/*--------------------------------------------------------------------*/ /*--- Cache simulation. ---*/ /*--- sim.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Callgrind, a Valgrind tool for call graph profiling programs. Copyright (C) 2003-2017, Josef Weidendorfer (Josef.Weidendorfer@gmx.de) This tool is derived from and contains code from Cachegrind Copyright (C) 2002-2017 Nicholas Nethercote (njn@valgrind.org) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "global.h" /* Notes: - simulates a write-allocate cache - (block --> set) hash function uses simple bit selection - handling of references straddling two cache blocks: - counts as only one cache access (not two) - both blocks hit --> one hit - one block hits, the other misses --> one miss - both blocks miss --> one miss (not two) */ /* Cache configuration */ #include "cg_arch.c" /* additional structures for cache use info, separated * according usage frequency: * - line_loaded : pointer to cost center of instruction * which loaded the line into cache. * Needed to increment counters when line is evicted. * - line_use : updated on every access */ typedef struct { UInt count; UInt mask; /* e.g. for 64Byte line size 1bit/2Byte */ } line_use; typedef struct { Addr memline, iaddr; line_use* dep_use; /* point to higher-level cacheblock for this memline */ ULong* use_base; } line_loaded; /* Cache state */ typedef struct { const HChar* name; int size; /* bytes */ int assoc; int line_size; /* bytes */ Bool sectored; /* prefetch nearside cacheline on read */ int sets; int sets_min_1; int line_size_bits; int tag_shift; UWord tag_mask; HChar desc_line[128]; // large enough UWord* tags; /* for cache use */ int line_size_mask; int* line_start_mask; int* line_end_mask; line_loaded* loaded; line_use* use; } cache_t2; /* * States of flat caches in our model. * We use a 2-level hierarchy, */ static cache_t2 I1, D1, LL; /* Lower bits of cache tags are used as flags for a cache line */ #define CACHELINE_FLAGMASK (MIN_LINE_SIZE-1) #define CACHELINE_DIRTY 1 /* Cache simulator Options */ static Bool clo_simulate_writeback = False; static Bool clo_simulate_hwpref = False; static Bool clo_simulate_sectors = False; static Bool clo_collect_cacheuse = False; /* Following global vars are setup before by setup_bbcc(): * * - Addr CLG_(bb_base) (instruction start address of original BB) * - ULong* CLG_(cost_base) (start of cost array for BB) */ Addr CLG_(bb_base); ULong* CLG_(cost_base); static InstrInfo* current_ii; /* Cache use offsets */ /* The offsets are only correct because all per-instruction event sets get * the "Use" set added first ! */ static Int off_I1_AcCost = 0; static Int off_I1_SpLoss = 1; static Int off_D1_AcCost = 0; static Int off_D1_SpLoss = 1; static Int off_LL_AcCost = 2; static Int off_LL_SpLoss = 3; /* Cache access types */ typedef enum { Read = 0, Write = CACHELINE_DIRTY } RefType; /* Result of a reference into a flat cache */ typedef enum { Hit = 0, Miss, MissDirty } CacheResult; /* Result of a reference into a hierarchical cache model */ typedef enum { L1_Hit, LL_Hit, MemAccess, WriteBackMemAccess } CacheModelResult; typedef CacheModelResult (*simcall_type)(Addr, UChar); static struct { simcall_type I1_Read; simcall_type D1_Read; simcall_type D1_Write; } simulator; /*------------------------------------------------------------*/ /*--- Cache Simulator Initialization ---*/ /*------------------------------------------------------------*/ static void cachesim_clearcache(cache_t2* c) { Int i; for (i = 0; i < c->sets * c->assoc; i++) c->tags[i] = 0; if (c->use) { for (i = 0; i < c->sets * c->assoc; i++) { c->loaded[i].memline = 0; c->loaded[i].use_base = 0; c->loaded[i].dep_use = 0; c->loaded[i].iaddr = 0; c->use[i].mask = 0; c->use[i].count = 0; c->tags[i] = i % c->assoc; /* init lower bits as pointer */ } } } static void cacheuse_initcache(cache_t2* c); /* By this point, the size/assoc/line_size has been checked. */ static void cachesim_initcache(cache_t config, cache_t2* c) { c->size = config.size; c->assoc = config.assoc; c->line_size = config.line_size; c->sectored = False; // FIXME c->sets = (c->size / c->line_size) / c->assoc; c->sets_min_1 = c->sets - 1; c->line_size_bits = VG_(log2)(c->line_size); c->tag_shift = c->line_size_bits + VG_(log2)(c->sets); c->tag_mask = ~((1u<<c->tag_shift)-1); /* Can bits in tag entries be used for flags? * Should be always true as MIN_LINE_SIZE >= 16 */ CLG_ASSERT( (c->tag_mask & CACHELINE_FLAGMASK) == 0); if (c->assoc == 1) { VG_(sprintf)(c->desc_line, "%d B, %d B, direct-mapped%s", c->size, c->line_size, c->sectored ? ", sectored":""); } else { VG_(sprintf)(c->desc_line, "%d B, %d B, %d-way associative%s", c->size, c->line_size, c->assoc, c->sectored ? ", sectored":""); } c->tags = (UWord*) CLG_MALLOC("cl.sim.cs_ic.1", sizeof(UWord) * c->sets * c->assoc); if (clo_collect_cacheuse) cacheuse_initcache(c); else c->use = 0; cachesim_clearcache(c); } #if 0 static void print_cache(cache_t2* c) { UInt set, way, i; /* Note initialisation and update of 'i'. */ for (i = 0, set = 0; set < c->sets; set++) { for (way = 0; way < c->assoc; way++, i++) { VG_(printf)("%8x ", c->tags[i]); } VG_(printf)("\n"); } } #endif /*------------------------------------------------------------*/ /*--- Simple Cache Simulation ---*/ /*------------------------------------------------------------*/ /* * Model: single inclusive, 2-level cache hierarchy (L1/LL) * with write-allocate * * For simple cache hit/miss counts, we do not have to * maintain the dirty state of lines (no need to distinguish * read/write references), and the resulting counts are the * same for write-through and write-back caches. * * Simulator functions: * CacheModelResult cachesim_I1_ref(Addr a, UChar size) * CacheModelResult cachesim_D1_ref(Addr a, UChar size) */ __attribute__((always_inline)) static __inline__ CacheResult cachesim_setref(cache_t2* c, UInt set_no, UWord tag) { int i, j; UWord *set; set = &(c->tags[set_no * c->assoc]); /* This loop is unrolled for just the first case, which is the most */ /* common. We can't unroll any further because it would screw up */ /* if we have a direct-mapped (1-way) cache. */ if (tag == set[0]) return Hit; /* If the tag is one other than the MRU, move it into the MRU spot */ /* and shuffle the rest down. */ for (i = 1; i < c->assoc; i++) { if (tag == set[i]) { for (j = i; j > 0; j--) { set[j] = set[j - 1]; } set[0] = tag; return Hit; } } /* A miss; install this tag as MRU, shuffle rest down. */ for (j = c->assoc - 1; j > 0; j--) { set[j] = set[j - 1]; } set[0] = tag; return Miss; } __attribute__((always_inline)) static __inline__ CacheResult cachesim_ref(cache_t2* c, Addr a, UChar size) { UWord block1 = a >> c->line_size_bits; UWord block2 = (a+size-1) >> c->line_size_bits; UInt set1 = block1 & c->sets_min_1; /* the tag does not need to include bits specifying the set, * but it can, and this saves instructions */ UWord tag1 = block1; /* Access entirely within line. */ if (block1 == block2) return cachesim_setref(c, set1, tag1); /* Access straddles two lines. */ else if (block1 + 1 == block2) { UInt set2 = block2 & c->sets_min_1; UWord tag2 = block2; /* the call updates cache structures as side effect */ CacheResult res1 = cachesim_setref(c, set1, tag1); CacheResult res2 = cachesim_setref(c, set2, tag2); return ((res1 == Miss) || (res2 == Miss)) ? Miss : Hit; } else { VG_(printf)("addr: %lx size: %u blocks: %lu %lu", a, size, block1, block2); VG_(tool_panic)("item straddles more than two cache sets"); } return Hit; } static CacheModelResult cachesim_I1_ref(Addr a, UChar size) { if ( cachesim_ref( &I1, a, size) == Hit ) return L1_Hit; if ( cachesim_ref( &LL, a, size) == Hit ) return LL_Hit; return MemAccess; } static CacheModelResult cachesim_D1_ref(Addr a, UChar size) { if ( cachesim_ref( &D1, a, size) == Hit ) return L1_Hit; if ( cachesim_ref( &LL, a, size) == Hit ) return LL_Hit; return MemAccess; } /*------------------------------------------------------------*/ /*--- Write Back Cache Simulation ---*/ /*------------------------------------------------------------*/ /* * More complex model: L1 Write-through, LL Write-back * This needs to distinguish among read and write references. * * Simulator functions: * CacheModelResult cachesim_I1_Read(Addr a, UChar size) * CacheModelResult cachesim_D1_Read(Addr a, UChar size) * CacheModelResult cachesim_D1_Write(Addr a, UChar size) */ /* * With write-back, result can be a miss evicting a dirty line * The dirty state of a cache line is stored in Bit0 of the tag for * this cache line (CACHELINE_DIRTY = 1). By OR'ing the reference * type (Read/Write), the line gets dirty on a write. */ __attribute__((always_inline)) static __inline__ CacheResult cachesim_setref_wb(cache_t2* c, RefType ref, UInt set_no, UWord tag) { int i, j; UWord *set, tmp_tag; set = &(c->tags[set_no * c->assoc]); /* This loop is unrolled for just the first case, which is the most */ /* common. We can't unroll any further because it would screw up */ /* if we have a direct-mapped (1-way) cache. */ if (tag == (set[0] & ~CACHELINE_DIRTY)) { set[0] |= ref; return Hit; } /* If the tag is one other than the MRU, move it into the MRU spot */ /* and shuffle the rest down. */ for (i = 1; i < c->assoc; i++) { if (tag == (set[i] & ~CACHELINE_DIRTY)) { tmp_tag = set[i] | ref; // update dirty flag for (j = i; j > 0; j--) { set[j] = set[j - 1]; } set[0] = tmp_tag; return Hit; } } /* A miss; install this tag as MRU, shuffle rest down. */ tmp_tag = set[c->assoc - 1]; for (j = c->assoc - 1; j > 0; j--) { set[j] = set[j - 1]; } set[0] = tag | ref; return (tmp_tag & CACHELINE_DIRTY) ? MissDirty : Miss; } __attribute__((always_inline)) static __inline__ CacheResult cachesim_ref_wb(cache_t2* c, RefType ref, Addr a, UChar size) { UInt set1 = ( a >> c->line_size_bits) & (c->sets_min_1); UInt set2 = ((a+size-1) >> c->line_size_bits) & (c->sets_min_1); UWord tag = a & c->tag_mask; /* Access entirely within line. */ if (set1 == set2) return cachesim_setref_wb(c, ref, set1, tag); /* Access straddles two lines. */ /* Nb: this is a fast way of doing ((set1+1) % c->sets) */ else if (((set1 + 1) & (c->sets_min_1)) == set2) { UWord tag2 = (a+size-1) & c->tag_mask; /* the call updates cache structures as side effect */ CacheResult res1 = cachesim_setref_wb(c, ref, set1, tag); CacheResult res2 = cachesim_setref_wb(c, ref, set2, tag2); if ((res1 == MissDirty) || (res2 == MissDirty)) return MissDirty; return ((res1 == Miss) || (res2 == Miss)) ? Miss : Hit; } else { VG_(printf)("addr: %lx size: %u sets: %u %u", a, size, set1, set2); VG_(tool_panic)("item straddles more than two cache sets"); } return Hit; } static CacheModelResult cachesim_I1_Read(Addr a, UChar size) { if ( cachesim_ref( &I1, a, size) == Hit ) return L1_Hit; switch( cachesim_ref_wb( &LL, Read, a, size) ) { case Hit: return LL_Hit; case Miss: return MemAccess; default: break; } return WriteBackMemAccess; } static CacheModelResult cachesim_D1_Read(Addr a, UChar size) { if ( cachesim_ref( &D1, a, size) == Hit ) return L1_Hit; switch( cachesim_ref_wb( &LL, Read, a, size) ) { case Hit: return LL_Hit; case Miss: return MemAccess; default: break; } return WriteBackMemAccess; } static CacheModelResult cachesim_D1_Write(Addr a, UChar size) { if ( cachesim_ref( &D1, a, size) == Hit ) { /* Even for a L1 hit, the write-trough L1 passes * the write to the LL to make the LL line dirty. * But this causes no latency, so return the hit. */ cachesim_ref_wb( &LL, Write, a, size); return L1_Hit; } switch( cachesim_ref_wb( &LL, Write, a, size) ) { case Hit: return LL_Hit; case Miss: return MemAccess; default: break; } return WriteBackMemAccess; } /*------------------------------------------------------------*/ /*--- Hardware Prefetch Simulation ---*/ /*------------------------------------------------------------*/ static ULong prefetch_up = 0; static ULong prefetch_down = 0; #define PF_STREAMS 8 #define PF_PAGEBITS 12 static UInt pf_lastblock[PF_STREAMS]; static Int pf_seqblocks[PF_STREAMS]; static void prefetch_clear(void) { int i; for(i=0;i<PF_STREAMS;i++) pf_lastblock[i] = pf_seqblocks[i] = 0; } /* * HW Prefetch emulation * Start prefetching when detecting sequential access to 3 memory blocks. * One stream can be detected per 4k page. */ static __inline__ void prefetch_LL_doref(Addr a) { UInt stream = (a >> PF_PAGEBITS) % PF_STREAMS; UInt block = ( a >> LL.line_size_bits); if (block != pf_lastblock[stream]) { if (pf_seqblocks[stream] == 0) { if (pf_lastblock[stream] +1 == block) pf_seqblocks[stream]++; else if (pf_lastblock[stream] -1 == block) pf_seqblocks[stream]--; } else if (pf_seqblocks[stream] >0) { if (pf_lastblock[stream] +1 == block) { pf_seqblocks[stream]++; if (pf_seqblocks[stream] >= 2) { prefetch_up++; cachesim_ref(&LL, a + 5 * LL.line_size,1); } } else pf_seqblocks[stream] = 0; } else if (pf_seqblocks[stream] <0) { if (pf_lastblock[stream] -1 == block) { pf_seqblocks[stream]--; if (pf_seqblocks[stream] <= -2) { prefetch_down++; cachesim_ref(&LL, a - 5 * LL.line_size,1); } } else pf_seqblocks[stream] = 0; } pf_lastblock[stream] = block; } } /* simple model with hardware prefetch */ static CacheModelResult prefetch_I1_ref(Addr a, UChar size) { if ( cachesim_ref( &I1, a, size) == Hit ) return L1_Hit; prefetch_LL_doref(a); if ( cachesim_ref( &LL, a, size) == Hit ) return LL_Hit; return MemAccess; } static CacheModelResult prefetch_D1_ref(Addr a, UChar size) { if ( cachesim_ref( &D1, a, size) == Hit ) return L1_Hit; prefetch_LL_doref(a); if ( cachesim_ref( &LL, a, size) == Hit ) return LL_Hit; return MemAccess; } /* complex model with hardware prefetch */ static CacheModelResult prefetch_I1_Read(Addr a, UChar size) { if ( cachesim_ref( &I1, a, size) == Hit ) return L1_Hit; prefetch_LL_doref(a); switch( cachesim_ref_wb( &LL, Read, a, size) ) { case Hit: return LL_Hit; case Miss: return MemAccess; default: break; } return WriteBackMemAccess; } static CacheModelResult prefetch_D1_Read(Addr a, UChar size) { if ( cachesim_ref( &D1, a, size) == Hit ) return L1_Hit; prefetch_LL_doref(a); switch( cachesim_ref_wb( &LL, Read, a, size) ) { case Hit: return LL_Hit; case Miss: return MemAccess; default: break; } return WriteBackMemAccess; } static CacheModelResult prefetch_D1_Write(Addr a, UChar size) { prefetch_LL_doref(a); if ( cachesim_ref( &D1, a, size) == Hit ) { /* Even for a L1 hit, the write-trough L1 passes * the write to the LL to make the LL line dirty. * But this causes no latency, so return the hit. */ cachesim_ref_wb( &LL, Write, a, size); return L1_Hit; } switch( cachesim_ref_wb( &LL, Write, a, size) ) { case Hit: return LL_Hit; case Miss: return MemAccess; default: break; } return WriteBackMemAccess; } /*------------------------------------------------------------*/ /*--- Cache Simulation with use metric collection ---*/ /*------------------------------------------------------------*/ /* can not be combined with write-back or prefetch */ static void cacheuse_initcache(cache_t2* c) { int i; unsigned int start_mask, start_val; unsigned int end_mask, end_val; c->use = CLG_MALLOC("cl.sim.cu_ic.1", sizeof(line_use) * c->sets * c->assoc); c->loaded = CLG_MALLOC("cl.sim.cu_ic.2", sizeof(line_loaded) * c->sets * c->assoc); c->line_start_mask = CLG_MALLOC("cl.sim.cu_ic.3", sizeof(int) * c->line_size); c->line_end_mask = CLG_MALLOC("cl.sim.cu_ic.4", sizeof(int) * c->line_size); c->line_size_mask = c->line_size-1; /* Meaning of line_start_mask/line_end_mask * Example: for a given cache line, you get an access starting at * byte offset 5, length 4, byte 5 - 8 was touched. For a cache * line size of 32, you have 1 bit per byte in the mask: * * bit31 bit8 bit5 bit 0 * | | | | * 11..111111100000 line_start_mask[5] * 00..000111111111 line_end_mask[(5+4)-1] * * use_mask |= line_start_mask[5] && line_end_mask[8] * */ start_val = end_val = ~0; if (c->line_size < 32) { int bits_per_byte = 32/c->line_size; start_mask = (1<<bits_per_byte)-1; end_mask = start_mask << (32-bits_per_byte); for(i=0;i<c->line_size;i++) { c->line_start_mask[i] = start_val; start_val = start_val & ~start_mask; start_mask = start_mask << bits_per_byte; c->line_end_mask[c->line_size-i-1] = end_val; end_val = end_val & ~end_mask; end_mask = end_mask >> bits_per_byte; } } else { int bytes_per_bit = c->line_size/32; start_mask = 1; end_mask = 1u << 31; for(i=0;i<c->line_size;i++) { c->line_start_mask[i] = start_val; c->line_end_mask[c->line_size-i-1] = end_val; if ( ((i+1)%bytes_per_bit) == 0) { start_val &= ~start_mask; end_val &= ~end_mask; start_mask <<= 1; end_mask >>= 1; } } } CLG_DEBUG(6, "Config %s:\n", c->desc_line); for(i=0;i<c->line_size;i++) { CLG_DEBUG(6, " [%2d]: start mask %8x, end mask %8x\n", i, (UInt)c->line_start_mask[i], (UInt)c->line_end_mask[i]); } /* We use lower tag bits as offset pointers to cache use info. * I.e. some cache parameters don't work. */ if ( (1<<c->tag_shift) < c->assoc) { VG_(message)(Vg_DebugMsg, "error: Use associativity < %d for cache use statistics!\n", (1<<c->tag_shift) ); VG_(tool_panic)("Unsupported cache configuration"); } } /* for I1/D1 caches */ #define CACHEUSE(L) \ \ static CacheModelResult cacheuse##_##L##_doRead(Addr a, UChar size) \ { \ UInt set1 = ( a >> L.line_size_bits) & (L.sets_min_1); \ UInt set2 = ((a+size-1) >> L.line_size_bits) & (L.sets_min_1); \ UWord tag = a & L.tag_mask; \ UWord tag2; \ int i, j, idx; \ UWord *set, tmp_tag; \ UInt use_mask; \ \ CLG_DEBUG(6,"%s.Acc(Addr %#lx, size %d): Sets [%u/%u]\n", \ L.name, a, size, set1, set2); \ \ /* First case: word entirely within line. */ \ if (set1 == set2) { \ \ set = &(L.tags[set1 * L.assoc]); \ use_mask = L.line_start_mask[a & L.line_size_mask] & \ L.line_end_mask[(a+size-1) & L.line_size_mask]; \ \ /* This loop is unrolled for just the first case, which is the most */\ /* common. We can't unroll any further because it would screw up */\ /* if we have a direct-mapped (1-way) cache. */\ if (tag == (set[0] & L.tag_mask)) { \ idx = (set1 * L.assoc) + (set[0] & ~L.tag_mask); \ L.use[idx].count ++; \ L.use[idx].mask |= use_mask; \ CLG_DEBUG(6," Hit0 [idx %d] (line %#lx from %#lx): %x => %08x, count %u\n",\ idx, L.loaded[idx].memline, L.loaded[idx].iaddr, \ use_mask, L.use[idx].mask, L.use[idx].count); \ return L1_Hit; \ } \ /* If the tag is one other than the MRU, move it into the MRU spot */\ /* and shuffle the rest down. */\ for (i = 1; i < L.assoc; i++) { \ if (tag == (set[i] & L.tag_mask)) { \ tmp_tag = set[i]; \ for (j = i; j > 0; j--) { \ set[j] = set[j - 1]; \ } \ set[0] = tmp_tag; \ idx = (set1 * L.assoc) + (tmp_tag & ~L.tag_mask); \ L.use[idx].count ++; \ L.use[idx].mask |= use_mask; \ CLG_DEBUG(6," Hit%d [idx %d] (line %#lx from %#lx): %x => %08x, count %u\n",\ i, idx, L.loaded[idx].memline, L.loaded[idx].iaddr, \ use_mask, L.use[idx].mask, L.use[idx].count); \ return L1_Hit; \ } \ } \ \ /* A miss; install this tag as MRU, shuffle rest down. */ \ tmp_tag = set[L.assoc - 1] & ~L.tag_mask; \ for (j = L.assoc - 1; j > 0; j--) { \ set[j] = set[j - 1]; \ } \ set[0] = tag | tmp_tag; \ idx = (set1 * L.assoc) + tmp_tag; \ return update_##L##_use(&L, idx, \ use_mask, a &~ L.line_size_mask); \ \ /* Second case: word straddles two lines. */ \ /* Nb: this is a fast way of doing ((set1+1) % L.sets) */ \ } else if (((set1 + 1) & (L.sets_min_1)) == set2) { \ Int miss1=0, miss2=0; /* 0: L1 hit, 1:L1 miss, 2:LL miss */ \ set = &(L.tags[set1 * L.assoc]); \ use_mask = L.line_start_mask[a & L.line_size_mask]; \ if (tag == (set[0] & L.tag_mask)) { \ idx = (set1 * L.assoc) + (set[0] & ~L.tag_mask); \ L.use[idx].count ++; \ L.use[idx].mask |= use_mask; \ CLG_DEBUG(6," Hit0 [idx %d] (line %#lx from %#lx): %x => %08x, count %u\n",\ idx, L.loaded[idx].memline, L.loaded[idx].iaddr, \ use_mask, L.use[idx].mask, L.use[idx].count); \ goto block2; \ } \ for (i = 1; i < L.assoc; i++) { \ if (tag == (set[i] & L.tag_mask)) { \ tmp_tag = set[i]; \ for (j = i; j > 0; j--) { \ set[j] = set[j - 1]; \ } \ set[0] = tmp_tag; \ idx = (set1 * L.assoc) + (tmp_tag & ~L.tag_mask); \ L.use[idx].count ++; \ L.use[idx].mask |= use_mask; \ CLG_DEBUG(6," Hit%d [idx %d] (line %#lx from %#lx): %x => %08x, count %u\n",\ i, idx, L.loaded[idx].memline, L.loaded[idx].iaddr, \ use_mask, L.use[idx].mask, L.use[idx].count); \ goto block2; \ } \ } \ tmp_tag = set[L.assoc - 1] & ~L.tag_mask; \ for (j = L.assoc - 1; j > 0; j--) { \ set[j] = set[j - 1]; \ } \ set[0] = tag | tmp_tag; \ idx = (set1 * L.assoc) + tmp_tag; \ miss1 = update_##L##_use(&L, idx, \ use_mask, a &~ L.line_size_mask); \ block2: \ set = &(L.tags[set2 * L.assoc]); \ use_mask = L.line_end_mask[(a+size-1) & L.line_size_mask]; \ tag2 = (a+size-1) & L.tag_mask; \ if (tag2 == (set[0] & L.tag_mask)) { \ idx = (set2 * L.assoc) + (set[0] & ~L.tag_mask); \ L.use[idx].count ++; \ L.use[idx].mask |= use_mask; \ CLG_DEBUG(6," Hit0 [idx %d] (line %#lx from %#lx): %x => %08x, count %u\n",\ idx, L.loaded[idx].memline, L.loaded[idx].iaddr, \ use_mask, L.use[idx].mask, L.use[idx].count); \ return miss1; \ } \ for (i = 1; i < L.assoc; i++) { \ if (tag2 == (set[i] & L.tag_mask)) { \ tmp_tag = set[i]; \ for (j = i; j > 0; j--) { \ set[j] = set[j - 1]; \ } \ set[0] = tmp_tag; \ idx = (set2 * L.assoc) + (tmp_tag & ~L.tag_mask); \ L.use[idx].count ++; \ L.use[idx].mask |= use_mask; \ CLG_DEBUG(6," Hit%d [idx %d] (line %#lx from %#lx): %x => %08x, count %u\n",\ i, idx, L.loaded[idx].memline, L.loaded[idx].iaddr, \ use_mask, L.use[idx].mask, L.use[idx].count); \ return miss1; \ } \ } \ tmp_tag = set[L.assoc - 1] & ~L.tag_mask; \ for (j = L.assoc - 1; j > 0; j--) { \ set[j] = set[j - 1]; \ } \ set[0] = tag2 | tmp_tag; \ idx = (set2 * L.assoc) + tmp_tag; \ miss2 = update_##L##_use(&L, idx, \ use_mask, (a+size-1) &~ L.line_size_mask); \ return (miss1==MemAccess || miss2==MemAccess) ? MemAccess:LL_Hit; \ \ } else { \ VG_(printf)("addr: %#lx size: %u sets: %u %u", a, size, set1, set2); \ VG_(tool_panic)("item straddles more than two cache sets"); \ } \ return 0; \ } /* logarithmic bitcounting algorithm, see * http://graphics.stanford.edu/~seander/bithacks.html */ static __inline__ unsigned int countBits(unsigned int bits) { unsigned int c; // store the total here const int S[] = {1, 2, 4, 8, 16}; // Magic Binary Numbers const int B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF}; c = bits; c = ((c >> S[0]) & B[0]) + (c & B[0]); c = ((c >> S[1]) & B[1]) + (c & B[1]); c = ((c >> S[2]) & B[2]) + (c & B[2]); c = ((c >> S[3]) & B[3]) + (c & B[3]); c = ((c >> S[4]) & B[4]) + (c & B[4]); return c; } static void update_LL_use(int idx, Addr memline) { line_loaded* loaded = &(LL.loaded[idx]); line_use* use = &(LL.use[idx]); int i = ((32 - countBits(use->mask)) * LL.line_size)>>5; CLG_DEBUG(2, " LL.miss [%d]: at %#lx accessing memline %#lx\n", idx, CLG_(bb_base) + current_ii->instr_offset, memline); if (use->count>0) { CLG_DEBUG(2, " old: used %u, loss bits %d (%08x) [line %#lx from %#lx]\n", use->count, i, use->mask, loaded->memline, loaded->iaddr); CLG_DEBUG(2, " collect: %d, use_base %p\n", CLG_(current_state).collect, loaded->use_base); if (CLG_(current_state).collect && loaded->use_base) { (loaded->use_base)[off_LL_AcCost] += 1000 / use->count; (loaded->use_base)[off_LL_SpLoss] += i; } } use->count = 0; use->mask = 0; loaded->memline = memline; loaded->iaddr = CLG_(bb_base) + current_ii->instr_offset; loaded->use_base = (CLG_(current_state).nonskipped) ? CLG_(current_state).nonskipped->skipped : CLG_(cost_base) + current_ii->cost_offset; } static CacheModelResult cacheuse_LL_access(Addr memline, line_loaded* l1_loaded) { UInt setNo = (memline >> LL.line_size_bits) & (LL.sets_min_1); UWord* set = &(LL.tags[setNo * LL.assoc]); UWord tag = memline & LL.tag_mask; int i, j, idx; UWord tmp_tag; CLG_DEBUG(6,"LL.Acc(Memline %#lx): Set %u\n", memline, setNo); if (tag == (set[0] & LL.tag_mask)) { idx = (setNo * LL.assoc) + (set[0] & ~LL.tag_mask); l1_loaded->dep_use = &(LL.use[idx]); CLG_DEBUG(6," Hit0 [idx %d] (line %#lx from %#lx): => %08x, count %u\n", idx, LL.loaded[idx].memline, LL.loaded[idx].iaddr, LL.use[idx].mask, LL.use[idx].count); return LL_Hit; } for (i = 1; i < LL.assoc; i++) { if (tag == (set[i] & LL.tag_mask)) { tmp_tag = set[i]; for (j = i; j > 0; j--) { set[j] = set[j - 1]; } set[0] = tmp_tag; idx = (setNo * LL.assoc) + (tmp_tag & ~LL.tag_mask); l1_loaded->dep_use = &(LL.use[idx]); CLG_DEBUG(6," Hit%d [idx %d] (line %#lx from %#lx): => %08x, count %u\n", i, idx, LL.loaded[idx].memline, LL.loaded[idx].iaddr, LL.use[idx].mask, LL.use[idx].count); return LL_Hit; } } /* A miss; install this tag as MRU, shuffle rest down. */ tmp_tag = set[LL.assoc - 1] & ~LL.tag_mask; for (j = LL.assoc - 1; j > 0; j--) { set[j] = set[j - 1]; } set[0] = tag | tmp_tag; idx = (setNo * LL.assoc) + tmp_tag; l1_loaded->dep_use = &(LL.use[idx]); update_LL_use(idx, memline); return MemAccess; } #define UPDATE_USE(L) \ \ static CacheModelResult update##_##L##_use(cache_t2* cache, int idx, \ UInt mask, Addr memline) \ { \ line_loaded* loaded = &(cache->loaded[idx]); \ line_use* use = &(cache->use[idx]); \ int c = ((32 - countBits(use->mask)) * cache->line_size)>>5; \ \ CLG_DEBUG(2, " %s.miss [%d]: at %#lx accessing memline %#lx (mask %08x)\n", \ cache->name, idx, CLG_(bb_base) + current_ii->instr_offset, memline, mask); \ if (use->count>0) { \ CLG_DEBUG(2, " old: used %u, loss bits %d (%08x) [line %#lx from %#lx]\n",\ use->count, c, use->mask, loaded->memline, loaded->iaddr); \ CLG_DEBUG(2, " collect: %d, use_base %p\n", \ CLG_(current_state).collect, loaded->use_base); \ \ if (CLG_(current_state).collect && loaded->use_base) { \ (loaded->use_base)[off_##L##_AcCost] += 1000 / use->count; \ (loaded->use_base)[off_##L##_SpLoss] += c; \ \ /* FIXME (?): L1/LL line sizes must be equal ! */ \ loaded->dep_use->mask |= use->mask; \ loaded->dep_use->count += use->count; \ } \ } \ \ use->count = 1; \ use->mask = mask; \ loaded->memline = memline; \ loaded->iaddr = CLG_(bb_base) + current_ii->instr_offset; \ loaded->use_base = (CLG_(current_state).nonskipped) ? \ CLG_(current_state).nonskipped->skipped : \ CLG_(cost_base) + current_ii->cost_offset; \ \ if (memline == 0) return LL_Hit; \ return cacheuse_LL_access(memline, loaded); \ } UPDATE_USE(I1); UPDATE_USE(D1); CACHEUSE(I1); CACHEUSE(D1); static void cacheuse_finish(void) { int i; InstrInfo ii = { 0,0,0,0 }; if (!CLG_(current_state).collect) return; CLG_(bb_base) = 0; current_ii = ⅈ /* needs to be set for update_XX_use */ CLG_(cost_base) = 0; /* update usage counters */ if (I1.use) for (i = 0; i < I1.sets * I1.assoc; i++) if (I1.loaded[i].use_base) update_I1_use( &I1, i, 0,0); if (D1.use) for (i = 0; i < D1.sets * D1.assoc; i++) if (D1.loaded[i].use_base) update_D1_use( &D1, i, 0,0); if (LL.use) for (i = 0; i < LL.sets * LL.assoc; i++) if (LL.loaded[i].use_base) update_LL_use(i, 0); current_ii = 0; } /*------------------------------------------------------------*/ /*--- Helper functions called by instrumented code ---*/ /*------------------------------------------------------------*/ static __inline__ void inc_costs(CacheModelResult r, ULong* c1, ULong* c2) { switch(r) { case WriteBackMemAccess: if (clo_simulate_writeback) { c1[3]++; c2[3]++; } // fall through case MemAccess: c1[2]++; c2[2]++; // fall through case LL_Hit: c1[1]++; c2[1]++; // fall through default: c1[0]++; c2[0]++; } } static const HChar* cacheRes(CacheModelResult r) { switch(r) { case L1_Hit: return "L1 Hit "; case LL_Hit: return "LL Hit "; case MemAccess: return "LL Miss"; case WriteBackMemAccess: return "LL Miss (dirty)"; default: tl_assert(0); } return "??"; } VG_REGPARM(1) static void log_1I0D(InstrInfo* ii) { CacheModelResult IrRes; current_ii = ii; IrRes = (*simulator.I1_Read)(CLG_(bb_base) + ii->instr_offset, ii->instr_size); CLG_DEBUG(6, "log_1I0D: Ir %#lx/%u => %s\n", CLG_(bb_base) + ii->instr_offset, ii->instr_size, cacheRes(IrRes)); if (CLG_(current_state).collect) { ULong* cost_Ir; if (CLG_(current_state).nonskipped) cost_Ir = CLG_(current_state).nonskipped->skipped + fullOffset(EG_IR); else cost_Ir = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_IR]; inc_costs(IrRes, cost_Ir, CLG_(current_state).cost + fullOffset(EG_IR) ); } } VG_REGPARM(2) static void log_2I0D(InstrInfo* ii1, InstrInfo* ii2) { CacheModelResult Ir1Res, Ir2Res; ULong *global_cost_Ir; current_ii = ii1; Ir1Res = (*simulator.I1_Read)(CLG_(bb_base) + ii1->instr_offset, ii1->instr_size); current_ii = ii2; Ir2Res = (*simulator.I1_Read)(CLG_(bb_base) + ii2->instr_offset, ii2->instr_size); CLG_DEBUG(6, "log_2I0D: Ir1 %#lx/%u => %s, Ir2 %#lx/%u => %s\n", CLG_(bb_base) + ii1->instr_offset, ii1->instr_size, cacheRes(Ir1Res), CLG_(bb_base) + ii2->instr_offset, ii2->instr_size, cacheRes(Ir2Res) ); if (!CLG_(current_state).collect) return; global_cost_Ir = CLG_(current_state).cost + fullOffset(EG_IR); if (CLG_(current_state).nonskipped) { ULong* skipped_cost_Ir = CLG_(current_state).nonskipped->skipped + fullOffset(EG_IR); inc_costs(Ir1Res, global_cost_Ir, skipped_cost_Ir); inc_costs(Ir2Res, global_cost_Ir, skipped_cost_Ir); return; } inc_costs(Ir1Res, global_cost_Ir, CLG_(cost_base) + ii1->cost_offset + ii1->eventset->offset[EG_IR]); inc_costs(Ir2Res, global_cost_Ir, CLG_(cost_base) + ii2->cost_offset + ii2->eventset->offset[EG_IR]); } VG_REGPARM(3) static void log_3I0D(InstrInfo* ii1, InstrInfo* ii2, InstrInfo* ii3) { CacheModelResult Ir1Res, Ir2Res, Ir3Res; ULong *global_cost_Ir; current_ii = ii1; Ir1Res = (*simulator.I1_Read)(CLG_(bb_base) + ii1->instr_offset, ii1->instr_size); current_ii = ii2; Ir2Res = (*simulator.I1_Read)(CLG_(bb_base) + ii2->instr_offset, ii2->instr_size); current_ii = ii3; Ir3Res = (*simulator.I1_Read)(CLG_(bb_base) + ii3->instr_offset, ii3->instr_size); CLG_DEBUG(6, "log_3I0D: Ir1 %#lx/%u => %s, Ir2 %#lx/%u => %s, Ir3 %#lx/%u => %s\n", CLG_(bb_base) + ii1->instr_offset, ii1->instr_size, cacheRes(Ir1Res), CLG_(bb_base) + ii2->instr_offset, ii2->instr_size, cacheRes(Ir2Res), CLG_(bb_base) + ii3->instr_offset, ii3->instr_size, cacheRes(Ir3Res) ); if (!CLG_(current_state).collect) return; global_cost_Ir = CLG_(current_state).cost + fullOffset(EG_IR); if (CLG_(current_state).nonskipped) { ULong* skipped_cost_Ir = CLG_(current_state).nonskipped->skipped + fullOffset(EG_IR); inc_costs(Ir1Res, global_cost_Ir, skipped_cost_Ir); inc_costs(Ir2Res, global_cost_Ir, skipped_cost_Ir); inc_costs(Ir3Res, global_cost_Ir, skipped_cost_Ir); return; } inc_costs(Ir1Res, global_cost_Ir, CLG_(cost_base) + ii1->cost_offset + ii1->eventset->offset[EG_IR]); inc_costs(Ir2Res, global_cost_Ir, CLG_(cost_base) + ii2->cost_offset + ii2->eventset->offset[EG_IR]); inc_costs(Ir3Res, global_cost_Ir, CLG_(cost_base) + ii3->cost_offset + ii3->eventset->offset[EG_IR]); } /* Instruction doing a read access */ VG_REGPARM(3) static void log_1I1Dr(InstrInfo* ii, Addr data_addr, Word data_size) { CacheModelResult IrRes, DrRes; current_ii = ii; IrRes = (*simulator.I1_Read)(CLG_(bb_base) + ii->instr_offset, ii->instr_size); DrRes = (*simulator.D1_Read)(data_addr, data_size); CLG_DEBUG(6, "log_1I1Dr: Ir %#lx/%u => %s, Dr %#lx/%ld => %s\n", CLG_(bb_base) + ii->instr_offset, ii->instr_size, cacheRes(IrRes), data_addr, data_size, cacheRes(DrRes)); if (CLG_(current_state).collect) { ULong *cost_Ir, *cost_Dr; if (CLG_(current_state).nonskipped) { cost_Ir = CLG_(current_state).nonskipped->skipped + fullOffset(EG_IR); cost_Dr = CLG_(current_state).nonskipped->skipped + fullOffset(EG_DR); } else { cost_Ir = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_IR]; cost_Dr = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_DR]; } inc_costs(IrRes, cost_Ir, CLG_(current_state).cost + fullOffset(EG_IR) ); inc_costs(DrRes, cost_Dr, CLG_(current_state).cost + fullOffset(EG_DR) ); } } /* Note that addEvent_D_guarded assumes that log_0I1Dr and log_0I1Dw have exactly the same prototype. If you change them, you must change addEvent_D_guarded too. */ VG_REGPARM(3) static void log_0I1Dr(InstrInfo* ii, Addr data_addr, Word data_size) { CacheModelResult DrRes; current_ii = ii; DrRes = (*simulator.D1_Read)(data_addr, data_size); CLG_DEBUG(6, "log_0I1Dr: Dr %#lx/%ld => %s\n", data_addr, data_size, cacheRes(DrRes)); if (CLG_(current_state).collect) { ULong *cost_Dr; if (CLG_(current_state).nonskipped) cost_Dr = CLG_(current_state).nonskipped->skipped + fullOffset(EG_DR); else cost_Dr = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_DR]; inc_costs(DrRes, cost_Dr, CLG_(current_state).cost + fullOffset(EG_DR) ); } } /* Instruction doing a write access */ VG_REGPARM(3) static void log_1I1Dw(InstrInfo* ii, Addr data_addr, Word data_size) { CacheModelResult IrRes, DwRes; current_ii = ii; IrRes = (*simulator.I1_Read)(CLG_(bb_base) + ii->instr_offset, ii->instr_size); DwRes = (*simulator.D1_Write)(data_addr, data_size); CLG_DEBUG(6, "log_1I1Dw: Ir %#lx/%u => %s, Dw %#lx/%ld => %s\n", CLG_(bb_base) + ii->instr_offset, ii->instr_size, cacheRes(IrRes), data_addr, data_size, cacheRes(DwRes)); if (CLG_(current_state).collect) { ULong *cost_Ir, *cost_Dw; if (CLG_(current_state).nonskipped) { cost_Ir = CLG_(current_state).nonskipped->skipped + fullOffset(EG_IR); cost_Dw = CLG_(current_state).nonskipped->skipped + fullOffset(EG_DW); } else { cost_Ir = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_IR]; cost_Dw = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_DW]; } inc_costs(IrRes, cost_Ir, CLG_(current_state).cost + fullOffset(EG_IR) ); inc_costs(DwRes, cost_Dw, CLG_(current_state).cost + fullOffset(EG_DW) ); } } /* See comment on log_0I1Dr. */ VG_REGPARM(3) static void log_0I1Dw(InstrInfo* ii, Addr data_addr, Word data_size) { CacheModelResult DwRes; current_ii = ii; DwRes = (*simulator.D1_Write)(data_addr, data_size); CLG_DEBUG(6, "log_0I1Dw: Dw %#lx/%ld => %s\n", data_addr, data_size, cacheRes(DwRes)); if (CLG_(current_state).collect) { ULong *cost_Dw; if (CLG_(current_state).nonskipped) cost_Dw = CLG_(current_state).nonskipped->skipped + fullOffset(EG_DW); else cost_Dw = CLG_(cost_base) + ii->cost_offset + ii->eventset->offset[EG_DW]; inc_costs(DwRes, cost_Dw, CLG_(current_state).cost + fullOffset(EG_DW) ); } } /*------------------------------------------------------------*/ /*--- Cache configuration ---*/ /*------------------------------------------------------------*/ static cache_t clo_I1_cache = UNDEFINED_CACHE; static cache_t clo_D1_cache = UNDEFINED_CACHE; static cache_t clo_LL_cache = UNDEFINED_CACHE; /* Initialize and clear simulator state */ static void cachesim_post_clo_init(void) { /* Cache configurations. */ cache_t I1c, D1c, LLc; /* Initialize access handlers */ if (!CLG_(clo).simulate_cache) { CLG_(cachesim).log_1I0D = 0; CLG_(cachesim).log_1I0D_name = "(no function)"; CLG_(cachesim).log_2I0D = 0; CLG_(cachesim).log_2I0D_name = "(no function)"; CLG_(cachesim).log_3I0D = 0; CLG_(cachesim).log_3I0D_name = "(no function)"; CLG_(cachesim).log_1I1Dr = 0; CLG_(cachesim).log_1I1Dr_name = "(no function)"; CLG_(cachesim).log_1I1Dw = 0; CLG_(cachesim).log_1I1Dw_name = "(no function)"; CLG_(cachesim).log_0I1Dr = 0; CLG_(cachesim).log_0I1Dr_name = "(no function)"; CLG_(cachesim).log_0I1Dw = 0; CLG_(cachesim).log_0I1Dw_name = "(no function)"; return; } /* Configuration of caches only needed with real cache simulation */ VG_(post_clo_init_configure_caches)(&I1c, &D1c, &LLc, &clo_I1_cache, &clo_D1_cache, &clo_LL_cache); I1.name = "I1"; D1.name = "D1"; LL.name = "LL"; // min_line_size is used to make sure that we never feed // accesses to the simulator straddling more than two // cache lines at any cache level CLG_(min_line_size) = (I1c.line_size < D1c.line_size) ? I1c.line_size : D1c.line_size; CLG_(min_line_size) = (LLc.line_size < CLG_(min_line_size)) ? LLc.line_size : CLG_(min_line_size); Int largest_load_or_store_size = VG_(machine_get_size_of_largest_guest_register)(); if (CLG_(min_line_size) < largest_load_or_store_size) { /* We can't continue, because the cache simulation might straddle more than 2 lines, and it will assert. So let's just stop before we start. */ VG_(umsg)("Callgrind: cannot continue: the minimum line size (%d)\n", (Int)CLG_(min_line_size)); VG_(umsg)(" must be equal to or larger than the maximum register size (%d)\n", largest_load_or_store_size ); VG_(umsg)(" but it is not. Exiting now.\n"); VG_(exit)(1); } cachesim_initcache(I1c, &I1); cachesim_initcache(D1c, &D1); cachesim_initcache(LLc, &LL); /* the other cache simulators use the standard helpers * with dispatching via simulator struct */ CLG_(cachesim).log_1I0D = log_1I0D; CLG_(cachesim).log_1I0D_name = "log_1I0D"; CLG_(cachesim).log_2I0D = log_2I0D; CLG_(cachesim).log_2I0D_name = "log_2I0D"; CLG_(cachesim).log_3I0D = log_3I0D; CLG_(cachesim).log_3I0D_name = "log_3I0D"; CLG_(cachesim).log_1I1Dr = log_1I1Dr; CLG_(cachesim).log_1I1Dw = log_1I1Dw; CLG_(cachesim).log_1I1Dr_name = "log_1I1Dr"; CLG_(cachesim).log_1I1Dw_name = "log_1I1Dw"; CLG_(cachesim).log_0I1Dr = log_0I1Dr; CLG_(cachesim).log_0I1Dw = log_0I1Dw; CLG_(cachesim).log_0I1Dr_name = "log_0I1Dr"; CLG_(cachesim).log_0I1Dw_name = "log_0I1Dw"; if (clo_collect_cacheuse) { /* Output warning for not supported option combinations */ if (clo_simulate_hwpref) { VG_(message)(Vg_DebugMsg, "warning: prefetch simulation can not be " "used with cache usage\n"); clo_simulate_hwpref = False; } if (clo_simulate_writeback) { VG_(message)(Vg_DebugMsg, "warning: write-back simulation can not be " "used with cache usage\n"); clo_simulate_writeback = False; } simulator.I1_Read = cacheuse_I1_doRead; simulator.D1_Read = cacheuse_D1_doRead; simulator.D1_Write = cacheuse_D1_doRead; return; } if (clo_simulate_hwpref) { prefetch_clear(); if (clo_simulate_writeback) { simulator.I1_Read = prefetch_I1_Read; simulator.D1_Read = prefetch_D1_Read; simulator.D1_Write = prefetch_D1_Write; } else { simulator.I1_Read = prefetch_I1_ref; simulator.D1_Read = prefetch_D1_ref; simulator.D1_Write = prefetch_D1_ref; } return; } if (clo_simulate_writeback) { simulator.I1_Read = cachesim_I1_Read; simulator.D1_Read = cachesim_D1_Read; simulator.D1_Write = cachesim_D1_Write; } else { simulator.I1_Read = cachesim_I1_ref; simulator.D1_Read = cachesim_D1_ref; simulator.D1_Write = cachesim_D1_ref; } } /* Clear simulator state. Has to be initialized before */ static void cachesim_clear(void) { cachesim_clearcache(&I1); cachesim_clearcache(&D1); cachesim_clearcache(&LL); prefetch_clear(); } static void cachesim_dump_desc(VgFile *fp) { VG_(fprintf)(fp, "\ndesc: I1 cache: %s\n", I1.desc_line); VG_(fprintf)(fp, "desc: D1 cache: %s\n", D1.desc_line); VG_(fprintf)(fp, "desc: LL cache: %s\n", LL.desc_line); } static void cachesim_print_opts(void) { VG_(printf)( "\n cache simulator options (does cache simulation if used):\n" " --simulate-wb=no|yes Count write-back events [no]\n" " --simulate-hwpref=no|yes Simulate hardware prefetch [no]\n" #if CLG_EXPERIMENTAL " --simulate-sectors=no|yes Simulate sectored behaviour [no]\n" #endif " --cacheuse=no|yes Collect cache block use [no]\n"); VG_(print_cache_clo_opts)(); } /* Check for command line option for cache configuration. * Return False if unknown and not handled. * * Called from CLG_(process_cmd_line_option)() in clo.c */ static Bool cachesim_parse_opt(const HChar* arg) { if VG_BOOL_CLO(arg, "--simulate-wb", clo_simulate_writeback) {} else if VG_BOOL_CLO(arg, "--simulate-hwpref", clo_simulate_hwpref) {} else if VG_BOOL_CLO(arg, "--simulate-sectors", clo_simulate_sectors) {} else if VG_BOOL_CLO(arg, "--cacheuse", clo_collect_cacheuse) { if (clo_collect_cacheuse) { /* Use counters only make sense with fine dumping */ CLG_(clo).dump_instr = True; } } else if (VG_(str_clo_cache_opt)(arg, &clo_I1_cache, &clo_D1_cache, &clo_LL_cache)) {} else return False; return True; } static void cachesim_printstat(Int l1, Int l2, Int l3) { FullCost total = CLG_(total_cost), D_total = 0; ULong LL_total_m, LL_total_mr, LL_total_mw, LL_total, LL_total_r, LL_total_w; if ((VG_(clo_verbosity) >1) && clo_simulate_hwpref) { VG_(message)(Vg_DebugMsg, "Prefetch Up: %llu\n", prefetch_up); VG_(message)(Vg_DebugMsg, "Prefetch Down: %llu\n", prefetch_down); VG_(message)(Vg_DebugMsg, "\n"); } VG_(message)(Vg_UserMsg, "I1 misses: %'*llu\n", l1, total[fullOffset(EG_IR) +1]); VG_(message)(Vg_UserMsg, "LLi misses: %'*llu\n", l1, total[fullOffset(EG_IR) +2]); if (0 == total[fullOffset(EG_IR)]) total[fullOffset(EG_IR)] = 1; VG_(message)(Vg_UserMsg, "I1 miss rate: %*.2f%%\n", l1, total[fullOffset(EG_IR)+1] * 100.0 / total[fullOffset(EG_IR)]); VG_(message)(Vg_UserMsg, "LLi miss rate: %*.2f%%\n", l1, total[fullOffset(EG_IR)+2] * 100.0 / total[fullOffset(EG_IR)]); VG_(message)(Vg_UserMsg, "\n"); /* D cache results. Use the D_refs.rd and D_refs.wr values to determine the * width of columns 2 & 3. */ D_total = CLG_(get_eventset_cost)( CLG_(sets).full ); CLG_(init_cost)( CLG_(sets).full, D_total); // we only use the first 3 values of D_total, adding up Dr and Dw costs CLG_(copy_cost)( CLG_(get_event_set)(EG_DR), D_total, total + fullOffset(EG_DR) ); CLG_(add_cost) ( CLG_(get_event_set)(EG_DW), D_total, total + fullOffset(EG_DW) ); VG_(message)(Vg_UserMsg, "D refs: %'*llu (%'*llu rd + %'*llu wr)\n", l1, D_total[0], l2, total[fullOffset(EG_DR)], l3, total[fullOffset(EG_DW)]); VG_(message)(Vg_UserMsg, "D1 misses: %'*llu (%'*llu rd + %'*llu wr)\n", l1, D_total[1], l2, total[fullOffset(EG_DR)+1], l3, total[fullOffset(EG_DW)+1]); VG_(message)(Vg_UserMsg, "LLd misses: %'*llu (%'*llu rd + %'*llu wr)\n", l1, D_total[2], l2, total[fullOffset(EG_DR)+2], l3, total[fullOffset(EG_DW)+2]); if (0 == D_total[0]) D_total[0] = 1; if (0 == total[fullOffset(EG_DR)]) total[fullOffset(EG_DR)] = 1; if (0 == total[fullOffset(EG_DW)]) total[fullOffset(EG_DW)] = 1; VG_(message)(Vg_UserMsg, "D1 miss rate: %*.1f%% (%*.1f%% + %*.1f%% )\n", l1, D_total[1] * 100.0 / D_total[0], l2, total[fullOffset(EG_DR)+1] * 100.0 / total[fullOffset(EG_DR)], l3, total[fullOffset(EG_DW)+1] * 100.0 / total[fullOffset(EG_DW)]); VG_(message)(Vg_UserMsg, "LLd miss rate: %*.1f%% (%*.1f%% + %*.1f%% )\n", l1, D_total[2] * 100.0 / D_total[0], l2, total[fullOffset(EG_DR)+2] * 100.0 / total[fullOffset(EG_DR)], l3, total[fullOffset(EG_DW)+2] * 100.0 / total[fullOffset(EG_DW)]); VG_(message)(Vg_UserMsg, "\n"); /* LL overall results */ LL_total = total[fullOffset(EG_DR) +1] + total[fullOffset(EG_DW) +1] + total[fullOffset(EG_IR) +1]; LL_total_r = total[fullOffset(EG_DR) +1] + total[fullOffset(EG_IR) +1]; LL_total_w = total[fullOffset(EG_DW) +1]; VG_(message)(Vg_UserMsg, "LL refs: %'*llu (%'*llu rd + %'*llu wr)\n", l1, LL_total, l2, LL_total_r, l3, LL_total_w); LL_total_m = total[fullOffset(EG_DR) +2] + total[fullOffset(EG_DW) +2] + total[fullOffset(EG_IR) +2]; LL_total_mr = total[fullOffset(EG_DR) +2] + total[fullOffset(EG_IR) +2]; LL_total_mw = total[fullOffset(EG_DW) +2]; VG_(message)(Vg_UserMsg, "LL misses: %'*llu (%'*llu rd + %'*llu wr)\n", l1, LL_total_m, l2, LL_total_mr, l3, LL_total_mw); VG_(message)(Vg_UserMsg, "LL miss rate: %*.1f%% (%*.1f%% + %*.1f%% )\n", l1, LL_total_m * 100.0 / (total[fullOffset(EG_IR)] + D_total[0]), l2, LL_total_mr * 100.0 / (total[fullOffset(EG_IR)] + total[fullOffset(EG_DR)]), l3, LL_total_mw * 100.0 / total[fullOffset(EG_DW)]); } /*------------------------------------------------------------*/ /*--- Setup for Event set. ---*/ /*------------------------------------------------------------*/ struct event_sets CLG_(sets); void CLG_(init_eventsets)() { // Event groups from which the event sets are composed // the "Use" group only is used with "cacheuse" simulation if (clo_collect_cacheuse) CLG_(register_event_group4)(EG_USE, "AcCost1", "SpLoss1", "AcCost2", "SpLoss2"); if (!CLG_(clo).simulate_cache) CLG_(register_event_group)(EG_IR, "Ir"); else if (!clo_simulate_writeback) { CLG_(register_event_group3)(EG_IR, "Ir", "I1mr", "ILmr"); CLG_(register_event_group3)(EG_DR, "Dr", "D1mr", "DLmr"); CLG_(register_event_group3)(EG_DW, "Dw", "D1mw", "DLmw"); } else { // clo_simulate_writeback CLG_(register_event_group4)(EG_IR, "Ir", "I1mr", "ILmr", "ILdmr"); CLG_(register_event_group4)(EG_DR, "Dr", "D1mr", "DLmr", "DLdmr"); CLG_(register_event_group4)(EG_DW, "Dw", "D1mw", "DLmw", "DLdmw"); } if (CLG_(clo).simulate_branch) { CLG_(register_event_group2)(EG_BC, "Bc", "Bcm"); CLG_(register_event_group2)(EG_BI, "Bi", "Bim"); } if (CLG_(clo).collect_bus) CLG_(register_event_group)(EG_BUS, "Ge"); if (CLG_(clo).collect_alloc) CLG_(register_event_group2)(EG_ALLOC, "allocCount", "allocSize"); if (CLG_(clo).collect_systime) CLG_(register_event_group2)(EG_SYS, "sysCount", "sysTime"); // event set used as base for instruction self cost CLG_(sets).base = CLG_(get_event_set2)(EG_USE, EG_IR); // event set comprising all event groups, used for inclusive cost CLG_(sets).full = CLG_(add_event_group2)(CLG_(sets).base, EG_DR, EG_DW); CLG_(sets).full = CLG_(add_event_group2)(CLG_(sets).full, EG_BC, EG_BI); CLG_(sets).full = CLG_(add_event_group) (CLG_(sets).full, EG_BUS); CLG_(sets).full = CLG_(add_event_group2)(CLG_(sets).full, EG_ALLOC, EG_SYS); CLG_DEBUGIF(1) { CLG_DEBUG(1, "EventSets:\n"); CLG_(print_eventset)(-2, CLG_(sets).base); CLG_(print_eventset)(-2, CLG_(sets).full); } /* Not-existing events are silently ignored */ CLG_(dumpmap) = CLG_(get_eventmapping)(CLG_(sets).full); CLG_(append_event)(CLG_(dumpmap), "Ir"); CLG_(append_event)(CLG_(dumpmap), "Dr"); CLG_(append_event)(CLG_(dumpmap), "Dw"); CLG_(append_event)(CLG_(dumpmap), "I1mr"); CLG_(append_event)(CLG_(dumpmap), "D1mr"); CLG_(append_event)(CLG_(dumpmap), "D1mw"); CLG_(append_event)(CLG_(dumpmap), "ILmr"); CLG_(append_event)(CLG_(dumpmap), "DLmr"); CLG_(append_event)(CLG_(dumpmap), "DLmw"); CLG_(append_event)(CLG_(dumpmap), "ILdmr"); CLG_(append_event)(CLG_(dumpmap), "DLdmr"); CLG_(append_event)(CLG_(dumpmap), "DLdmw"); CLG_(append_event)(CLG_(dumpmap), "Bc"); CLG_(append_event)(CLG_(dumpmap), "Bcm"); CLG_(append_event)(CLG_(dumpmap), "Bi"); CLG_(append_event)(CLG_(dumpmap), "Bim"); CLG_(append_event)(CLG_(dumpmap), "AcCost1"); CLG_(append_event)(CLG_(dumpmap), "SpLoss1"); CLG_(append_event)(CLG_(dumpmap), "AcCost2"); CLG_(append_event)(CLG_(dumpmap), "SpLoss2"); CLG_(append_event)(CLG_(dumpmap), "Ge"); CLG_(append_event)(CLG_(dumpmap), "allocCount"); CLG_(append_event)(CLG_(dumpmap), "allocSize"); CLG_(append_event)(CLG_(dumpmap), "sysCount"); CLG_(append_event)(CLG_(dumpmap), "sysTime"); } /* this is called at dump time for every instruction executed */ static void cachesim_add_icost(SimCost cost, BBCC* bbcc, InstrInfo* ii, ULong exe_count) { if (!CLG_(clo).simulate_cache) cost[ fullOffset(EG_IR) ] += exe_count; if (ii->eventset) CLG_(add_and_zero_cost2)( CLG_(sets).full, cost, ii->eventset, bbcc->cost + ii->cost_offset); } static void cachesim_finish(void) { if (clo_collect_cacheuse) cacheuse_finish(); } /*------------------------------------------------------------*/ /*--- The simulator defined in this file ---*/ /*------------------------------------------------------------*/ struct cachesim_if CLG_(cachesim) = { .print_opts = cachesim_print_opts, .parse_opt = cachesim_parse_opt, .post_clo_init = cachesim_post_clo_init, .clear = cachesim_clear, .dump_desc = cachesim_dump_desc, .printstat = cachesim_printstat, .add_icost = cachesim_add_icost, .finish = cachesim_finish, /* these will be set by cachesim_post_clo_init */ .log_1I0D = 0, .log_2I0D = 0, .log_3I0D = 0, .log_1I1Dr = 0, .log_1I1Dw = 0, .log_0I1Dr = 0, .log_0I1Dw = 0, .log_1I0D_name = "(no function)", .log_2I0D_name = "(no function)", .log_3I0D_name = "(no function)", .log_1I1Dr_name = "(no function)", .log_1I1Dw_name = "(no function)", .log_0I1Dr_name = "(no function)", .log_0I1Dw_name = "(no function)", }; /*--------------------------------------------------------------------*/ /*--- end ct_sim.c ---*/ /*--------------------------------------------------------------------*/