// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_ #define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_ #include "src/arm64/assembler-arm64.h" #include "src/macro-assembler.h" #include "src/regexp/regexp-macro-assembler.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler { public: RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save); virtual ~RegExpMacroAssemblerARM64(); virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); } virtual int stack_limit_slack(); virtual void AdvanceCurrentPosition(int by); virtual void AdvanceRegister(int reg, int by); virtual void Backtrack(); virtual void Bind(Label* label); virtual void CheckAtStart(Label* on_at_start); virtual void CheckCharacter(unsigned c, Label* on_equal); virtual void CheckCharacterAfterAnd(unsigned c, unsigned mask, Label* on_equal); virtual void CheckCharacterGT(uc16 limit, Label* on_greater); virtual void CheckCharacterLT(uc16 limit, Label* on_less); virtual void CheckCharacters(Vector<const uc16> str, int cp_offset, Label* on_failure, bool check_end_of_string); // A "greedy loop" is a loop that is both greedy and with a simple // body. It has a particularly simple implementation. virtual void CheckGreedyLoop(Label* on_tos_equals_current_position); virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start); virtual void CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match); virtual void CheckNotBackReferenceIgnoreCase(int start_reg, bool read_backward, bool unicode, Label* on_no_match); virtual void CheckNotCharacter(unsigned c, Label* on_not_equal); virtual void CheckNotCharacterAfterAnd(unsigned c, unsigned mask, Label* on_not_equal); virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask, Label* on_not_equal); virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range); virtual void CheckCharacterNotInRange(uc16 from, uc16 to, Label* on_not_in_range); virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set); // Checks whether the given offset from the current position is before // the end of the string. virtual void CheckPosition(int cp_offset, Label* on_outside_input); virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match); virtual void Fail(); virtual Handle<HeapObject> GetCode(Handle<String> source); virtual void GoTo(Label* label); virtual void IfRegisterGE(int reg, int comparand, Label* if_ge); virtual void IfRegisterLT(int reg, int comparand, Label* if_lt); virtual void IfRegisterEqPos(int reg, Label* if_eq); virtual IrregexpImplementation Implementation(); virtual void LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds = true, int characters = 1); virtual void PopCurrentPosition(); virtual void PopRegister(int register_index); virtual void PushBacktrack(Label* label); virtual void PushCurrentPosition(); virtual void PushRegister(int register_index, StackCheckFlag check_stack_limit); virtual void ReadCurrentPositionFromRegister(int reg); virtual void ReadStackPointerFromRegister(int reg); virtual void SetCurrentPositionFromEnd(int by); virtual void SetRegister(int register_index, int to); virtual bool Succeed(); virtual void WriteCurrentPositionToRegister(int reg, int cp_offset); virtual void ClearRegisters(int reg_from, int reg_to); virtual void WriteStackPointerToRegister(int reg); // Called from RegExp if the stack-guard is triggered. // If the code object is relocated, the return address is fixed before // returning. static int CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame, int start_offset, const byte** input_start, const byte** input_end); private: // Above the frame pointer - Stored registers and stack passed parameters. // Callee-saved registers x19-x29, where x29 is the old frame pointer. static const int kCalleeSavedRegisters = 0; // Return address. // It is placed above the 11 callee-saved registers. static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize; static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize; // Stack parameter placed by caller. static const int kIsolate = kSecondaryReturnAddress + kPointerSize; // Below the frame pointer. // Register parameters stored by setup code. static const int kDirectCall = kCalleeSavedRegisters - kPointerSize; static const int kStackBase = kDirectCall - kPointerSize; static const int kOutputSize = kStackBase - kPointerSize; static const int kInput = kOutputSize - kPointerSize; // When adding local variables remember to push space for them in // the frame in GetCode. static const int kSuccessCounter = kInput - kPointerSize; // First position register address on the stack. Following positions are // below it. A position is a 32 bit value. static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize; // A capture is a 64 bit value holding two position. static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize; // Initial size of code buffer. static const size_t kRegExpCodeSize = 1024; // When initializing registers to a non-position value we can unroll // the loop. Set the limit of registers to unroll. static const int kNumRegistersToUnroll = 16; // We are using x0 to x7 as a register cache. Each hardware register must // contain one capture, that is two 32 bit registers. We can cache at most // 16 registers. static const int kNumCachedRegisters = 16; // Load a number of characters at the given offset from the // current position, into the current-character register. void LoadCurrentCharacterUnchecked(int cp_offset, int character_count); // Check whether preemption has been requested. void CheckPreemption(); // Check whether we are exceeding the stack limit on the backtrack stack. void CheckStackLimit(); // Generate a call to CheckStackGuardState. void CallCheckStackGuardState(Register scratch); // Location of a 32 bit position register. MemOperand register_location(int register_index); // Location of a 64 bit capture, combining two position registers. MemOperand capture_location(int register_index, Register scratch); // Register holding the current input position as negative offset from // the end of the string. Register current_input_offset() { return w21; } // The register containing the current character after LoadCurrentCharacter. Register current_character() { return w22; } // Register holding address of the end of the input string. Register input_end() { return x25; } // Register holding address of the start of the input string. Register input_start() { return x26; } // Register holding the offset from the start of the string where we should // start matching. Register start_offset() { return w27; } // Pointer to the output array's first element. Register output_array() { return x28; } // Register holding the frame address. Local variables, parameters and // regexp registers are addressed relative to this. Register frame_pointer() { return fp; } // The register containing the backtrack stack top. Provides a meaningful // name to the register. Register backtrack_stackpointer() { return x23; } // Register holding pointer to the current code object. Register code_pointer() { return x20; } // Register holding the value used for clearing capture registers. Register string_start_minus_one() { return w24; } // The top 32 bit of this register is used to store this value // twice. This is used for clearing more than one register at a time. Register twice_non_position_value() { return x24; } // Byte size of chars in the string to match (decided by the Mode argument) int char_size() { return static_cast<int>(mode_); } // Equivalent to a conditional branch to the label, unless the label // is NULL, in which case it is a conditional Backtrack. void BranchOrBacktrack(Condition condition, Label* to); // Compares reg against immmediate before calling BranchOrBacktrack. // It makes use of the Cbz and Cbnz instructions. void CompareAndBranchOrBacktrack(Register reg, int immediate, Condition condition, Label* to); inline void CallIf(Label* to, Condition condition); // Save and restore the link register on the stack in a way that // is GC-safe. inline void SaveLinkRegister(); inline void RestoreLinkRegister(); // Pushes the value of a register on the backtrack stack. Decrements the // stack pointer by a word size and stores the register's value there. inline void Push(Register source); // Pops a value from the backtrack stack. Reads the word at the stack pointer // and increments it by a word size. inline void Pop(Register target); // This state indicates where the register actually is. enum RegisterState { STACKED, // Resides in memory. CACHED_LSW, // Least Significant Word of a 64 bit hardware register. CACHED_MSW // Most Significant Word of a 64 bit hardware register. }; RegisterState GetRegisterState(int register_index) { DCHECK(register_index >= 0); if (register_index >= kNumCachedRegisters) { return STACKED; } else { if ((register_index % 2) == 0) { return CACHED_LSW; } else { return CACHED_MSW; } } } // Store helper that takes the state of the register into account. inline void StoreRegister(int register_index, Register source); // Returns a hardware W register that holds the value of the capture // register. // // This function will try to use an existing cache register (w0-w7) for the // result. Otherwise, it will load the value into maybe_result. // // If the returned register is anything other than maybe_result, calling code // must not write to it. inline Register GetRegister(int register_index, Register maybe_result); // Returns the harware register (x0-x7) holding the value of the capture // register. // This assumes that the state of the register is not STACKED. inline Register GetCachedRegister(int register_index); Isolate* isolate() const { return masm_->isolate(); } MacroAssembler* masm_; // Which mode to generate code for (LATIN1 or UC16). Mode mode_; // One greater than maximal register index actually used. int num_registers_; // Number of registers to output at the end (the saved registers // are always 0..num_saved_registers_-1) int num_saved_registers_; // Labels used internally. Label entry_label_; Label start_label_; Label success_label_; Label backtrack_label_; Label exit_label_; Label check_preempt_label_; Label stack_overflow_label_; }; #endif // V8_INTERPRETED_REGEXP } // namespace internal } // namespace v8 #endif // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_