/*--------------------------------------------------------------------*/ /*--- Management, printing, etc, of errors and suppressions. ---*/ /*--- mc_errors.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of MemCheck, a heavyweight Valgrind tool for detecting memory errors. Copyright (C) 2000-2017 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "pub_tool_basics.h" #include "pub_tool_gdbserver.h" #include "pub_tool_poolalloc.h" // For mc_include.h #include "pub_tool_hashtable.h" // For mc_include.h #include "pub_tool_libcbase.h" #include "pub_tool_libcassert.h" #include "pub_tool_libcprint.h" #include "pub_tool_machine.h" #include "pub_tool_mallocfree.h" #include "pub_tool_options.h" #include "pub_tool_replacemalloc.h" #include "pub_tool_tooliface.h" #include "pub_tool_threadstate.h" #include "pub_tool_debuginfo.h" // VG_(get_dataname_and_offset) #include "pub_tool_xarray.h" #include "pub_tool_aspacemgr.h" #include "pub_tool_addrinfo.h" #include "mc_include.h" /*------------------------------------------------------------*/ /*--- Error types ---*/ /*------------------------------------------------------------*/ /* See comment in mc_include.h */ Bool MC_(any_value_errors) = False; /* ------------------ Errors ----------------------- */ /* What kind of error it is. */ typedef enum { Err_Value, Err_Cond, Err_CoreMem, Err_Addr, Err_Jump, Err_RegParam, Err_MemParam, Err_User, Err_Free, Err_FreeMismatch, Err_Overlap, Err_Leak, Err_IllegalMempool, Err_FishyValue, } MC_ErrorTag; typedef struct _MC_Error MC_Error; struct _MC_Error { // Nb: we don't need the tag here, as it's stored in the Error type! Yuk. //MC_ErrorTag tag; union { // Use of an undefined value: // - as a pointer in a load or store // - as a jump target struct { SizeT szB; // size of value in bytes // Origin info UInt otag; // origin tag ExeContext* origin_ec; // filled in later } Value; // Use of an undefined value in a conditional branch or move. struct { // Origin info UInt otag; // origin tag ExeContext* origin_ec; // filled in later } Cond; // Addressability error in core (signal-handling) operation. // It would be good to get rid of this error kind, merge it with // another one somehow. struct { } CoreMem; // Use of an unaddressable memory location in a load or store. struct { Bool isWrite; // read or write? SizeT szB; // not used for exec (jump) errors Bool maybe_gcc; // True if just below %esp -- could be a gcc bug AddrInfo ai; } Addr; // Jump to an unaddressable memory location. struct { AddrInfo ai; } Jump; // System call register input contains undefined bytes. struct { // Origin info UInt otag; // origin tag ExeContext* origin_ec; // filled in later } RegParam; // System call memory input contains undefined/unaddressable bytes struct { Bool isAddrErr; // Addressability or definedness error? AddrInfo ai; // Origin info UInt otag; // origin tag ExeContext* origin_ec; // filled in later } MemParam; // Problem found from a client request like CHECK_MEM_IS_ADDRESSABLE. struct { Bool isAddrErr; // Addressability or definedness error? AddrInfo ai; // Origin info UInt otag; // origin tag ExeContext* origin_ec; // filled in later } User; // Program tried to free() something that's not a heap block (this // covers double-frees). */ struct { AddrInfo ai; } Free; // Program allocates heap block with one function // (malloc/new/new[]/custom) and deallocates with not the matching one. struct { AddrInfo ai; } FreeMismatch; // Call to strcpy, memcpy, etc, with overlapping blocks. struct { Addr src; // Source block Addr dst; // Destination block SizeT szB; // Size in bytes; 0 if unused. } Overlap; // A memory leak. struct { UInt n_this_record; UInt n_total_records; LossRecord* lr; } Leak; // A memory pool error. struct { AddrInfo ai; } IllegalMempool; // A fishy function argument value // An argument value is considered fishy if the corresponding // parameter has SizeT type and the value when interpreted as a // signed number is negative. struct { const HChar *function_name; const HChar *argument_name; SizeT value; } FishyValue; } Err; }; /*------------------------------------------------------------*/ /*--- Printing errors ---*/ /*------------------------------------------------------------*/ /* This is the "this error is due to be printed shortly; so have a look at it any print any preamble you want" function. Which, in Memcheck, we don't use. Hence a no-op. */ void MC_(before_pp_Error) ( const Error* err ) { } /* Do a printf-style operation on either the XML or normal output channel, depending on the setting of VG_(clo_xml). */ static void emit_WRK ( const HChar* format, va_list vargs ) { if (VG_(clo_xml)) { VG_(vprintf_xml)(format, vargs); } else { VG_(vmessage)(Vg_UserMsg, format, vargs); } } static void emit ( const HChar* format, ... ) PRINTF_CHECK(1, 2); static void emit ( const HChar* format, ... ) { va_list vargs; va_start(vargs, format); emit_WRK(format, vargs); va_end(vargs); } static const HChar* str_leak_lossmode ( Reachedness lossmode ) { const HChar *loss = "?"; switch (lossmode) { case Unreached: loss = "definitely lost"; break; case IndirectLeak: loss = "indirectly lost"; break; case Possible: loss = "possibly lost"; break; case Reachable: loss = "still reachable"; break; } return loss; } static const HChar* xml_leak_kind ( Reachedness lossmode ) { const HChar *loss = "?"; switch (lossmode) { case Unreached: loss = "Leak_DefinitelyLost"; break; case IndirectLeak: loss = "Leak_IndirectlyLost"; break; case Possible: loss = "Leak_PossiblyLost"; break; case Reachable: loss = "Leak_StillReachable"; break; } return loss; } const HChar* MC_(parse_leak_kinds_tokens) = "reachable,possible,indirect,definite"; UInt MC_(all_Reachedness)(void) { static UInt all; if (all == 0) { // Compute a set with all values by doing a parsing of the "all" keyword. Bool parseok = VG_(parse_enum_set)(MC_(parse_leak_kinds_tokens), True,/*allow_all*/ "all", &all); tl_assert (parseok && all); } return all; } static const HChar* pp_Reachedness_for_leak_kinds(Reachedness r) { switch(r) { case Reachable: return "reachable"; case Possible: return "possible"; case IndirectLeak: return "indirect"; case Unreached: return "definite"; default: tl_assert(0); } } static void mc_pp_origin ( ExeContext* ec, UInt okind ) { const HChar* src = NULL; tl_assert(ec); switch (okind) { case MC_OKIND_STACK: src = " by a stack allocation"; break; case MC_OKIND_HEAP: src = " by a heap allocation"; break; case MC_OKIND_USER: src = " by a client request"; break; case MC_OKIND_UNKNOWN: src = ""; break; } tl_assert(src); /* guards against invalid 'okind' */ if (VG_(clo_xml)) { emit( " <auxwhat>Uninitialised value was created%s</auxwhat>\n", src); VG_(pp_ExeContext)( ec ); } else { emit( " Uninitialised value was created%s\n", src); VG_(pp_ExeContext)( ec ); } } HChar * MC_(snprintf_delta) (HChar * buf, Int size, SizeT current_val, SizeT old_val, LeakCheckDeltaMode delta_mode) { // Make sure the buffer size is large enough. With old_val == 0 and // current_val == ULLONG_MAX the delta including inserted commas is: // 18,446,744,073,709,551,615 // whose length is 26. Therefore: tl_assert(size >= 26 + 4 + 1); if (delta_mode == LCD_Any) buf[0] = '\0'; else if (current_val >= old_val) VG_(snprintf) (buf, size, " (+%'lu)", current_val - old_val); else VG_(snprintf) (buf, size, " (-%'lu)", old_val - current_val); return buf; } static void pp_LossRecord(UInt n_this_record, UInt n_total_records, LossRecord* lr, Bool xml) { // char arrays to produce the indication of increase/decrease in case // of delta_mode != LCD_Any HChar d_bytes[31]; HChar d_direct_bytes[31]; HChar d_indirect_bytes[31]; HChar d_num_blocks[31]; MC_(snprintf_delta) (d_bytes, sizeof(d_bytes), lr->szB + lr->indirect_szB, lr->old_szB + lr->old_indirect_szB, MC_(detect_memory_leaks_last_delta_mode)); MC_(snprintf_delta) (d_direct_bytes, sizeof(d_direct_bytes), lr->szB, lr->old_szB, MC_(detect_memory_leaks_last_delta_mode)); MC_(snprintf_delta) (d_indirect_bytes, sizeof(d_indirect_bytes), lr->indirect_szB, lr->old_indirect_szB, MC_(detect_memory_leaks_last_delta_mode)); MC_(snprintf_delta) (d_num_blocks, sizeof(d_num_blocks), (SizeT) lr->num_blocks, (SizeT) lr->old_num_blocks, MC_(detect_memory_leaks_last_delta_mode)); if (xml) { emit(" <kind>%s</kind>\n", xml_leak_kind(lr->key.state)); if (lr->indirect_szB > 0) { emit( " <xwhat>\n" ); emit( " <text>%'lu%s (%'lu%s direct, %'lu%s indirect) bytes " "in %'u%s blocks" " are %s in loss record %'u of %'u</text>\n", lr->szB + lr->indirect_szB, d_bytes, lr->szB, d_direct_bytes, lr->indirect_szB, d_indirect_bytes, lr->num_blocks, d_num_blocks, str_leak_lossmode(lr->key.state), n_this_record, n_total_records ); // Nb: don't put commas in these XML numbers emit( " <leakedbytes>%lu</leakedbytes>\n", lr->szB + lr->indirect_szB ); emit( " <leakedblocks>%u</leakedblocks>\n", lr->num_blocks ); emit( " </xwhat>\n" ); } else { emit( " <xwhat>\n" ); emit( " <text>%'lu%s bytes in %'u%s blocks" " are %s in loss record %'u of %'u</text>\n", lr->szB, d_direct_bytes, lr->num_blocks, d_num_blocks, str_leak_lossmode(lr->key.state), n_this_record, n_total_records ); emit( " <leakedbytes>%lu</leakedbytes>\n", lr->szB); emit( " <leakedblocks>%u</leakedblocks>\n", lr->num_blocks); emit( " </xwhat>\n" ); } VG_(pp_ExeContext)(lr->key.allocated_at); } else { /* ! if (xml) */ if (lr->indirect_szB > 0) { emit( "%'lu%s (%'lu%s direct, %'lu%s indirect) bytes in %'u%s blocks" " are %s in loss record %'u of %'u\n", lr->szB + lr->indirect_szB, d_bytes, lr->szB, d_direct_bytes, lr->indirect_szB, d_indirect_bytes, lr->num_blocks, d_num_blocks, str_leak_lossmode(lr->key.state), n_this_record, n_total_records ); } else { emit( "%'lu%s bytes in %'u%s blocks are %s in loss record %'u of %'u\n", lr->szB, d_direct_bytes, lr->num_blocks, d_num_blocks, str_leak_lossmode(lr->key.state), n_this_record, n_total_records ); } VG_(pp_ExeContext)(lr->key.allocated_at); } /* if (xml) */ } void MC_(pp_LossRecord)(UInt n_this_record, UInt n_total_records, LossRecord* l) { pp_LossRecord (n_this_record, n_total_records, l, /* xml */ False); } void MC_(pp_Error) ( const Error* err ) { const Bool xml = VG_(clo_xml); /* a shorthand */ MC_Error* extra = VG_(get_error_extra)(err); switch (VG_(get_error_kind)(err)) { case Err_CoreMem: /* What the hell *is* a CoreMemError? jrs 2005-May-18 */ /* As of 2006-Dec-14, it's caused by unaddressable bytes in a signal handler frame. --njn */ // JRS 17 May 09: None of our regtests exercise this; hence AFAIK // the following code is untested. Bad. if (xml) { emit( " <kind>CoreMemError</kind>\n" ); emit( " <what>%pS contains unaddressable byte(s)</what>\n", VG_(get_error_string)(err)); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); } else { emit( "%s contains unaddressable byte(s)\n", VG_(get_error_string)(err)); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); } break; case Err_Value: MC_(any_value_errors) = True; if (xml) { emit( " <kind>UninitValue</kind>\n" ); emit( " <what>Use of uninitialised value of size %lu</what>\n", extra->Err.Value.szB ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); if (extra->Err.Value.origin_ec) mc_pp_origin( extra->Err.Value.origin_ec, extra->Err.Value.otag & 3 ); } else { /* Could also show extra->Err.Cond.otag if debugging origin tracking */ emit( "Use of uninitialised value of size %lu\n", extra->Err.Value.szB ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); if (extra->Err.Value.origin_ec) mc_pp_origin( extra->Err.Value.origin_ec, extra->Err.Value.otag & 3 ); } break; case Err_Cond: MC_(any_value_errors) = True; if (xml) { emit( " <kind>UninitCondition</kind>\n" ); emit( " <what>Conditional jump or move depends" " on uninitialised value(s)</what>\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); if (extra->Err.Cond.origin_ec) mc_pp_origin( extra->Err.Cond.origin_ec, extra->Err.Cond.otag & 3 ); } else { /* Could also show extra->Err.Cond.otag if debugging origin tracking */ emit( "Conditional jump or move depends" " on uninitialised value(s)\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); if (extra->Err.Cond.origin_ec) mc_pp_origin( extra->Err.Cond.origin_ec, extra->Err.Cond.otag & 3 ); } break; case Err_RegParam: MC_(any_value_errors) = True; if (xml) { emit( " <kind>SyscallParam</kind>\n" ); emit( " <what>Syscall param %pS contains " "uninitialised byte(s)</what>\n", VG_(get_error_string)(err) ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); if (extra->Err.RegParam.origin_ec) mc_pp_origin( extra->Err.RegParam.origin_ec, extra->Err.RegParam.otag & 3 ); } else { emit( "Syscall param %s contains uninitialised byte(s)\n", VG_(get_error_string)(err) ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); if (extra->Err.RegParam.origin_ec) mc_pp_origin( extra->Err.RegParam.origin_ec, extra->Err.RegParam.otag & 3 ); } break; case Err_MemParam: if (!extra->Err.MemParam.isAddrErr) MC_(any_value_errors) = True; if (xml) { emit( " <kind>SyscallParam</kind>\n" ); emit( " <what>Syscall param %pS points to %s byte(s)</what>\n", VG_(get_error_string)(err), extra->Err.MemParam.isAddrErr ? "unaddressable" : "uninitialised" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.MemParam.ai, False); if (extra->Err.MemParam.origin_ec && !extra->Err.MemParam.isAddrErr) mc_pp_origin( extra->Err.MemParam.origin_ec, extra->Err.MemParam.otag & 3 ); } else { emit( "Syscall param %s points to %s byte(s)\n", VG_(get_error_string)(err), extra->Err.MemParam.isAddrErr ? "unaddressable" : "uninitialised" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.MemParam.ai, False); if (extra->Err.MemParam.origin_ec && !extra->Err.MemParam.isAddrErr) mc_pp_origin( extra->Err.MemParam.origin_ec, extra->Err.MemParam.otag & 3 ); } break; case Err_User: if (!extra->Err.User.isAddrErr) MC_(any_value_errors) = True; if (xml) { emit( " <kind>ClientCheck</kind>\n" ); emit( " <what>%s byte(s) found " "during client check request</what>\n", extra->Err.User.isAddrErr ? "Unaddressable" : "Uninitialised" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.User.ai, False); if (extra->Err.User.origin_ec && !extra->Err.User.isAddrErr) mc_pp_origin( extra->Err.User.origin_ec, extra->Err.User.otag & 3 ); } else { emit( "%s byte(s) found during client check request\n", extra->Err.User.isAddrErr ? "Unaddressable" : "Uninitialised" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.User.ai, False); if (extra->Err.User.origin_ec && !extra->Err.User.isAddrErr) mc_pp_origin( extra->Err.User.origin_ec, extra->Err.User.otag & 3 ); } break; case Err_Free: if (xml) { emit( " <kind>InvalidFree</kind>\n" ); emit( " <what>Invalid free() / delete / delete[]" " / realloc()</what>\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Free.ai, False ); } else { emit( "Invalid free() / delete / delete[] / realloc()\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Free.ai, False ); } break; case Err_FreeMismatch: if (xml) { emit( " <kind>MismatchedFree</kind>\n" ); emit( " <what>Mismatched free() / delete / delete []</what>\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.FreeMismatch.ai, False); } else { emit( "Mismatched free() / delete / delete []\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)(VG_(get_error_address)(err), &extra->Err.FreeMismatch.ai, False); } break; case Err_Addr: if (xml) { emit( " <kind>Invalid%s</kind>\n", extra->Err.Addr.isWrite ? "Write" : "Read" ); emit( " <what>Invalid %s of size %lu</what>\n", extra->Err.Addr.isWrite ? "write" : "read", extra->Err.Addr.szB ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Addr.ai, extra->Err.Addr.maybe_gcc ); } else { emit( "Invalid %s of size %lu\n", extra->Err.Addr.isWrite ? "write" : "read", extra->Err.Addr.szB ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Addr.ai, extra->Err.Addr.maybe_gcc ); } break; case Err_Jump: if (xml) { emit( " <kind>InvalidJump</kind>\n" ); emit( " <what>Jump to the invalid address stated " "on the next line</what>\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Jump.ai, False ); } else { emit( "Jump to the invalid address stated on the next line\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.Jump.ai, False ); } break; case Err_Overlap: if (xml) { emit( " <kind>Overlap</kind>\n" ); if (extra->Err.Overlap.szB == 0) { emit( " <what>Source and destination overlap " "in %pS(%#lx, %#lx)\n</what>\n", VG_(get_error_string)(err), extra->Err.Overlap.dst, extra->Err.Overlap.src ); } else { emit( " <what>Source and destination overlap " "in %pS(%#lx, %#lx, %lu)</what>\n", VG_(get_error_string)(err), extra->Err.Overlap.dst, extra->Err.Overlap.src, extra->Err.Overlap.szB ); } VG_(pp_ExeContext)( VG_(get_error_where)(err) ); } else { if (extra->Err.Overlap.szB == 0) { emit( "Source and destination overlap in %s(%#lx, %#lx)\n", VG_(get_error_string)(err), extra->Err.Overlap.dst, extra->Err.Overlap.src ); } else { emit( "Source and destination overlap in %s(%#lx, %#lx, %lu)\n", VG_(get_error_string)(err), extra->Err.Overlap.dst, extra->Err.Overlap.src, extra->Err.Overlap.szB ); } VG_(pp_ExeContext)( VG_(get_error_where)(err) ); } break; case Err_IllegalMempool: // JRS 17 May 09: None of our regtests exercise this; hence AFAIK // the following code is untested. Bad. if (xml) { emit( " <kind>InvalidMemPool</kind>\n" ); emit( " <what>Illegal memory pool address</what>\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.IllegalMempool.ai, False ); } else { emit( "Illegal memory pool address\n" ); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); VG_(pp_addrinfo_mc)( VG_(get_error_address)(err), &extra->Err.IllegalMempool.ai, False ); } break; case Err_Leak: { UInt n_this_record = extra->Err.Leak.n_this_record; UInt n_total_records = extra->Err.Leak.n_total_records; LossRecord* lr = extra->Err.Leak.lr; pp_LossRecord (n_this_record, n_total_records, lr, xml); break; } case Err_FishyValue: if (xml) { emit( " <kind>FishyValue</kind>\n" ); emit( " <what>"); emit( "Argument '%s' of function %s has a fishy " "(possibly negative) value: %ld\n", extra->Err.FishyValue.argument_name, extra->Err.FishyValue.function_name, (SSizeT)extra->Err.FishyValue.value); emit( "</what>"); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); } else { emit( "Argument '%s' of function %s has a fishy " "(possibly negative) value: %ld\n", extra->Err.FishyValue.argument_name, extra->Err.FishyValue.function_name, (SSizeT)extra->Err.FishyValue.value); VG_(pp_ExeContext)( VG_(get_error_where)(err) ); } break; default: VG_(printf)("Error:\n unknown Memcheck error code %d\n", VG_(get_error_kind)(err)); VG_(tool_panic)("unknown error code in mc_pp_Error)"); } } /*------------------------------------------------------------*/ /*--- Recording errors ---*/ /*------------------------------------------------------------*/ /* These many bytes below %ESP are considered addressible if we're doing the --workaround-gcc296-bugs hack. */ #define VG_GCC296_BUG_STACK_SLOP 1024 /* Is this address within some small distance below %ESP? Used only for the --workaround-gcc296-bugs kludge. */ static Bool is_just_below_ESP( Addr esp, Addr aa ) { esp -= VG_STACK_REDZONE_SZB; if (esp > aa && (esp - aa) <= VG_GCC296_BUG_STACK_SLOP) return True; else return False; } /* --- Called from generated and non-generated code --- */ void MC_(record_address_error) ( ThreadId tid, Addr a, Int szB, Bool isWrite ) { MC_Error extra; Bool just_below_esp; if (MC_(in_ignored_range)(a)) return; if (VG_(is_watched)( (isWrite ? write_watchpoint : read_watchpoint), a, szB)) return; Addr current_sp = VG_(get_SP)(tid); just_below_esp = is_just_below_ESP( current_sp, a ); /* If this is caused by an access immediately below %ESP, and the user asks nicely, we just ignore it. */ if (MC_(clo_workaround_gcc296_bugs) && just_below_esp) return; /* Also, if this is caused by an access in the range of offsets below the stack pointer as described by --ignore-range-below-sp, ignore it. */ if (MC_(in_ignored_range_below_sp)( current_sp, a, szB )) return; extra.Err.Addr.isWrite = isWrite; extra.Err.Addr.szB = szB; extra.Err.Addr.maybe_gcc = just_below_esp; extra.Err.Addr.ai.tag = Addr_Undescribed; VG_(maybe_record_error)( tid, Err_Addr, a, /*s*/NULL, &extra ); } void MC_(record_value_error) ( ThreadId tid, Int szB, UInt otag ) { MC_Error extra; tl_assert( MC_(clo_mc_level) >= 2 ); if (otag > 0) tl_assert( MC_(clo_mc_level) == 3 ); extra.Err.Value.szB = szB; extra.Err.Value.otag = otag; extra.Err.Value.origin_ec = NULL; /* Filled in later */ VG_(maybe_record_error)( tid, Err_Value, /*addr*/0, /*s*/NULL, &extra ); } void MC_(record_cond_error) ( ThreadId tid, UInt otag ) { MC_Error extra; tl_assert( MC_(clo_mc_level) >= 2 ); if (otag > 0) tl_assert( MC_(clo_mc_level) == 3 ); extra.Err.Cond.otag = otag; extra.Err.Cond.origin_ec = NULL; /* Filled in later */ VG_(maybe_record_error)( tid, Err_Cond, /*addr*/0, /*s*/NULL, &extra ); } /* --- Called from non-generated code --- */ /* This is for memory errors in signal-related memory. */ void MC_(record_core_mem_error) ( ThreadId tid, const HChar* msg ) { VG_(maybe_record_error)( tid, Err_CoreMem, /*addr*/0, msg, /*extra*/NULL ); } void MC_(record_regparam_error) ( ThreadId tid, const HChar* msg, UInt otag ) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); if (otag > 0) tl_assert( MC_(clo_mc_level) == 3 ); extra.Err.RegParam.otag = otag; extra.Err.RegParam.origin_ec = NULL; /* Filled in later */ VG_(maybe_record_error)( tid, Err_RegParam, /*addr*/0, msg, &extra ); } void MC_(record_memparam_error) ( ThreadId tid, Addr a, Bool isAddrErr, const HChar* msg, UInt otag ) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); if (!isAddrErr) tl_assert( MC_(clo_mc_level) >= 2 ); if (otag != 0) { tl_assert( MC_(clo_mc_level) == 3 ); tl_assert( !isAddrErr ); } extra.Err.MemParam.isAddrErr = isAddrErr; extra.Err.MemParam.ai.tag = Addr_Undescribed; extra.Err.MemParam.otag = otag; extra.Err.MemParam.origin_ec = NULL; /* Filled in later */ VG_(maybe_record_error)( tid, Err_MemParam, a, msg, &extra ); } void MC_(record_jump_error) ( ThreadId tid, Addr a ) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); extra.Err.Jump.ai.tag = Addr_Undescribed; VG_(maybe_record_error)( tid, Err_Jump, a, /*s*/NULL, &extra ); } void MC_(record_free_error) ( ThreadId tid, Addr a ) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); extra.Err.Free.ai.tag = Addr_Undescribed; VG_(maybe_record_error)( tid, Err_Free, a, /*s*/NULL, &extra ); } void MC_(record_freemismatch_error) ( ThreadId tid, MC_Chunk* mc ) { MC_Error extra; AddrInfo* ai = &extra.Err.FreeMismatch.ai; tl_assert(VG_INVALID_THREADID != tid); ai->tag = Addr_Block; ai->Addr.Block.block_kind = Block_Mallocd; // Nb: Not 'Block_Freed' ai->Addr.Block.block_desc = "block"; ai->Addr.Block.block_szB = mc->szB; ai->Addr.Block.rwoffset = 0; ai->Addr.Block.allocated_at = MC_(allocated_at) (mc); VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo); ai->Addr.Block.freed_at = MC_(freed_at) (mc); VG_(maybe_record_error)( tid, Err_FreeMismatch, mc->data, /*s*/NULL, &extra ); } void MC_(record_illegal_mempool_error) ( ThreadId tid, Addr a ) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); extra.Err.IllegalMempool.ai.tag = Addr_Undescribed; VG_(maybe_record_error)( tid, Err_IllegalMempool, a, /*s*/NULL, &extra ); } void MC_(record_overlap_error) ( ThreadId tid, const HChar* function, Addr src, Addr dst, SizeT szB ) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); extra.Err.Overlap.src = src; extra.Err.Overlap.dst = dst; extra.Err.Overlap.szB = szB; VG_(maybe_record_error)( tid, Err_Overlap, /*addr*/0, /*s*/function, &extra ); } Bool MC_(record_leak_error) ( ThreadId tid, UInt n_this_record, UInt n_total_records, LossRecord* lr, Bool print_record, Bool count_error ) { MC_Error extra; extra.Err.Leak.n_this_record = n_this_record; extra.Err.Leak.n_total_records = n_total_records; extra.Err.Leak.lr = lr; return VG_(unique_error) ( tid, Err_Leak, /*Addr*/0, /*s*/NULL, &extra, lr->key.allocated_at, print_record, /*allow_GDB_attach*/False, count_error ); } Bool MC_(record_fishy_value_error) ( ThreadId tid, const HChar *function_name, const HChar *argument_name, SizeT value) { MC_Error extra; tl_assert(VG_INVALID_THREADID != tid); if ((SSizeT)value >= 0) return False; // not a fishy value extra.Err.FishyValue.function_name = function_name; extra.Err.FishyValue.argument_name = argument_name; extra.Err.FishyValue.value = value; VG_(maybe_record_error)( tid, Err_FishyValue, /*addr*/0, /*s*/NULL, &extra ); return True; } void MC_(record_user_error) ( ThreadId tid, Addr a, Bool isAddrErr, UInt otag ) { MC_Error extra; if (otag != 0) { tl_assert(!isAddrErr); tl_assert( MC_(clo_mc_level) == 3 ); } if (!isAddrErr) { tl_assert( MC_(clo_mc_level) >= 2 ); } tl_assert(VG_INVALID_THREADID != tid); extra.Err.User.isAddrErr = isAddrErr; extra.Err.User.ai.tag = Addr_Undescribed; extra.Err.User.otag = otag; extra.Err.User.origin_ec = NULL; /* Filled in later */ VG_(maybe_record_error)( tid, Err_User, a, /*s*/NULL, &extra ); } Bool MC_(is_mempool_block)(MC_Chunk* mc_search) { MC_Mempool* mp; if (!MC_(mempool_list)) return False; // A chunk can only come from a mempool if a custom allocator // is used. No search required for other kinds. if (mc_search->allockind == MC_AllocCustom) { VG_(HT_ResetIter)( MC_(mempool_list) ); while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) { MC_Chunk* mc; VG_(HT_ResetIter)(mp->chunks); while ( (mc = VG_(HT_Next)(mp->chunks)) ) { if (mc == mc_search) return True; } } } return False; } /*------------------------------------------------------------*/ /*--- Other error operations ---*/ /*------------------------------------------------------------*/ /* Compare error contexts, to detect duplicates. Note that if they are otherwise the same, the faulting addrs and associated rwoffsets are allowed to be different. */ Bool MC_(eq_Error) ( VgRes res, const Error* e1, const Error* e2 ) { MC_Error* extra1 = VG_(get_error_extra)(e1); MC_Error* extra2 = VG_(get_error_extra)(e2); /* Guaranteed by calling function */ tl_assert(VG_(get_error_kind)(e1) == VG_(get_error_kind)(e2)); switch (VG_(get_error_kind)(e1)) { case Err_CoreMem: { const HChar *e1s, *e2s; e1s = VG_(get_error_string)(e1); e2s = VG_(get_error_string)(e2); if (e1s == e2s) return True; if (VG_STREQ(e1s, e2s)) return True; return False; } case Err_RegParam: return VG_STREQ(VG_(get_error_string)(e1), VG_(get_error_string)(e2)); // Perhaps we should also check the addrinfo.akinds for equality. // That would result in more error reports, but only in cases where // a register contains uninitialised bytes and points to memory // containing uninitialised bytes. Currently, the 2nd of those to be // detected won't be reported. That is (nearly?) always the memory // error, which is good. case Err_MemParam: if (!VG_STREQ(VG_(get_error_string)(e1), VG_(get_error_string)(e2))) return False; // fall through case Err_User: return ( extra1->Err.User.isAddrErr == extra2->Err.User.isAddrErr ? True : False ); case Err_Free: case Err_FreeMismatch: case Err_Jump: case Err_IllegalMempool: case Err_Overlap: case Err_Cond: return True; case Err_FishyValue: return VG_STREQ(extra1->Err.FishyValue.function_name, extra2->Err.FishyValue.function_name) && VG_STREQ(extra1->Err.FishyValue.argument_name, extra2->Err.FishyValue.argument_name); case Err_Addr: return ( extra1->Err.Addr.szB == extra2->Err.Addr.szB ? True : False ); case Err_Value: return ( extra1->Err.Value.szB == extra2->Err.Value.szB ? True : False ); case Err_Leak: VG_(tool_panic)("Shouldn't get Err_Leak in mc_eq_Error,\n" "since it's handled with VG_(unique_error)()!"); default: VG_(printf)("Error:\n unknown error code %d\n", VG_(get_error_kind)(e1)); VG_(tool_panic)("unknown error code in mc_eq_Error"); } } /* Functions used when searching MC_Chunk lists */ static Bool addr_is_in_MC_Chunk_default_REDZONE_SZB(MC_Chunk* mc, Addr a) { return VG_(addr_is_in_block)( a, mc->data, mc->szB, MC_(Malloc_Redzone_SzB) ); } static Bool addr_is_in_MC_Chunk_with_REDZONE_SZB(MC_Chunk* mc, Addr a, SizeT rzB) { return VG_(addr_is_in_block)( a, mc->data, mc->szB, rzB ); } // Forward declarations static Bool client_block_maybe_describe( Addr a, AddrInfo* ai ); static Bool mempool_block_maybe_describe( Addr a, Bool is_metapool, AddrInfo* ai ); /* Describe an address as best you can, for error messages, putting the result in ai. */ static void describe_addr ( Addr a, /*OUT*/AddrInfo* ai ) { MC_Chunk* mc; tl_assert(Addr_Undescribed == ai->tag); /* -- Perhaps it's a user-named block? -- */ if (client_block_maybe_describe( a, ai )) { return; } /* -- Perhaps it's in mempool block (non-meta)? -- */ if (mempool_block_maybe_describe( a, /*is_metapool*/ False, ai)) { return; } /* Blocks allocated by memcheck malloc functions are either on the recently freed list or on the malloc-ed list. Custom blocks can be on both : a recently freed block might have been just re-allocated. So, first search the malloc-ed block, as the most recent block is the probable cause of error. We however detect and report that this is a recently re-allocated block. */ /* -- Search for a currently malloc'd block which might bracket it. -- */ VG_(HT_ResetIter)(MC_(malloc_list)); while ( (mc = VG_(HT_Next)(MC_(malloc_list))) ) { if (!MC_(is_mempool_block)(mc) && addr_is_in_MC_Chunk_default_REDZONE_SZB(mc, a)) { ai->tag = Addr_Block; ai->Addr.Block.block_kind = Block_Mallocd; if (MC_(get_freed_block_bracketting)( a )) ai->Addr.Block.block_desc = "recently re-allocated block"; else ai->Addr.Block.block_desc = "block"; ai->Addr.Block.block_szB = mc->szB; ai->Addr.Block.rwoffset = (Word)a - (Word)mc->data; ai->Addr.Block.allocated_at = MC_(allocated_at)(mc); VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo); ai->Addr.Block.freed_at = MC_(freed_at)(mc); return; } } /* -- Search for a recently freed block which might bracket it. -- */ mc = MC_(get_freed_block_bracketting)( a ); if (mc) { ai->tag = Addr_Block; ai->Addr.Block.block_kind = Block_Freed; ai->Addr.Block.block_desc = "block"; ai->Addr.Block.block_szB = mc->szB; ai->Addr.Block.rwoffset = (Word)a - (Word)mc->data; ai->Addr.Block.allocated_at = MC_(allocated_at)(mc); VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo); ai->Addr.Block.freed_at = MC_(freed_at)(mc); return; } /* -- Perhaps it's in a meta mempool block? -- */ /* This test is done last, because metapool blocks overlap with blocks handed out to the application. That makes every heap address part of a metapool block, so the interesting cases are handled first. This final search is a last-ditch attempt. When found, it is probably an error in the custom allocator itself. */ if (mempool_block_maybe_describe( a, /*is_metapool*/ True, ai )) { return; } /* No block found. Search a non-heap block description. */ VG_(describe_addr) (a, ai); } void MC_(pp_describe_addr) ( Addr a ) { AddrInfo ai; ai.tag = Addr_Undescribed; describe_addr (a, &ai); VG_(pp_addrinfo_mc) (a, &ai, /* maybe_gcc */ False); VG_(clear_addrinfo) (&ai); } /* Fill in *origin_ec as specified by otag, or NULL it out if otag does not refer to a known origin. */ static void update_origin ( /*OUT*/ExeContext** origin_ec, UInt otag ) { UInt ecu = otag & ~3; *origin_ec = NULL; if (VG_(is_plausible_ECU)(ecu)) { *origin_ec = VG_(get_ExeContext_from_ECU)( ecu ); } } /* Updates the copy with address info if necessary (but not for all errors). */ UInt MC_(update_Error_extra)( const Error* err ) { MC_Error* extra = VG_(get_error_extra)(err); switch (VG_(get_error_kind)(err)) { // These ones don't have addresses associated with them, and so don't // need any updating. case Err_CoreMem: //case Err_Value: //case Err_Cond: case Err_Overlap: case Err_FishyValue: // For Err_Leaks the returned size does not matter -- they are always // shown with VG_(unique_error)() so they 'extra' not copied. But // we make it consistent with the others. case Err_Leak: return sizeof(MC_Error); // For value errors, get the ExeContext corresponding to the // origin tag. Note that it is a kludge to assume that // a length-1 trace indicates a stack origin. FIXME. case Err_Value: update_origin( &extra->Err.Value.origin_ec, extra->Err.Value.otag ); return sizeof(MC_Error); case Err_Cond: update_origin( &extra->Err.Cond.origin_ec, extra->Err.Cond.otag ); return sizeof(MC_Error); case Err_RegParam: update_origin( &extra->Err.RegParam.origin_ec, extra->Err.RegParam.otag ); return sizeof(MC_Error); // These ones always involve a memory address. case Err_Addr: describe_addr ( VG_(get_error_address)(err), &extra->Err.Addr.ai ); return sizeof(MC_Error); case Err_MemParam: describe_addr ( VG_(get_error_address)(err), &extra->Err.MemParam.ai ); update_origin( &extra->Err.MemParam.origin_ec, extra->Err.MemParam.otag ); return sizeof(MC_Error); case Err_Jump: describe_addr ( VG_(get_error_address)(err), &extra->Err.Jump.ai ); return sizeof(MC_Error); case Err_User: describe_addr ( VG_(get_error_address)(err), &extra->Err.User.ai ); update_origin( &extra->Err.User.origin_ec, extra->Err.User.otag ); return sizeof(MC_Error); case Err_Free: describe_addr ( VG_(get_error_address)(err), &extra->Err.Free.ai ); return sizeof(MC_Error); case Err_IllegalMempool: describe_addr ( VG_(get_error_address)(err), &extra->Err.IllegalMempool.ai ); return sizeof(MC_Error); // Err_FreeMismatches have already had their address described; this is // possible because we have the MC_Chunk on hand when the error is // detected. However, the address may be part of a user block, and if so // we override the pre-determined description with a user block one. case Err_FreeMismatch: { tl_assert(extra && Block_Mallocd == extra->Err.FreeMismatch.ai.Addr.Block.block_kind); (void)client_block_maybe_describe( VG_(get_error_address)(err), &extra->Err.FreeMismatch.ai ); return sizeof(MC_Error); } default: VG_(tool_panic)("mc_update_extra: bad errkind"); } } static Bool client_block_maybe_describe( Addr a, /*OUT*/AddrInfo* ai ) { UWord i; CGenBlock* cgbs = NULL; UWord cgb_used = 0; MC_(get_ClientBlock_array)( &cgbs, &cgb_used ); if (cgbs == NULL) tl_assert(cgb_used == 0); /* Perhaps it's a general block ? */ for (i = 0; i < cgb_used; i++) { if (cgbs[i].start == 0 && cgbs[i].size == 0) continue; // Use zero as the redzone for client blocks. if (VG_(addr_is_in_block)(a, cgbs[i].start, cgbs[i].size, 0)) { ai->tag = Addr_Block; ai->Addr.Block.block_kind = Block_UserG; ai->Addr.Block.block_desc = cgbs[i].desc; ai->Addr.Block.block_szB = cgbs[i].size; ai->Addr.Block.rwoffset = (Word)(a) - (Word)(cgbs[i].start); ai->Addr.Block.allocated_at = cgbs[i].where; VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo); ai->Addr.Block.freed_at = VG_(null_ExeContext)();; return True; } } return False; } static Bool mempool_block_maybe_describe( Addr a, Bool is_metapool, /*OUT*/AddrInfo* ai ) { MC_Mempool* mp; tl_assert( MC_(mempool_list) ); VG_(HT_ResetIter)( MC_(mempool_list) ); while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) { if (mp->chunks != NULL && mp->metapool == is_metapool) { MC_Chunk* mc; VG_(HT_ResetIter)(mp->chunks); while ( (mc = VG_(HT_Next)(mp->chunks)) ) { if (addr_is_in_MC_Chunk_with_REDZONE_SZB(mc, a, mp->rzB)) { ai->tag = Addr_Block; ai->Addr.Block.block_kind = Block_MempoolChunk; ai->Addr.Block.block_desc = "block"; ai->Addr.Block.block_szB = mc->szB; ai->Addr.Block.rwoffset = (Word)a - (Word)mc->data; ai->Addr.Block.allocated_at = MC_(allocated_at)(mc); VG_(initThreadInfo) (&ai->Addr.Block.alloc_tinfo); ai->Addr.Block.freed_at = MC_(freed_at)(mc); return True; } } } } return False; } /*------------------------------------------------------------*/ /*--- Suppressions ---*/ /*------------------------------------------------------------*/ typedef enum { ParamSupp, // Bad syscall params UserSupp, // Errors arising from client-request checks CoreMemSupp, // Memory errors in core (pthread ops, signal handling) // Undefined value errors of given size Value1Supp, Value2Supp, Value4Supp, Value8Supp, Value16Supp, Value32Supp, // Undefined value error in conditional. CondSupp, // Unaddressable read/write attempt at given size Addr1Supp, Addr2Supp, Addr4Supp, Addr8Supp, Addr16Supp, Addr32Supp, JumpSupp, // Jump to unaddressable target FreeSupp, // Invalid or mismatching free OverlapSupp, // Overlapping blocks in memcpy(), strcpy(), etc LeakSupp, // Something to be suppressed in a leak check. MempoolSupp, // Memory pool suppression. FishyValueSupp,// Fishy value suppression. } MC_SuppKind; Bool MC_(is_recognised_suppression) ( const HChar* name, Supp* su ) { SuppKind skind; if (VG_STREQ(name, "Param")) skind = ParamSupp; else if (VG_STREQ(name, "User")) skind = UserSupp; else if (VG_STREQ(name, "CoreMem")) skind = CoreMemSupp; else if (VG_STREQ(name, "Addr1")) skind = Addr1Supp; else if (VG_STREQ(name, "Addr2")) skind = Addr2Supp; else if (VG_STREQ(name, "Addr4")) skind = Addr4Supp; else if (VG_STREQ(name, "Addr8")) skind = Addr8Supp; else if (VG_STREQ(name, "Addr16")) skind = Addr16Supp; else if (VG_STREQ(name, "Addr32")) skind = Addr32Supp; else if (VG_STREQ(name, "Jump")) skind = JumpSupp; else if (VG_STREQ(name, "Free")) skind = FreeSupp; else if (VG_STREQ(name, "Leak")) skind = LeakSupp; else if (VG_STREQ(name, "Overlap")) skind = OverlapSupp; else if (VG_STREQ(name, "Mempool")) skind = MempoolSupp; else if (VG_STREQ(name, "Cond")) skind = CondSupp; else if (VG_STREQ(name, "Value0")) skind = CondSupp; /* backwards compat */ else if (VG_STREQ(name, "Value1")) skind = Value1Supp; else if (VG_STREQ(name, "Value2")) skind = Value2Supp; else if (VG_STREQ(name, "Value4")) skind = Value4Supp; else if (VG_STREQ(name, "Value8")) skind = Value8Supp; else if (VG_STREQ(name, "Value16")) skind = Value16Supp; else if (VG_STREQ(name, "Value32")) skind = Value32Supp; else if (VG_STREQ(name, "FishyValue")) skind = FishyValueSupp; else return False; VG_(set_supp_kind)(su, skind); return True; } typedef struct _MC_LeakSuppExtra MC_LeakSuppExtra; struct _MC_LeakSuppExtra { UInt match_leak_kinds; /* Maintains nr of blocks and bytes suppressed with this suppression during the leak search identified by leak_search_gen. blocks_suppressed and bytes_suppressed are reset to 0 when used the first time during a leak search. */ SizeT blocks_suppressed; SizeT bytes_suppressed; UInt leak_search_gen; }; typedef struct { const HChar *function_name; const HChar *argument_name; } MC_FishyValueExtra; Bool MC_(read_extra_suppression_info) ( Int fd, HChar** bufpp, SizeT* nBufp, Int* lineno, Supp *su ) { Bool eof; Int i; if (VG_(get_supp_kind)(su) == ParamSupp) { eof = VG_(get_line) ( fd, bufpp, nBufp, lineno ); if (eof) return False; VG_(set_supp_string)(su, VG_(strdup)("mc.resi.1", *bufpp)); } else if (VG_(get_supp_kind)(su) == LeakSupp) { // We might have the optional match-leak-kinds line MC_LeakSuppExtra* lse; lse = VG_(malloc)("mc.resi.2", sizeof(MC_LeakSuppExtra)); lse->match_leak_kinds = MC_(all_Reachedness)(); lse->blocks_suppressed = 0; lse->bytes_suppressed = 0; lse->leak_search_gen = 0; VG_(set_supp_extra)(su, lse); // By default, all kinds will match. eof = VG_(get_line) ( fd, bufpp, nBufp, lineno ); if (eof) return True; // old LeakSupp style, no match-leak-kinds line. if (0 == VG_(strncmp)(*bufpp, "match-leak-kinds:", 17)) { i = 17; while ((*bufpp)[i] && VG_(isspace)((*bufpp)[i])) i++; if (!VG_(parse_enum_set)(MC_(parse_leak_kinds_tokens), True/*allow_all*/, (*bufpp)+i, &lse->match_leak_kinds)) { return False; } } else { return False; // unknown extra line. } } else if (VG_(get_supp_kind)(su) == FishyValueSupp) { MC_FishyValueExtra *extra; HChar *p, *function_name, *argument_name = NULL; eof = VG_(get_line) ( fd, bufpp, nBufp, lineno ); if (eof) return True; // The suppression string is: function_name(argument_name) function_name = VG_(strdup)("mv.resi.4", *bufpp); p = VG_(strchr)(function_name, '('); if (p != NULL) { *p++ = '\0'; argument_name = p; p = VG_(strchr)(p, ')'); if (p != NULL) *p = '\0'; } if (p == NULL) { // malformed suppression string VG_(free)(function_name); return False; } extra = VG_(malloc)("mc.resi.3", sizeof *extra); extra->function_name = function_name; extra->argument_name = argument_name; VG_(set_supp_extra)(su, extra); } return True; } Bool MC_(error_matches_suppression) ( const Error* err, const Supp* su ) { Int su_szB; MC_Error* extra = VG_(get_error_extra)(err); ErrorKind ekind = VG_(get_error_kind)(err); switch (VG_(get_supp_kind)(su)) { case ParamSupp: return ((ekind == Err_RegParam || ekind == Err_MemParam) && VG_STREQ(VG_(get_error_string)(err), VG_(get_supp_string)(su))); case UserSupp: return (ekind == Err_User); case CoreMemSupp: return (ekind == Err_CoreMem && VG_STREQ(VG_(get_error_string)(err), VG_(get_supp_string)(su))); case Value1Supp: su_szB = 1; goto value_case; case Value2Supp: su_szB = 2; goto value_case; case Value4Supp: su_szB = 4; goto value_case; case Value8Supp: su_szB = 8; goto value_case; case Value16Supp:su_szB =16; goto value_case; case Value32Supp:su_szB =32; goto value_case; value_case: return (ekind == Err_Value && extra->Err.Value.szB == su_szB); case CondSupp: return (ekind == Err_Cond); case Addr1Supp: su_szB = 1; goto addr_case; case Addr2Supp: su_szB = 2; goto addr_case; case Addr4Supp: su_szB = 4; goto addr_case; case Addr8Supp: su_szB = 8; goto addr_case; case Addr16Supp:su_szB =16; goto addr_case; case Addr32Supp:su_szB =32; goto addr_case; addr_case: return (ekind == Err_Addr && extra->Err.Addr.szB == su_szB); case JumpSupp: return (ekind == Err_Jump); case FreeSupp: return (ekind == Err_Free || ekind == Err_FreeMismatch); case OverlapSupp: return (ekind == Err_Overlap); case LeakSupp: if (ekind == Err_Leak) { MC_LeakSuppExtra* lse = (MC_LeakSuppExtra*) VG_(get_supp_extra)(su); if (lse->leak_search_gen != MC_(leak_search_gen)) { // First time we see this suppression during this leak search. // => reset the counters to 0. lse->blocks_suppressed = 0; lse->bytes_suppressed = 0; lse->leak_search_gen = MC_(leak_search_gen); } return RiS(extra->Err.Leak.lr->key.state, lse->match_leak_kinds); } else return False; case MempoolSupp: return (ekind == Err_IllegalMempool); case FishyValueSupp: { MC_FishyValueExtra *supp_extra = VG_(get_supp_extra)(su); return (ekind == Err_FishyValue) && VG_STREQ(extra->Err.FishyValue.function_name, supp_extra->function_name) && VG_STREQ(extra->Err.FishyValue.argument_name, supp_extra->argument_name); } default: VG_(printf)("Error:\n" " unknown suppression type %d\n", VG_(get_supp_kind)(su)); VG_(tool_panic)("unknown suppression type in " "MC_(error_matches_suppression)"); } } const HChar* MC_(get_error_name) ( const Error* err ) { switch (VG_(get_error_kind)(err)) { case Err_RegParam: return "Param"; case Err_MemParam: return "Param"; case Err_User: return "User"; case Err_FreeMismatch: return "Free"; case Err_IllegalMempool: return "Mempool"; case Err_Free: return "Free"; case Err_Jump: return "Jump"; case Err_CoreMem: return "CoreMem"; case Err_Overlap: return "Overlap"; case Err_Leak: return "Leak"; case Err_Cond: return "Cond"; case Err_FishyValue: return "FishyValue"; case Err_Addr: { MC_Error* extra = VG_(get_error_extra)(err); switch ( extra->Err.Addr.szB ) { case 1: return "Addr1"; case 2: return "Addr2"; case 4: return "Addr4"; case 8: return "Addr8"; case 16: return "Addr16"; case 32: return "Addr32"; default: VG_(tool_panic)("unexpected size for Addr"); } } case Err_Value: { MC_Error* extra = VG_(get_error_extra)(err); switch ( extra->Err.Value.szB ) { case 1: return "Value1"; case 2: return "Value2"; case 4: return "Value4"; case 8: return "Value8"; case 16: return "Value16"; case 32: return "Value32"; default: VG_(tool_panic)("unexpected size for Value"); } } default: VG_(tool_panic)("get_error_name: unexpected type"); } } SizeT MC_(get_extra_suppression_info) ( const Error* err, /*OUT*/HChar* buf, Int nBuf ) { ErrorKind ekind = VG_(get_error_kind)(err); tl_assert(buf); tl_assert(nBuf >= 1); if (Err_RegParam == ekind || Err_MemParam == ekind) { const HChar* errstr = VG_(get_error_string)(err); tl_assert(errstr); return VG_(snprintf)(buf, nBuf, "%s", errstr); } else if (Err_Leak == ekind) { MC_Error* extra = VG_(get_error_extra)(err); return VG_(snprintf) (buf, nBuf, "match-leak-kinds: %s", pp_Reachedness_for_leak_kinds(extra->Err.Leak.lr->key.state)); } else if (Err_FishyValue == ekind) { MC_Error* extra = VG_(get_error_extra)(err); return VG_(snprintf) (buf, nBuf, "%s(%s)", extra->Err.FishyValue.function_name, extra->Err.FishyValue.argument_name); } else { buf[0] = '\0'; return 0; } } SizeT MC_(print_extra_suppression_use) ( const Supp *su, /*OUT*/HChar *buf, Int nBuf ) { tl_assert(nBuf >= 1); if (VG_(get_supp_kind)(su) == LeakSupp) { MC_LeakSuppExtra *lse = (MC_LeakSuppExtra*) VG_(get_supp_extra) (su); if (lse->leak_search_gen == MC_(leak_search_gen) && lse->blocks_suppressed > 0) { return VG_(snprintf) (buf, nBuf, "suppressed: %'lu bytes in %'lu blocks", lse->bytes_suppressed, lse->blocks_suppressed); } } buf[0] = '\0'; return 0; } void MC_(update_extra_suppression_use) ( const Error* err, const Supp* su) { if (VG_(get_supp_kind)(su) == LeakSupp) { MC_LeakSuppExtra *lse = (MC_LeakSuppExtra*) VG_(get_supp_extra) (su); MC_Error* extra = VG_(get_error_extra)(err); tl_assert (lse->leak_search_gen == MC_(leak_search_gen)); lse->blocks_suppressed += extra->Err.Leak.lr->num_blocks; lse->bytes_suppressed += extra->Err.Leak.lr->szB + extra->Err.Leak.lr->indirect_szB; } } /*--------------------------------------------------------------------*/ /*--- end mc_errors.c ---*/ /*--------------------------------------------------------------------*/