// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: vladl@google.com (Vlad Losev), wan@google.com (Zhanyong Wan) // // This file tests the internal cross-platform support utilities. #include "gtest/internal/gtest-port.h" #include <stdio.h> #if GTEST_OS_MAC # include <time.h> #endif // GTEST_OS_MAC #include <list> #include <utility> // For std::pair and std::make_pair. #include <vector> #include "gtest/gtest.h" #include "gtest/gtest-spi.h" // Indicates that this translation unit is part of Google Test's // implementation. It must come before gtest-internal-inl.h is // included, or there will be a compiler error. This trick is to // prevent a user from accidentally including gtest-internal-inl.h in // his code. #define GTEST_IMPLEMENTATION_ 1 #include "src/gtest-internal-inl.h" #undef GTEST_IMPLEMENTATION_ using std::make_pair; using std::pair; namespace testing { namespace internal { TEST(IsXDigitTest, WorksForNarrowAscii) { EXPECT_TRUE(IsXDigit('0')); EXPECT_TRUE(IsXDigit('9')); EXPECT_TRUE(IsXDigit('A')); EXPECT_TRUE(IsXDigit('F')); EXPECT_TRUE(IsXDigit('a')); EXPECT_TRUE(IsXDigit('f')); EXPECT_FALSE(IsXDigit('-')); EXPECT_FALSE(IsXDigit('g')); EXPECT_FALSE(IsXDigit('G')); } TEST(IsXDigitTest, ReturnsFalseForNarrowNonAscii) { EXPECT_FALSE(IsXDigit(static_cast<char>(0x80))); EXPECT_FALSE(IsXDigit(static_cast<char>('0' | 0x80))); } TEST(IsXDigitTest, WorksForWideAscii) { EXPECT_TRUE(IsXDigit(L'0')); EXPECT_TRUE(IsXDigit(L'9')); EXPECT_TRUE(IsXDigit(L'A')); EXPECT_TRUE(IsXDigit(L'F')); EXPECT_TRUE(IsXDigit(L'a')); EXPECT_TRUE(IsXDigit(L'f')); EXPECT_FALSE(IsXDigit(L'-')); EXPECT_FALSE(IsXDigit(L'g')); EXPECT_FALSE(IsXDigit(L'G')); } TEST(IsXDigitTest, ReturnsFalseForWideNonAscii) { EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(0x80))); EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(L'0' | 0x80))); EXPECT_FALSE(IsXDigit(static_cast<wchar_t>(L'0' | 0x100))); } class Base { public: // Copy constructor and assignment operator do exactly what we need, so we // use them. Base() : member_(0) {} explicit Base(int n) : member_(n) {} virtual ~Base() {} int member() { return member_; } private: int member_; }; class Derived : public Base { public: explicit Derived(int n) : Base(n) {} }; TEST(ImplicitCastTest, ConvertsPointers) { Derived derived(0); EXPECT_TRUE(&derived == ::testing::internal::ImplicitCast_<Base*>(&derived)); } TEST(ImplicitCastTest, CanUseInheritance) { Derived derived(1); Base base = ::testing::internal::ImplicitCast_<Base>(derived); EXPECT_EQ(derived.member(), base.member()); } class Castable { public: explicit Castable(bool* converted) : converted_(converted) {} operator Base() { *converted_ = true; return Base(); } private: bool* converted_; }; TEST(ImplicitCastTest, CanUseNonConstCastOperator) { bool converted = false; Castable castable(&converted); Base base = ::testing::internal::ImplicitCast_<Base>(castable); EXPECT_TRUE(converted); } class ConstCastable { public: explicit ConstCastable(bool* converted) : converted_(converted) {} operator Base() const { *converted_ = true; return Base(); } private: bool* converted_; }; TEST(ImplicitCastTest, CanUseConstCastOperatorOnConstValues) { bool converted = false; const ConstCastable const_castable(&converted); Base base = ::testing::internal::ImplicitCast_<Base>(const_castable); EXPECT_TRUE(converted); } class ConstAndNonConstCastable { public: ConstAndNonConstCastable(bool* converted, bool* const_converted) : converted_(converted), const_converted_(const_converted) {} operator Base() { *converted_ = true; return Base(); } operator Base() const { *const_converted_ = true; return Base(); } private: bool* converted_; bool* const_converted_; }; TEST(ImplicitCastTest, CanSelectBetweenConstAndNonConstCasrAppropriately) { bool converted = false; bool const_converted = false; ConstAndNonConstCastable castable(&converted, &const_converted); Base base = ::testing::internal::ImplicitCast_<Base>(castable); EXPECT_TRUE(converted); EXPECT_FALSE(const_converted); converted = false; const_converted = false; const ConstAndNonConstCastable const_castable(&converted, &const_converted); base = ::testing::internal::ImplicitCast_<Base>(const_castable); EXPECT_FALSE(converted); EXPECT_TRUE(const_converted); } class To { public: To(bool* converted) { *converted = true; } // NOLINT }; TEST(ImplicitCastTest, CanUseImplicitConstructor) { bool converted = false; To to = ::testing::internal::ImplicitCast_<To>(&converted); (void)to; EXPECT_TRUE(converted); } TEST(IteratorTraitsTest, WorksForSTLContainerIterators) { StaticAssertTypeEq<int, IteratorTraits< ::std::vector<int>::const_iterator>::value_type>(); StaticAssertTypeEq<bool, IteratorTraits< ::std::list<bool>::iterator>::value_type>(); } TEST(IteratorTraitsTest, WorksForPointerToNonConst) { StaticAssertTypeEq<char, IteratorTraits<char*>::value_type>(); StaticAssertTypeEq<const void*, IteratorTraits<const void**>::value_type>(); } TEST(IteratorTraitsTest, WorksForPointerToConst) { StaticAssertTypeEq<char, IteratorTraits<const char*>::value_type>(); StaticAssertTypeEq<const void*, IteratorTraits<const void* const*>::value_type>(); } // Tests that the element_type typedef is available in scoped_ptr and refers // to the parameter type. TEST(ScopedPtrTest, DefinesElementType) { StaticAssertTypeEq<int, ::testing::internal::scoped_ptr<int>::element_type>(); } // TODO(vladl@google.com): Implement THE REST of scoped_ptr tests. TEST(GtestCheckSyntaxTest, BehavesLikeASingleStatement) { if (AlwaysFalse()) GTEST_CHECK_(false) << "This should never be executed; " "It's a compilation test only."; if (AlwaysTrue()) GTEST_CHECK_(true); else ; // NOLINT if (AlwaysFalse()) ; // NOLINT else GTEST_CHECK_(true) << ""; } TEST(GtestCheckSyntaxTest, WorksWithSwitch) { switch (0) { case 1: break; default: GTEST_CHECK_(true); } switch (0) case 0: GTEST_CHECK_(true) << "Check failed in switch case"; } // Verifies behavior of FormatFileLocation. TEST(FormatFileLocationTest, FormatsFileLocation) { EXPECT_PRED_FORMAT2(IsSubstring, "foo.cc", FormatFileLocation("foo.cc", 42)); EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation("foo.cc", 42)); } TEST(FormatFileLocationTest, FormatsUnknownFile) { EXPECT_PRED_FORMAT2( IsSubstring, "unknown file", FormatFileLocation(NULL, 42)); EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation(NULL, 42)); } TEST(FormatFileLocationTest, FormatsUknownLine) { EXPECT_EQ("foo.cc:", FormatFileLocation("foo.cc", -1)); } TEST(FormatFileLocationTest, FormatsUknownFileAndLine) { EXPECT_EQ("unknown file:", FormatFileLocation(NULL, -1)); } // Verifies behavior of FormatCompilerIndependentFileLocation. TEST(FormatCompilerIndependentFileLocationTest, FormatsFileLocation) { EXPECT_EQ("foo.cc:42", FormatCompilerIndependentFileLocation("foo.cc", 42)); } TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFile) { EXPECT_EQ("unknown file:42", FormatCompilerIndependentFileLocation(NULL, 42)); } TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownLine) { EXPECT_EQ("foo.cc", FormatCompilerIndependentFileLocation("foo.cc", -1)); } TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFileAndLine) { EXPECT_EQ("unknown file", FormatCompilerIndependentFileLocation(NULL, -1)); } #if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX void* ThreadFunc(void* data) { internal::Mutex* mutex = static_cast<internal::Mutex*>(data); mutex->Lock(); mutex->Unlock(); return NULL; } TEST(GetThreadCountTest, ReturnsCorrectValue) { const size_t starting_count = GetThreadCount(); pthread_t thread_id; internal::Mutex mutex; { internal::MutexLock lock(&mutex); pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); const int status = pthread_create(&thread_id, &attr, &ThreadFunc, &mutex); ASSERT_EQ(0, pthread_attr_destroy(&attr)); ASSERT_EQ(0, status); EXPECT_EQ(starting_count + 1, GetThreadCount()); } void* dummy; ASSERT_EQ(0, pthread_join(thread_id, &dummy)); // The OS may not immediately report the updated thread count after // joining a thread, causing flakiness in this test. To counter that, we // wait for up to .5 seconds for the OS to report the correct value. for (int i = 0; i < 5; ++i) { if (GetThreadCount() == starting_count) break; SleepMilliseconds(100); } EXPECT_EQ(starting_count, GetThreadCount()); } #else TEST(GetThreadCountTest, ReturnsZeroWhenUnableToCountThreads) { EXPECT_EQ(0U, GetThreadCount()); } #endif // GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX TEST(GtestCheckDeathTest, DiesWithCorrectOutputOnFailure) { const bool a_false_condition = false; const char regex[] = #ifdef _MSC_VER "gtest-port_test\\.cc\\(\\d+\\):" #elif GTEST_USES_POSIX_RE "gtest-port_test\\.cc:[0-9]+" #else "gtest-port_test\\.cc:\\d+" #endif // _MSC_VER ".*a_false_condition.*Extra info.*"; EXPECT_DEATH_IF_SUPPORTED(GTEST_CHECK_(a_false_condition) << "Extra info", regex); } #if GTEST_HAS_DEATH_TEST TEST(GtestCheckDeathTest, LivesSilentlyOnSuccess) { EXPECT_EXIT({ GTEST_CHECK_(true) << "Extra info"; ::std::cerr << "Success\n"; exit(0); }, ::testing::ExitedWithCode(0), "Success"); } #endif // GTEST_HAS_DEATH_TEST // Verifies that Google Test choose regular expression engine appropriate to // the platform. The test will produce compiler errors in case of failure. // For simplicity, we only cover the most important platforms here. TEST(RegexEngineSelectionTest, SelectsCorrectRegexEngine) { #if !GTEST_USES_PCRE # if GTEST_HAS_POSIX_RE EXPECT_TRUE(GTEST_USES_POSIX_RE); # else EXPECT_TRUE(GTEST_USES_SIMPLE_RE); # endif #endif // !GTEST_USES_PCRE } #if GTEST_USES_POSIX_RE # if GTEST_HAS_TYPED_TEST template <typename Str> class RETest : public ::testing::Test {}; // Defines StringTypes as the list of all string types that class RE // supports. typedef testing::Types< ::std::string, # if GTEST_HAS_GLOBAL_STRING ::string, # endif // GTEST_HAS_GLOBAL_STRING const char*> StringTypes; TYPED_TEST_CASE(RETest, StringTypes); // Tests RE's implicit constructors. TYPED_TEST(RETest, ImplicitConstructorWorks) { const RE empty(TypeParam("")); EXPECT_STREQ("", empty.pattern()); const RE simple(TypeParam("hello")); EXPECT_STREQ("hello", simple.pattern()); const RE normal(TypeParam(".*(\\w+)")); EXPECT_STREQ(".*(\\w+)", normal.pattern()); } // Tests that RE's constructors reject invalid regular expressions. TYPED_TEST(RETest, RejectsInvalidRegex) { EXPECT_NONFATAL_FAILURE({ const RE invalid(TypeParam("?")); }, "\"?\" is not a valid POSIX Extended regular expression."); } // Tests RE::FullMatch(). TYPED_TEST(RETest, FullMatchWorks) { const RE empty(TypeParam("")); EXPECT_TRUE(RE::FullMatch(TypeParam(""), empty)); EXPECT_FALSE(RE::FullMatch(TypeParam("a"), empty)); const RE re(TypeParam("a.*z")); EXPECT_TRUE(RE::FullMatch(TypeParam("az"), re)); EXPECT_TRUE(RE::FullMatch(TypeParam("axyz"), re)); EXPECT_FALSE(RE::FullMatch(TypeParam("baz"), re)); EXPECT_FALSE(RE::FullMatch(TypeParam("azy"), re)); } // Tests RE::PartialMatch(). TYPED_TEST(RETest, PartialMatchWorks) { const RE empty(TypeParam("")); EXPECT_TRUE(RE::PartialMatch(TypeParam(""), empty)); EXPECT_TRUE(RE::PartialMatch(TypeParam("a"), empty)); const RE re(TypeParam("a.*z")); EXPECT_TRUE(RE::PartialMatch(TypeParam("az"), re)); EXPECT_TRUE(RE::PartialMatch(TypeParam("axyz"), re)); EXPECT_TRUE(RE::PartialMatch(TypeParam("baz"), re)); EXPECT_TRUE(RE::PartialMatch(TypeParam("azy"), re)); EXPECT_FALSE(RE::PartialMatch(TypeParam("zza"), re)); } # endif // GTEST_HAS_TYPED_TEST #elif GTEST_USES_SIMPLE_RE TEST(IsInSetTest, NulCharIsNotInAnySet) { EXPECT_FALSE(IsInSet('\0', "")); EXPECT_FALSE(IsInSet('\0', "\0")); EXPECT_FALSE(IsInSet('\0', "a")); } TEST(IsInSetTest, WorksForNonNulChars) { EXPECT_FALSE(IsInSet('a', "Ab")); EXPECT_FALSE(IsInSet('c', "")); EXPECT_TRUE(IsInSet('b', "bcd")); EXPECT_TRUE(IsInSet('b', "ab")); } TEST(IsAsciiDigitTest, IsFalseForNonDigit) { EXPECT_FALSE(IsAsciiDigit('\0')); EXPECT_FALSE(IsAsciiDigit(' ')); EXPECT_FALSE(IsAsciiDigit('+')); EXPECT_FALSE(IsAsciiDigit('-')); EXPECT_FALSE(IsAsciiDigit('.')); EXPECT_FALSE(IsAsciiDigit('a')); } TEST(IsAsciiDigitTest, IsTrueForDigit) { EXPECT_TRUE(IsAsciiDigit('0')); EXPECT_TRUE(IsAsciiDigit('1')); EXPECT_TRUE(IsAsciiDigit('5')); EXPECT_TRUE(IsAsciiDigit('9')); } TEST(IsAsciiPunctTest, IsFalseForNonPunct) { EXPECT_FALSE(IsAsciiPunct('\0')); EXPECT_FALSE(IsAsciiPunct(' ')); EXPECT_FALSE(IsAsciiPunct('\n')); EXPECT_FALSE(IsAsciiPunct('a')); EXPECT_FALSE(IsAsciiPunct('0')); } TEST(IsAsciiPunctTest, IsTrueForPunct) { for (const char* p = "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"; *p; p++) { EXPECT_PRED1(IsAsciiPunct, *p); } } TEST(IsRepeatTest, IsFalseForNonRepeatChar) { EXPECT_FALSE(IsRepeat('\0')); EXPECT_FALSE(IsRepeat(' ')); EXPECT_FALSE(IsRepeat('a')); EXPECT_FALSE(IsRepeat('1')); EXPECT_FALSE(IsRepeat('-')); } TEST(IsRepeatTest, IsTrueForRepeatChar) { EXPECT_TRUE(IsRepeat('?')); EXPECT_TRUE(IsRepeat('*')); EXPECT_TRUE(IsRepeat('+')); } TEST(IsAsciiWhiteSpaceTest, IsFalseForNonWhiteSpace) { EXPECT_FALSE(IsAsciiWhiteSpace('\0')); EXPECT_FALSE(IsAsciiWhiteSpace('a')); EXPECT_FALSE(IsAsciiWhiteSpace('1')); EXPECT_FALSE(IsAsciiWhiteSpace('+')); EXPECT_FALSE(IsAsciiWhiteSpace('_')); } TEST(IsAsciiWhiteSpaceTest, IsTrueForWhiteSpace) { EXPECT_TRUE(IsAsciiWhiteSpace(' ')); EXPECT_TRUE(IsAsciiWhiteSpace('\n')); EXPECT_TRUE(IsAsciiWhiteSpace('\r')); EXPECT_TRUE(IsAsciiWhiteSpace('\t')); EXPECT_TRUE(IsAsciiWhiteSpace('\v')); EXPECT_TRUE(IsAsciiWhiteSpace('\f')); } TEST(IsAsciiWordCharTest, IsFalseForNonWordChar) { EXPECT_FALSE(IsAsciiWordChar('\0')); EXPECT_FALSE(IsAsciiWordChar('+')); EXPECT_FALSE(IsAsciiWordChar('.')); EXPECT_FALSE(IsAsciiWordChar(' ')); EXPECT_FALSE(IsAsciiWordChar('\n')); } TEST(IsAsciiWordCharTest, IsTrueForLetter) { EXPECT_TRUE(IsAsciiWordChar('a')); EXPECT_TRUE(IsAsciiWordChar('b')); EXPECT_TRUE(IsAsciiWordChar('A')); EXPECT_TRUE(IsAsciiWordChar('Z')); } TEST(IsAsciiWordCharTest, IsTrueForDigit) { EXPECT_TRUE(IsAsciiWordChar('0')); EXPECT_TRUE(IsAsciiWordChar('1')); EXPECT_TRUE(IsAsciiWordChar('7')); EXPECT_TRUE(IsAsciiWordChar('9')); } TEST(IsAsciiWordCharTest, IsTrueForUnderscore) { EXPECT_TRUE(IsAsciiWordChar('_')); } TEST(IsValidEscapeTest, IsFalseForNonPrintable) { EXPECT_FALSE(IsValidEscape('\0')); EXPECT_FALSE(IsValidEscape('\007')); } TEST(IsValidEscapeTest, IsFalseForDigit) { EXPECT_FALSE(IsValidEscape('0')); EXPECT_FALSE(IsValidEscape('9')); } TEST(IsValidEscapeTest, IsFalseForWhiteSpace) { EXPECT_FALSE(IsValidEscape(' ')); EXPECT_FALSE(IsValidEscape('\n')); } TEST(IsValidEscapeTest, IsFalseForSomeLetter) { EXPECT_FALSE(IsValidEscape('a')); EXPECT_FALSE(IsValidEscape('Z')); } TEST(IsValidEscapeTest, IsTrueForPunct) { EXPECT_TRUE(IsValidEscape('.')); EXPECT_TRUE(IsValidEscape('-')); EXPECT_TRUE(IsValidEscape('^')); EXPECT_TRUE(IsValidEscape('$')); EXPECT_TRUE(IsValidEscape('(')); EXPECT_TRUE(IsValidEscape(']')); EXPECT_TRUE(IsValidEscape('{')); EXPECT_TRUE(IsValidEscape('|')); } TEST(IsValidEscapeTest, IsTrueForSomeLetter) { EXPECT_TRUE(IsValidEscape('d')); EXPECT_TRUE(IsValidEscape('D')); EXPECT_TRUE(IsValidEscape('s')); EXPECT_TRUE(IsValidEscape('S')); EXPECT_TRUE(IsValidEscape('w')); EXPECT_TRUE(IsValidEscape('W')); } TEST(AtomMatchesCharTest, EscapedPunct) { EXPECT_FALSE(AtomMatchesChar(true, '\\', '\0')); EXPECT_FALSE(AtomMatchesChar(true, '\\', ' ')); EXPECT_FALSE(AtomMatchesChar(true, '_', '.')); EXPECT_FALSE(AtomMatchesChar(true, '.', 'a')); EXPECT_TRUE(AtomMatchesChar(true, '\\', '\\')); EXPECT_TRUE(AtomMatchesChar(true, '_', '_')); EXPECT_TRUE(AtomMatchesChar(true, '+', '+')); EXPECT_TRUE(AtomMatchesChar(true, '.', '.')); } TEST(AtomMatchesCharTest, Escaped_d) { EXPECT_FALSE(AtomMatchesChar(true, 'd', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'd', 'a')); EXPECT_FALSE(AtomMatchesChar(true, 'd', '.')); EXPECT_TRUE(AtomMatchesChar(true, 'd', '0')); EXPECT_TRUE(AtomMatchesChar(true, 'd', '9')); } TEST(AtomMatchesCharTest, Escaped_D) { EXPECT_FALSE(AtomMatchesChar(true, 'D', '0')); EXPECT_FALSE(AtomMatchesChar(true, 'D', '9')); EXPECT_TRUE(AtomMatchesChar(true, 'D', '\0')); EXPECT_TRUE(AtomMatchesChar(true, 'D', 'a')); EXPECT_TRUE(AtomMatchesChar(true, 'D', '-')); } TEST(AtomMatchesCharTest, Escaped_s) { EXPECT_FALSE(AtomMatchesChar(true, 's', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 's', 'a')); EXPECT_FALSE(AtomMatchesChar(true, 's', '.')); EXPECT_FALSE(AtomMatchesChar(true, 's', '9')); EXPECT_TRUE(AtomMatchesChar(true, 's', ' ')); EXPECT_TRUE(AtomMatchesChar(true, 's', '\n')); EXPECT_TRUE(AtomMatchesChar(true, 's', '\t')); } TEST(AtomMatchesCharTest, Escaped_S) { EXPECT_FALSE(AtomMatchesChar(true, 'S', ' ')); EXPECT_FALSE(AtomMatchesChar(true, 'S', '\r')); EXPECT_TRUE(AtomMatchesChar(true, 'S', '\0')); EXPECT_TRUE(AtomMatchesChar(true, 'S', 'a')); EXPECT_TRUE(AtomMatchesChar(true, 'S', '9')); } TEST(AtomMatchesCharTest, Escaped_w) { EXPECT_FALSE(AtomMatchesChar(true, 'w', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'w', '+')); EXPECT_FALSE(AtomMatchesChar(true, 'w', ' ')); EXPECT_FALSE(AtomMatchesChar(true, 'w', '\n')); EXPECT_TRUE(AtomMatchesChar(true, 'w', '0')); EXPECT_TRUE(AtomMatchesChar(true, 'w', 'b')); EXPECT_TRUE(AtomMatchesChar(true, 'w', 'C')); EXPECT_TRUE(AtomMatchesChar(true, 'w', '_')); } TEST(AtomMatchesCharTest, Escaped_W) { EXPECT_FALSE(AtomMatchesChar(true, 'W', 'A')); EXPECT_FALSE(AtomMatchesChar(true, 'W', 'b')); EXPECT_FALSE(AtomMatchesChar(true, 'W', '9')); EXPECT_FALSE(AtomMatchesChar(true, 'W', '_')); EXPECT_TRUE(AtomMatchesChar(true, 'W', '\0')); EXPECT_TRUE(AtomMatchesChar(true, 'W', '*')); EXPECT_TRUE(AtomMatchesChar(true, 'W', '\n')); } TEST(AtomMatchesCharTest, EscapedWhiteSpace) { EXPECT_FALSE(AtomMatchesChar(true, 'f', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'f', '\n')); EXPECT_FALSE(AtomMatchesChar(true, 'n', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'n', '\r')); EXPECT_FALSE(AtomMatchesChar(true, 'r', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'r', 'a')); EXPECT_FALSE(AtomMatchesChar(true, 't', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 't', 't')); EXPECT_FALSE(AtomMatchesChar(true, 'v', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'v', '\f')); EXPECT_TRUE(AtomMatchesChar(true, 'f', '\f')); EXPECT_TRUE(AtomMatchesChar(true, 'n', '\n')); EXPECT_TRUE(AtomMatchesChar(true, 'r', '\r')); EXPECT_TRUE(AtomMatchesChar(true, 't', '\t')); EXPECT_TRUE(AtomMatchesChar(true, 'v', '\v')); } TEST(AtomMatchesCharTest, UnescapedDot) { EXPECT_FALSE(AtomMatchesChar(false, '.', '\n')); EXPECT_TRUE(AtomMatchesChar(false, '.', '\0')); EXPECT_TRUE(AtomMatchesChar(false, '.', '.')); EXPECT_TRUE(AtomMatchesChar(false, '.', 'a')); EXPECT_TRUE(AtomMatchesChar(false, '.', ' ')); } TEST(AtomMatchesCharTest, UnescapedChar) { EXPECT_FALSE(AtomMatchesChar(false, 'a', '\0')); EXPECT_FALSE(AtomMatchesChar(false, 'a', 'b')); EXPECT_FALSE(AtomMatchesChar(false, '$', 'a')); EXPECT_TRUE(AtomMatchesChar(false, '$', '$')); EXPECT_TRUE(AtomMatchesChar(false, '5', '5')); EXPECT_TRUE(AtomMatchesChar(false, 'Z', 'Z')); } TEST(ValidateRegexTest, GeneratesFailureAndReturnsFalseForInvalid) { EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(NULL)), "NULL is not a valid simple regular expression"); EXPECT_NONFATAL_FAILURE( ASSERT_FALSE(ValidateRegex("a\\")), "Syntax error at index 1 in simple regular expression \"a\\\": "); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a\\")), "'\\' cannot appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\n\\")), "'\\' cannot appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\s\\hb")), "invalid escape sequence \"\\h\""); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^^")), "'^' can only appear at the beginning"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(".*^b")), "'^' can only appear at the beginning"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("$$")), "'$' can only appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^$a")), "'$' can only appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a(b")), "'(' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("ab)")), "')' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("[ab")), "'[' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a{2")), "'{' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("?")), "'?' can only follow a repeatable token"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^*")), "'*' can only follow a repeatable token"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("5*+")), "'+' can only follow a repeatable token"); } TEST(ValidateRegexTest, ReturnsTrueForValid) { EXPECT_TRUE(ValidateRegex("")); EXPECT_TRUE(ValidateRegex("a")); EXPECT_TRUE(ValidateRegex(".*")); EXPECT_TRUE(ValidateRegex("^a_+")); EXPECT_TRUE(ValidateRegex("^a\\t\\&?")); EXPECT_TRUE(ValidateRegex("09*$")); EXPECT_TRUE(ValidateRegex("^Z$")); EXPECT_TRUE(ValidateRegex("a\\^Z\\$\\(\\)\\|\\[\\]\\{\\}")); } TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrOne) { EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "a", "ba")); // Repeating more than once. EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "aab")); // Repeating zero times. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ba")); // Repeating once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ab")); EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '#', '?', ".", "##")); } TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrMany) { EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '*', "a$", "baab")); // Repeating zero times. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "bc")); // Repeating once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "abc")); // Repeating more than once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '*', "-", "ab_1-g")); } TEST(MatchRepetitionAndRegexAtHeadTest, WorksForOneOrMany) { EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "a$", "baab")); // Repeating zero times. EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "bc")); // Repeating once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "abc")); // Repeating more than once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '+', "-", "ab_1-g")); } TEST(MatchRegexAtHeadTest, ReturnsTrueForEmptyRegex) { EXPECT_TRUE(MatchRegexAtHead("", "")); EXPECT_TRUE(MatchRegexAtHead("", "ab")); } TEST(MatchRegexAtHeadTest, WorksWhenDollarIsInRegex) { EXPECT_FALSE(MatchRegexAtHead("$", "a")); EXPECT_TRUE(MatchRegexAtHead("$", "")); EXPECT_TRUE(MatchRegexAtHead("a$", "a")); } TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithEscapeSequence) { EXPECT_FALSE(MatchRegexAtHead("\\w", "+")); EXPECT_FALSE(MatchRegexAtHead("\\W", "ab")); EXPECT_TRUE(MatchRegexAtHead("\\sa", "\nab")); EXPECT_TRUE(MatchRegexAtHead("\\d", "1a")); } TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithRepetition) { EXPECT_FALSE(MatchRegexAtHead(".+a", "abc")); EXPECT_FALSE(MatchRegexAtHead("a?b", "aab")); EXPECT_TRUE(MatchRegexAtHead(".*a", "bc12-ab")); EXPECT_TRUE(MatchRegexAtHead("a?b", "b")); EXPECT_TRUE(MatchRegexAtHead("a?b", "ab")); } TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithRepetionOfEscapeSequence) { EXPECT_FALSE(MatchRegexAtHead("\\.+a", "abc")); EXPECT_FALSE(MatchRegexAtHead("\\s?b", " b")); EXPECT_TRUE(MatchRegexAtHead("\\(*a", "((((ab")); EXPECT_TRUE(MatchRegexAtHead("\\^?b", "^b")); EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "b")); EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "\\b")); } TEST(MatchRegexAtHeadTest, MatchesSequentially) { EXPECT_FALSE(MatchRegexAtHead("ab.*c", "acabc")); EXPECT_TRUE(MatchRegexAtHead("ab.*c", "ab-fsc")); } TEST(MatchRegexAnywhereTest, ReturnsFalseWhenStringIsNull) { EXPECT_FALSE(MatchRegexAnywhere("", NULL)); } TEST(MatchRegexAnywhereTest, WorksWhenRegexStartsWithCaret) { EXPECT_FALSE(MatchRegexAnywhere("^a", "ba")); EXPECT_FALSE(MatchRegexAnywhere("^$", "a")); EXPECT_TRUE(MatchRegexAnywhere("^a", "ab")); EXPECT_TRUE(MatchRegexAnywhere("^", "ab")); EXPECT_TRUE(MatchRegexAnywhere("^$", "")); } TEST(MatchRegexAnywhereTest, ReturnsFalseWhenNoMatch) { EXPECT_FALSE(MatchRegexAnywhere("a", "bcde123")); EXPECT_FALSE(MatchRegexAnywhere("a.+a", "--aa88888888")); } TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingPrefix) { EXPECT_TRUE(MatchRegexAnywhere("\\w+", "ab1_ - 5")); EXPECT_TRUE(MatchRegexAnywhere(".*=", "=")); EXPECT_TRUE(MatchRegexAnywhere("x.*ab?.*bc", "xaaabc")); } TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingNonPrefix) { EXPECT_TRUE(MatchRegexAnywhere("\\w+", "$$$ ab1_ - 5")); EXPECT_TRUE(MatchRegexAnywhere("\\.+=", "= ...=")); } // Tests RE's implicit constructors. TEST(RETest, ImplicitConstructorWorks) { const RE empty(""); EXPECT_STREQ("", empty.pattern()); const RE simple("hello"); EXPECT_STREQ("hello", simple.pattern()); } // Tests that RE's constructors reject invalid regular expressions. TEST(RETest, RejectsInvalidRegex) { EXPECT_NONFATAL_FAILURE({ const RE normal(NULL); }, "NULL is not a valid simple regular expression"); EXPECT_NONFATAL_FAILURE({ const RE normal(".*(\\w+"); }, "'(' is unsupported"); EXPECT_NONFATAL_FAILURE({ const RE invalid("^?"); }, "'?' can only follow a repeatable token"); } // Tests RE::FullMatch(). TEST(RETest, FullMatchWorks) { const RE empty(""); EXPECT_TRUE(RE::FullMatch("", empty)); EXPECT_FALSE(RE::FullMatch("a", empty)); const RE re1("a"); EXPECT_TRUE(RE::FullMatch("a", re1)); const RE re("a.*z"); EXPECT_TRUE(RE::FullMatch("az", re)); EXPECT_TRUE(RE::FullMatch("axyz", re)); EXPECT_FALSE(RE::FullMatch("baz", re)); EXPECT_FALSE(RE::FullMatch("azy", re)); } // Tests RE::PartialMatch(). TEST(RETest, PartialMatchWorks) { const RE empty(""); EXPECT_TRUE(RE::PartialMatch("", empty)); EXPECT_TRUE(RE::PartialMatch("a", empty)); const RE re("a.*z"); EXPECT_TRUE(RE::PartialMatch("az", re)); EXPECT_TRUE(RE::PartialMatch("axyz", re)); EXPECT_TRUE(RE::PartialMatch("baz", re)); EXPECT_TRUE(RE::PartialMatch("azy", re)); EXPECT_FALSE(RE::PartialMatch("zza", re)); } #endif // GTEST_USES_POSIX_RE #if !GTEST_OS_WINDOWS_MOBILE TEST(CaptureTest, CapturesStdout) { CaptureStdout(); fprintf(stdout, "abc"); EXPECT_STREQ("abc", GetCapturedStdout().c_str()); CaptureStdout(); fprintf(stdout, "def%cghi", '\0'); EXPECT_EQ(::std::string("def\0ghi", 7), ::std::string(GetCapturedStdout())); } TEST(CaptureTest, CapturesStderr) { CaptureStderr(); fprintf(stderr, "jkl"); EXPECT_STREQ("jkl", GetCapturedStderr().c_str()); CaptureStderr(); fprintf(stderr, "jkl%cmno", '\0'); EXPECT_EQ(::std::string("jkl\0mno", 7), ::std::string(GetCapturedStderr())); } // Tests that stdout and stderr capture don't interfere with each other. TEST(CaptureTest, CapturesStdoutAndStderr) { CaptureStdout(); CaptureStderr(); fprintf(stdout, "pqr"); fprintf(stderr, "stu"); EXPECT_STREQ("pqr", GetCapturedStdout().c_str()); EXPECT_STREQ("stu", GetCapturedStderr().c_str()); } TEST(CaptureDeathTest, CannotReenterStdoutCapture) { CaptureStdout(); EXPECT_DEATH_IF_SUPPORTED(CaptureStdout(), "Only one stdout capturer can exist at a time"); GetCapturedStdout(); // We cannot test stderr capturing using death tests as they use it // themselves. } #endif // !GTEST_OS_WINDOWS_MOBILE TEST(ThreadLocalTest, DefaultConstructorInitializesToDefaultValues) { ThreadLocal<int> t1; EXPECT_EQ(0, t1.get()); ThreadLocal<void*> t2; EXPECT_TRUE(t2.get() == NULL); } TEST(ThreadLocalTest, SingleParamConstructorInitializesToParam) { ThreadLocal<int> t1(123); EXPECT_EQ(123, t1.get()); int i = 0; ThreadLocal<int*> t2(&i); EXPECT_EQ(&i, t2.get()); } class NoDefaultContructor { public: explicit NoDefaultContructor(const char*) {} NoDefaultContructor(const NoDefaultContructor&) {} }; TEST(ThreadLocalTest, ValueDefaultContructorIsNotRequiredForParamVersion) { ThreadLocal<NoDefaultContructor> bar(NoDefaultContructor("foo")); bar.pointer(); } TEST(ThreadLocalTest, GetAndPointerReturnSameValue) { ThreadLocal<std::string> thread_local_string; EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get())); // Verifies the condition still holds after calling set. thread_local_string.set("foo"); EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get())); } TEST(ThreadLocalTest, PointerAndConstPointerReturnSameValue) { ThreadLocal<std::string> thread_local_string; const ThreadLocal<std::string>& const_thread_local_string = thread_local_string; EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer()); thread_local_string.set("foo"); EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer()); } #if GTEST_IS_THREADSAFE void AddTwo(int* param) { *param += 2; } TEST(ThreadWithParamTest, ConstructorExecutesThreadFunc) { int i = 40; ThreadWithParam<int*> thread(&AddTwo, &i, NULL); thread.Join(); EXPECT_EQ(42, i); } TEST(MutexDeathTest, AssertHeldShouldAssertWhenNotLocked) { // AssertHeld() is flaky only in the presence of multiple threads accessing // the lock. In this case, the test is robust. EXPECT_DEATH_IF_SUPPORTED({ Mutex m; { MutexLock lock(&m); } m.AssertHeld(); }, "thread .*hold"); } TEST(MutexTest, AssertHeldShouldNotAssertWhenLocked) { Mutex m; MutexLock lock(&m); m.AssertHeld(); } class AtomicCounterWithMutex { public: explicit AtomicCounterWithMutex(Mutex* mutex) : value_(0), mutex_(mutex), random_(42) {} void Increment() { MutexLock lock(mutex_); int temp = value_; { // We need to put up a memory barrier to prevent reads and writes to // value_ rearranged with the call to SleepMilliseconds when observed // from other threads. #if GTEST_HAS_PTHREAD // On POSIX, locking a mutex puts up a memory barrier. We cannot use // Mutex and MutexLock here or rely on their memory barrier // functionality as we are testing them here. pthread_mutex_t memory_barrier_mutex; GTEST_CHECK_POSIX_SUCCESS_( pthread_mutex_init(&memory_barrier_mutex, NULL)); GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_lock(&memory_barrier_mutex)); SleepMilliseconds(random_.Generate(30)); GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_unlock(&memory_barrier_mutex)); GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_destroy(&memory_barrier_mutex)); #elif GTEST_OS_WINDOWS // On Windows, performing an interlocked access puts up a memory barrier. volatile LONG dummy = 0; ::InterlockedIncrement(&dummy); SleepMilliseconds(random_.Generate(30)); ::InterlockedIncrement(&dummy); #else # error "Memory barrier not implemented on this platform." #endif // GTEST_HAS_PTHREAD } value_ = temp + 1; } int value() const { return value_; } private: volatile int value_; Mutex* const mutex_; // Protects value_. Random random_; }; void CountingThreadFunc(pair<AtomicCounterWithMutex*, int> param) { for (int i = 0; i < param.second; ++i) param.first->Increment(); } // Tests that the mutex only lets one thread at a time to lock it. TEST(MutexTest, OnlyOneThreadCanLockAtATime) { Mutex mutex; AtomicCounterWithMutex locked_counter(&mutex); typedef ThreadWithParam<pair<AtomicCounterWithMutex*, int> > ThreadType; const int kCycleCount = 20; const int kThreadCount = 7; scoped_ptr<ThreadType> counting_threads[kThreadCount]; Notification threads_can_start; // Creates and runs kThreadCount threads that increment locked_counter // kCycleCount times each. for (int i = 0; i < kThreadCount; ++i) { counting_threads[i].reset(new ThreadType(&CountingThreadFunc, make_pair(&locked_counter, kCycleCount), &threads_can_start)); } threads_can_start.Notify(); for (int i = 0; i < kThreadCount; ++i) counting_threads[i]->Join(); // If the mutex lets more than one thread to increment the counter at a // time, they are likely to encounter a race condition and have some // increments overwritten, resulting in the lower then expected counter // value. EXPECT_EQ(kCycleCount * kThreadCount, locked_counter.value()); } template <typename T> void RunFromThread(void (func)(T), T param) { ThreadWithParam<T> thread(func, param, NULL); thread.Join(); } void RetrieveThreadLocalValue( pair<ThreadLocal<std::string>*, std::string*> param) { *param.second = param.first->get(); } TEST(ThreadLocalTest, ParameterizedConstructorSetsDefault) { ThreadLocal<std::string> thread_local_string("foo"); EXPECT_STREQ("foo", thread_local_string.get().c_str()); thread_local_string.set("bar"); EXPECT_STREQ("bar", thread_local_string.get().c_str()); std::string result; RunFromThread(&RetrieveThreadLocalValue, make_pair(&thread_local_string, &result)); EXPECT_STREQ("foo", result.c_str()); } // Keeps track of whether of destructors being called on instances of // DestructorTracker. On Windows, waits for the destructor call reports. class DestructorCall { public: DestructorCall() { invoked_ = false; #if GTEST_OS_WINDOWS wait_event_.Reset(::CreateEvent(NULL, TRUE, FALSE, NULL)); GTEST_CHECK_(wait_event_.Get() != NULL); #endif } bool CheckDestroyed() const { #if GTEST_OS_WINDOWS if (::WaitForSingleObject(wait_event_.Get(), 1000) != WAIT_OBJECT_0) return false; #endif return invoked_; } void ReportDestroyed() { invoked_ = true; #if GTEST_OS_WINDOWS ::SetEvent(wait_event_.Get()); #endif } static std::vector<DestructorCall*>& List() { return *list_; } static void ResetList() { for (size_t i = 0; i < list_->size(); ++i) { delete list_->at(i); } list_->clear(); } private: bool invoked_; #if GTEST_OS_WINDOWS AutoHandle wait_event_; #endif static std::vector<DestructorCall*>* const list_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DestructorCall); }; std::vector<DestructorCall*>* const DestructorCall::list_ = new std::vector<DestructorCall*>; // DestructorTracker keeps track of whether its instances have been // destroyed. class DestructorTracker { public: DestructorTracker() : index_(GetNewIndex()) {} DestructorTracker(const DestructorTracker& /* rhs */) : index_(GetNewIndex()) {} ~DestructorTracker() { // We never access DestructorCall::List() concurrently, so we don't need // to protect this acccess with a mutex. DestructorCall::List()[index_]->ReportDestroyed(); } private: static size_t GetNewIndex() { DestructorCall::List().push_back(new DestructorCall); return DestructorCall::List().size() - 1; } const size_t index_; GTEST_DISALLOW_ASSIGN_(DestructorTracker); }; typedef ThreadLocal<DestructorTracker>* ThreadParam; void CallThreadLocalGet(ThreadParam thread_local_param) { thread_local_param->get(); } // Tests that when a ThreadLocal object dies in a thread, it destroys // the managed object for that thread. TEST(ThreadLocalTest, DestroysManagedObjectForOwnThreadWhenDying) { DestructorCall::ResetList(); { ThreadLocal<DestructorTracker> thread_local_tracker; ASSERT_EQ(0U, DestructorCall::List().size()); // This creates another DestructorTracker object for the main thread. thread_local_tracker.get(); ASSERT_EQ(1U, DestructorCall::List().size()); ASSERT_FALSE(DestructorCall::List()[0]->CheckDestroyed()); } // Now thread_local_tracker has died. ASSERT_EQ(1U, DestructorCall::List().size()); EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed()); DestructorCall::ResetList(); } // Tests that when a thread exits, the thread-local object for that // thread is destroyed. TEST(ThreadLocalTest, DestroysManagedObjectAtThreadExit) { DestructorCall::ResetList(); { ThreadLocal<DestructorTracker> thread_local_tracker; ASSERT_EQ(0U, DestructorCall::List().size()); // This creates another DestructorTracker object in the new thread. ThreadWithParam<ThreadParam> thread( &CallThreadLocalGet, &thread_local_tracker, NULL); thread.Join(); // The thread has exited, and we should have a DestroyedTracker // instance created for it. But it may not have been destroyed yet. ASSERT_EQ(1U, DestructorCall::List().size()); } // The thread has exited and thread_local_tracker has died. ASSERT_EQ(1U, DestructorCall::List().size()); EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed()); DestructorCall::ResetList(); } TEST(ThreadLocalTest, ThreadLocalMutationsAffectOnlyCurrentThread) { ThreadLocal<std::string> thread_local_string; thread_local_string.set("Foo"); EXPECT_STREQ("Foo", thread_local_string.get().c_str()); std::string result; RunFromThread(&RetrieveThreadLocalValue, make_pair(&thread_local_string, &result)); EXPECT_TRUE(result.empty()); } #endif // GTEST_IS_THREADSAFE #if GTEST_OS_WINDOWS TEST(WindowsTypesTest, HANDLEIsVoidStar) { StaticAssertTypeEq<HANDLE, void*>(); } TEST(WindowsTypesTest, CRITICAL_SECTIONIs_RTL_CRITICAL_SECTION) { StaticAssertTypeEq<CRITICAL_SECTION, _RTL_CRITICAL_SECTION>(); } #endif // GTEST_OS_WINDOWS } // namespace internal } // namespace testing