).label_base_->IsBound()); } #endif // Delete objects the pool manager owns. for (typename std::vector<LocationBase<T> *>::iterator iter = delete_on_destruction_.begin(), end = delete_on_destruction_.end(); iter != end; ++iter) { delete *iter; } } template <typename T> int PoolManager<T>::GetPoolSizeForTest() const { // Iterate over objects and return their cumulative size. This does not take // any padding into account, just the size of the objects themselves. int size = 0; for (const_objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) { size += (*iter).label_base_->GetPoolObjectSizeInBytes(); } return size; } } #endif // VIXL_POOL_MANAGER_IMPL_H_