// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <limits.h> #include <stdarg.h> #include <stdlib.h> #include <cmath> #if V8_TARGET_ARCH_MIPS64 #include "src/assembler.h" #include "src/base/bits.h" #include "src/codegen.h" #include "src/disasm.h" #include "src/mips64/constants-mips64.h" #include "src/mips64/simulator-mips64.h" #include "src/ostreams.h" #include "src/runtime/runtime-utils.h" // Only build the simulator if not compiling for real MIPS hardware. #if defined(USE_SIMULATOR) namespace v8 { namespace internal { // Util functions. inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); } uint32_t get_fcsr_condition_bit(uint32_t cc) { if (cc == 0) { return 23; } else { return 24 + cc; } } static int64_t MultiplyHighSigned(int64_t u, int64_t v) { uint64_t u0, v0, w0; int64_t u1, v1, w1, w2, t; u0 = u & 0xffffffffL; u1 = u >> 32; v0 = v & 0xffffffffL; v1 = v >> 32; w0 = u0 * v0; t = u1 * v0 + (w0 >> 32); w1 = t & 0xffffffffL; w2 = t >> 32; w1 = u0 * v1 + w1; return u1 * v1 + w2 + (w1 >> 32); } // This macro provides a platform independent use of sscanf. The reason for // SScanF not being implemented in a platform independent was through // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time // Library does not provide vsscanf. #define SScanF sscanf // NOLINT // The MipsDebugger class is used by the simulator while debugging simulated // code. class MipsDebugger { public: explicit MipsDebugger(Simulator* sim) : sim_(sim) { } void Stop(Instruction* instr); void Debug(); // Print all registers with a nice formatting. void PrintAllRegs(); void PrintAllRegsIncludingFPU(); private: // We set the breakpoint code to 0xfffff to easily recognize it. static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; static const Instr kNopInstr = 0x0; Simulator* sim_; int64_t GetRegisterValue(int regnum); int64_t GetFPURegisterValue(int regnum); float GetFPURegisterValueFloat(int regnum); double GetFPURegisterValueDouble(int regnum); bool GetValue(const char* desc, int64_t* value); // Set or delete a breakpoint. Returns true if successful. bool SetBreakpoint(Instruction* breakpc); bool DeleteBreakpoint(Instruction* breakpc); // Undo and redo all breakpoints. This is needed to bracket disassembly and // execution to skip past breakpoints when run from the debugger. void UndoBreakpoints(); void RedoBreakpoints(); }; inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); } void MipsDebugger::Stop(Instruction* instr) { // Get the stop code. uint32_t code = instr->Bits(25, 6); PrintF("Simulator hit (%u)\n", code); // TODO(yuyin): 2 -> 3? sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize); Debug(); } int64_t MipsDebugger::GetRegisterValue(int regnum) { if (regnum == kNumSimuRegisters) { return sim_->get_pc(); } else { return sim_->get_register(regnum); } } int64_t MipsDebugger::GetFPURegisterValue(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register(regnum); } } float MipsDebugger::GetFPURegisterValueFloat(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register_float(regnum); } } double MipsDebugger::GetFPURegisterValueDouble(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register_double(regnum); } } bool MipsDebugger::GetValue(const char* desc, int64_t* value) { int regnum = Registers::Number(desc); int fpuregnum = FPURegisters::Number(desc); if (regnum != kInvalidRegister) { *value = GetRegisterValue(regnum); return true; } else if (fpuregnum != kInvalidFPURegister) { *value = GetFPURegisterValue(fpuregnum); return true; } else if (strncmp(desc, "0x", 2) == 0) { return SScanF(desc + 2, "%" SCNx64, reinterpret_cast<uint64_t*>(value)) == 1; } else { return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1; } return false; } bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { // Check if a breakpoint can be set. If not return without any side-effects. if (sim_->break_pc_ != NULL) { return false; } // Set the breakpoint. sim_->break_pc_ = breakpc; sim_->break_instr_ = breakpc->InstructionBits(); // Not setting the breakpoint instruction in the code itself. It will be set // when the debugger shell continues. return true; } bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } sim_->break_pc_ = NULL; sim_->break_instr_ = 0; return true; } void MipsDebugger::UndoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } } void MipsDebugger::RedoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(kBreakpointInstr); } } void MipsDebugger::PrintAllRegs() { #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) PrintF("\n"); // at, v0, a0. PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n", REG_INFO(1), REG_INFO(2), REG_INFO(4)); // v1, a1. PrintF("%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", REG_INFO(3), REG_INFO(5)); // a2. PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", REG_INFO(6)); // a3. PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "", REG_INFO(7)); PrintF("\n"); // a4-t3, s0-s7 for (int i = 0; i < 8; i++) { PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", REG_INFO(8 + i), REG_INFO(16 + i)); } PrintF("\n"); // t8, k0, LO. PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", REG_INFO(24), REG_INFO(26), REG_INFO(32)); // t9, k1, HI. PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", REG_INFO(25), REG_INFO(27), REG_INFO(33)); // sp, fp, gp. PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", REG_INFO(29), REG_INFO(30), REG_INFO(28)); // pc. PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", REG_INFO(31), REG_INFO(34)); #undef REG_INFO #undef FPU_REG_INFO } void MipsDebugger::PrintAllRegsIncludingFPU() { #define FPU_REG_INFO(n) FPURegisters::Name(n), \ GetFPURegisterValue(n), \ GetFPURegisterValueDouble(n) PrintAllRegs(); PrintF("\n\n"); // f0, f1, f2, ... f31. // TODO(plind): consider printing 2 columns for space efficiency. PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(0)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(1)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(2)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(3)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(4)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(5)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(6)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(7)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(8)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(9)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(10)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(11)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(12)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(13)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(14)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(15)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(16)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(17)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(18)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(19)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(20)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(21)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(22)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(23)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(24)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(25)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(26)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(27)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(28)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(29)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(30)); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(31)); #undef REG_INFO #undef FPU_REG_INFO } void MipsDebugger::Debug() { intptr_t last_pc = -1; bool done = false; #define COMMAND_SIZE 63 #define ARG_SIZE 255 #define STR(a) #a #define XSTR(a) STR(a) char cmd[COMMAND_SIZE + 1]; char arg1[ARG_SIZE + 1]; char arg2[ARG_SIZE + 1]; char* argv[3] = { cmd, arg1, arg2 }; // Make sure to have a proper terminating character if reaching the limit. cmd[COMMAND_SIZE] = 0; arg1[ARG_SIZE] = 0; arg2[ARG_SIZE] = 0; // Undo all set breakpoints while running in the debugger shell. This will // make them invisible to all commands. UndoBreakpoints(); while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { if (last_pc != sim_->get_pc()) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); PrintF(" 0x%016" PRIx64 " %s\n", sim_->get_pc(), buffer.start()); last_pc = sim_->get_pc(); } char* line = ReadLine("sim> "); if (line == NULL) { break; } else { char* last_input = sim_->last_debugger_input(); if (strcmp(line, "\n") == 0 && last_input != NULL) { line = last_input; } else { // Ownership is transferred to sim_; sim_->set_last_debugger_input(line); } // Use sscanf to parse the individual parts of the command line. At the // moment no command expects more than two parameters. int argc = SScanF(line, "%" XSTR(COMMAND_SIZE) "s " "%" XSTR(ARG_SIZE) "s " "%" XSTR(ARG_SIZE) "s", cmd, arg1, arg2); if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); if (!(instr->IsTrap()) || instr->InstructionBits() == rtCallRedirInstr) { sim_->InstructionDecode( reinterpret_cast<Instruction*>(sim_->get_pc())); } else { // Allow si to jump over generated breakpoints. PrintF("/!\\ Jumping over generated breakpoint.\n"); sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); } } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { // Execute the one instruction we broke at with breakpoints disabled. sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); // Leave the debugger shell. done = true; } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { if (argc == 2) { int64_t value; double dvalue; if (strcmp(arg1, "all") == 0) { PrintAllRegs(); } else if (strcmp(arg1, "allf") == 0) { PrintAllRegsIncludingFPU(); } else { int regnum = Registers::Number(arg1); int fpuregnum = FPURegisters::Number(arg1); if (regnum != kInvalidRegister) { value = GetRegisterValue(regnum); PrintF("%s: 0x%08" PRIx64 " %" PRId64 " \n", arg1, value, value); } else if (fpuregnum != kInvalidFPURegister) { value = GetFPURegisterValue(fpuregnum); dvalue = GetFPURegisterValueDouble(fpuregnum); PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPURegisters::Name(fpuregnum), value, dvalue); } else { PrintF("%s unrecognized\n", arg1); } } } else { if (argc == 3) { if (strcmp(arg2, "single") == 0) { int64_t value; float fvalue; int fpuregnum = FPURegisters::Number(arg1); if (fpuregnum != kInvalidFPURegister) { value = GetFPURegisterValue(fpuregnum); value &= 0xffffffffUL; fvalue = GetFPURegisterValueFloat(fpuregnum); PrintF("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue); } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("print <fpu register> single\n"); } } else { PrintF("print <register> or print <fpu register> single\n"); } } } else if ((strcmp(cmd, "po") == 0) || (strcmp(cmd, "printobject") == 0)) { if (argc == 2) { int64_t value; OFStream os(stdout); if (GetValue(arg1, &value)) { Object* obj = reinterpret_cast<Object*>(value); os << arg1 << ": \n"; #ifdef DEBUG obj->Print(os); os << "\n"; #else os << Brief(obj) << "\n"; #endif } else { os << arg1 << " unrecognized\n"; } } else { PrintF("printobject <value>\n"); } } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { int64_t* cur = NULL; int64_t* end = NULL; int next_arg = 1; if (strcmp(cmd, "stack") == 0) { cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp)); } else { // Command "mem". int64_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } cur = reinterpret_cast<int64_t*>(value); next_arg++; } int64_t words; if (argc == next_arg) { words = 10; } else { if (!GetValue(argv[next_arg], &words)) { words = 10; } } end = cur + words; while (cur < end) { PrintF(" 0x%012" PRIxPTR " : 0x%016" PRIx64 " %14" PRId64 " ", reinterpret_cast<intptr_t>(cur), *cur, *cur); HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); int64_t value = *cur; Heap* current_heap = sim_->isolate_->heap(); if (((value & 1) == 0) || current_heap->ContainsSlow(obj->address())) { PrintF(" ("); if ((value & 1) == 0) { PrintF("smi %d", static_cast<int>(value >> 32)); } else { obj->ShortPrint(); } PrintF(")"); } PrintF("\n"); cur++; } } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || (strcmp(cmd, "di") == 0)) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; byte* cur = NULL; byte* end = NULL; if (argc == 1) { cur = reinterpret_cast<byte*>(sim_->get_pc()); end = cur + (10 * Instruction::kInstrSize); } else if (argc == 2) { int regnum = Registers::Number(arg1); if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { // The argument is an address or a register name. int64_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<byte*>(value); // Disassemble 10 instructions at <arg1>. end = cur + (10 * Instruction::kInstrSize); } } else { // The argument is the number of instructions. int64_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<byte*>(sim_->get_pc()); // Disassemble <arg1> instructions. end = cur + (value * Instruction::kInstrSize); } } } else { int64_t value1; int64_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast<byte*>(value1); end = cur + (value2 * Instruction::kInstrSize); } } while (cur < end) { dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur), buffer.start()); cur += Instruction::kInstrSize; } } else if (strcmp(cmd, "gdb") == 0) { PrintF("relinquishing control to gdb\n"); v8::base::OS::DebugBreak(); PrintF("regaining control from gdb\n"); } else if (strcmp(cmd, "break") == 0) { if (argc == 2) { int64_t value; if (GetValue(arg1, &value)) { if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { PrintF("setting breakpoint failed\n"); } } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("break <address>\n"); } } else if (strcmp(cmd, "del") == 0) { if (!DeleteBreakpoint(NULL)) { PrintF("deleting breakpoint failed\n"); } } else if (strcmp(cmd, "flags") == 0) { PrintF("No flags on MIPS !\n"); } else if (strcmp(cmd, "stop") == 0) { int64_t value; intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); Instruction* msg_address = reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { // Remove the current stop. if (sim_->IsStopInstruction(stop_instr)) { stop_instr->SetInstructionBits(kNopInstr); msg_address->SetInstructionBits(kNopInstr); } else { PrintF("Not at debugger stop.\n"); } } else if (argc == 3) { // Print information about all/the specified breakpoint(s). if (strcmp(arg1, "info") == 0) { if (strcmp(arg2, "all") == 0) { PrintF("Stop information:\n"); for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; i++) { sim_->PrintStopInfo(i); } } else if (GetValue(arg2, &value)) { sim_->PrintStopInfo(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "enable") == 0) { // Enable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; i++) { sim_->EnableStop(i); } } else if (GetValue(arg2, &value)) { sim_->EnableStop(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "disable") == 0) { // Disable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; i++) { sim_->DisableStop(i); } } else if (GetValue(arg2, &value)) { sim_->DisableStop(value); } else { PrintF("Unrecognized argument.\n"); } } } else { PrintF("Wrong usage. Use help command for more information.\n"); } } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { // Print registers and disassemble. PrintAllRegs(); PrintF("\n"); disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; byte* cur = NULL; byte* end = NULL; if (argc == 1) { cur = reinterpret_cast<byte*>(sim_->get_pc()); end = cur + (10 * Instruction::kInstrSize); } else if (argc == 2) { int64_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<byte*>(value); // no length parameter passed, assume 10 instructions end = cur + (10 * Instruction::kInstrSize); } } else { int64_t value1; int64_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast<byte*>(value1); end = cur + (value2 * Instruction::kInstrSize); } } while (cur < end) { dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur), buffer.start()); cur += Instruction::kInstrSize; } } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { PrintF("cont\n"); PrintF(" continue execution (alias 'c')\n"); PrintF("stepi\n"); PrintF(" step one instruction (alias 'si')\n"); PrintF("print <register>\n"); PrintF(" print register content (alias 'p')\n"); PrintF(" use register name 'all' to print all registers\n"); PrintF("printobject <register>\n"); PrintF(" print an object from a register (alias 'po')\n"); PrintF("stack [<words>]\n"); PrintF(" dump stack content, default dump 10 words)\n"); PrintF("mem <address> [<words>]\n"); PrintF(" dump memory content, default dump 10 words)\n"); PrintF("flags\n"); PrintF(" print flags\n"); PrintF("disasm [<instructions>]\n"); PrintF("disasm [<address/register>]\n"); PrintF("disasm [[<address/register>] <instructions>]\n"); PrintF(" disassemble code, default is 10 instructions\n"); PrintF(" from pc (alias 'di')\n"); PrintF("gdb\n"); PrintF(" enter gdb\n"); PrintF("break <address>\n"); PrintF(" set a break point on the address\n"); PrintF("del\n"); PrintF(" delete the breakpoint\n"); PrintF("stop feature:\n"); PrintF(" Description:\n"); PrintF(" Stops are debug instructions inserted by\n"); PrintF(" the Assembler::stop() function.\n"); PrintF(" When hitting a stop, the Simulator will\n"); PrintF(" stop and and give control to the Debugger.\n"); PrintF(" All stop codes are watched:\n"); PrintF(" - They can be enabled / disabled: the Simulator\n"); PrintF(" will / won't stop when hitting them.\n"); PrintF(" - The Simulator keeps track of how many times they \n"); PrintF(" are met. (See the info command.) Going over a\n"); PrintF(" disabled stop still increases its counter. \n"); PrintF(" Commands:\n"); PrintF(" stop info all/<code> : print infos about number <code>\n"); PrintF(" or all stop(s).\n"); PrintF(" stop enable/disable all/<code> : enables / disables\n"); PrintF(" all or number <code> stop(s)\n"); PrintF(" stop unstop\n"); PrintF(" ignore the stop instruction at the current location\n"); PrintF(" from now on\n"); } else { PrintF("Unknown command: %s\n", cmd); } } } // Add all the breakpoints back to stop execution and enter the debugger // shell when hit. RedoBreakpoints(); #undef COMMAND_SIZE #undef ARG_SIZE #undef STR #undef XSTR } static bool ICacheMatch(void* one, void* two) { DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); return one == two; } static uint32_t ICacheHash(void* key) { return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; } static bool AllOnOnePage(uintptr_t start, size_t size) { intptr_t start_page = (start & ~CachePage::kPageMask); intptr_t end_page = ((start + size) & ~CachePage::kPageMask); return start_page == end_page; } void Simulator::set_last_debugger_input(char* input) { DeleteArray(last_debugger_input_); last_debugger_input_ = input; } void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, void* start_addr, size_t size) { int64_t start = reinterpret_cast<int64_t>(start_addr); int64_t intra_line = (start & CachePage::kLineMask); start -= intra_line; size += intra_line; size = ((size - 1) | CachePage::kLineMask) + 1; int offset = (start & CachePage::kPageMask); while (!AllOnOnePage(start, size - 1)) { int bytes_to_flush = CachePage::kPageSize - offset; FlushOnePage(i_cache, start, bytes_to_flush); start += bytes_to_flush; size -= bytes_to_flush; DCHECK_EQ((int64_t)0, start & CachePage::kPageMask); offset = 0; } if (size != 0) { FlushOnePage(i_cache, start, size); } } CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, void* page) { base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); if (entry->value == NULL) { CachePage* new_page = new CachePage(); entry->value = new_page; } return reinterpret_cast<CachePage*>(entry->value); } // Flush from start up to and not including start + size. void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, size_t size) { DCHECK(size <= CachePage::kPageSize); DCHECK(AllOnOnePage(start, size - 1)); DCHECK((start & CachePage::kLineMask) == 0); DCHECK((size & CachePage::kLineMask) == 0); void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); int offset = (start & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* valid_bytemap = cache_page->ValidityByte(offset); memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); } void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr) { int64_t address = reinterpret_cast<int64_t>(instr); void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); int offset = (address & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* cache_valid_byte = cache_page->ValidityByte(offset); bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); if (cache_hit) { // Check that the data in memory matches the contents of the I-cache. CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), cache_page->CachedData(offset), Instruction::kInstrSize)); } else { // Cache miss. Load memory into the cache. memcpy(cached_line, line, CachePage::kLineLength); *cache_valid_byte = CachePage::LINE_VALID; } } void Simulator::Initialize(Isolate* isolate) { if (isolate->simulator_initialized()) return; isolate->set_simulator_initialized(true); ::v8::internal::ExternalReference::set_redirector(isolate, &RedirectExternalReference); } Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { i_cache_ = isolate_->simulator_i_cache(); if (i_cache_ == NULL) { i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); isolate_->set_simulator_i_cache(i_cache_); } Initialize(isolate); // Set up simulator support first. Some of this information is needed to // setup the architecture state. stack_size_ = FLAG_sim_stack_size * KB; stack_ = reinterpret_cast<char*>(malloc(stack_size_)); pc_modified_ = false; icount_ = 0; break_count_ = 0; break_pc_ = NULL; break_instr_ = 0; // Set up architecture state. // All registers are initialized to zero to start with. for (int i = 0; i < kNumSimuRegisters; i++) { registers_[i] = 0; } for (int i = 0; i < kNumFPURegisters; i++) { FPUregisters_[i] = 0; } if (kArchVariant == kMips64r6) { FCSR_ = kFCSRNaN2008FlagMask; } else { FCSR_ = 0; } // The sp is initialized to point to the bottom (high address) of the // allocated stack area. To be safe in potential stack underflows we leave // some buffer below. registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64; // The ra and pc are initialized to a known bad value that will cause an // access violation if the simulator ever tries to execute it. registers_[pc] = bad_ra; registers_[ra] = bad_ra; last_debugger_input_ = NULL; } Simulator::~Simulator() { free(stack_); } // When the generated code calls an external reference we need to catch that in // the simulator. The external reference will be a function compiled for the // host architecture. We need to call that function instead of trying to // execute it with the simulator. We do that by redirecting the external // reference to a swi (software-interrupt) instruction that is handled by // the simulator. We write the original destination of the jump just at a known // offset from the swi instruction so the simulator knows what to call. class Redirection { public: Redirection(Isolate* isolate, void* external_function, ExternalReference::Type type) : external_function_(external_function), swi_instruction_(rtCallRedirInstr), type_(type), next_(NULL) { next_ = isolate->simulator_redirection(); Simulator::current(isolate)-> FlushICache(isolate->simulator_i_cache(), reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize); isolate->set_simulator_redirection(this); } void* address_of_swi_instruction() { return reinterpret_cast<void*>(&swi_instruction_); } void* external_function() { return external_function_; } ExternalReference::Type type() { return type_; } static Redirection* Get(Isolate* isolate, void* external_function, ExternalReference::Type type) { Redirection* current = isolate->simulator_redirection(); for (; current != NULL; current = current->next_) { if (current->external_function_ == external_function) return current; } return new Redirection(isolate, external_function, type); } static Redirection* FromSwiInstruction(Instruction* swi_instruction) { char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); char* addr_of_redirection = addr_of_swi - offsetof(Redirection, swi_instruction_); return reinterpret_cast<Redirection*>(addr_of_redirection); } static void* ReverseRedirection(int64_t reg) { Redirection* redirection = FromSwiInstruction( reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); return redirection->external_function(); } static void DeleteChain(Redirection* redirection) { while (redirection != nullptr) { Redirection* next = redirection->next_; delete redirection; redirection = next; } } private: void* external_function_; uint32_t swi_instruction_; ExternalReference::Type type_; Redirection* next_; }; // static void Simulator::TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first) { Redirection::DeleteChain(first); if (i_cache != nullptr) { for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr; entry = i_cache->Next(entry)) { delete static_cast<CachePage*>(entry->value); } delete i_cache; } } void* Simulator::RedirectExternalReference(Isolate* isolate, void* external_function, ExternalReference::Type type) { Redirection* redirection = Redirection::Get(isolate, external_function, type); return redirection->address_of_swi_instruction(); } // Get the active Simulator for the current thread. Simulator* Simulator::current(Isolate* isolate) { v8::internal::Isolate::PerIsolateThreadData* isolate_data = isolate->FindOrAllocatePerThreadDataForThisThread(); DCHECK(isolate_data != NULL); DCHECK(isolate_data != NULL); Simulator* sim = isolate_data->simulator(); if (sim == NULL) { // TODO(146): delete the simulator object when a thread/isolate goes away. sim = new Simulator(isolate); isolate_data->set_simulator(sim); } return sim; } // Sets the register in the architecture state. It will also deal with updating // Simulator internal state for special registers such as PC. void Simulator::set_register(int reg, int64_t value) { DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); if (reg == pc) { pc_modified_ = true; } // Zero register always holds 0. registers_[reg] = (reg == 0) ? 0 : value; } void Simulator::set_dw_register(int reg, const int* dbl) { DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); registers_[reg] = dbl[1]; registers_[reg] = registers_[reg] << 32; registers_[reg] += dbl[0]; } void Simulator::set_fpu_register(int fpureg, int64_t value) { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); FPUregisters_[fpureg] = value; } void Simulator::set_fpu_register_word(int fpureg, int32_t value) { // Set ONLY lower 32-bits, leaving upper bits untouched. DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); int32_t* pword; if (kArchEndian == kLittle) { pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); } else { pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1; } *pword = value; } void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) { // Set ONLY upper 32-bits, leaving lower bits untouched. DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); int32_t* phiword; if (kArchEndian == kLittle) { phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1; } else { phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); } *phiword = value; } void Simulator::set_fpu_register_float(int fpureg, float value) { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); *bit_cast<float*>(&FPUregisters_[fpureg]) = value; } void Simulator::set_fpu_register_double(int fpureg, double value) { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); *bit_cast<double*>(&FPUregisters_[fpureg]) = value; } // Get the register from the architecture state. This function does handle // the special case of accessing the PC register. int64_t Simulator::get_register(int reg) const { DCHECK((reg >= 0) && (reg < kNumSimuRegisters)); if (reg == 0) return 0; else return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); } double Simulator::get_double_from_register_pair(int reg) { // TODO(plind): bad ABI stuff, refactor or remove. DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0)); double dm_val = 0.0; // Read the bits from the unsigned integer register_[] array // into the double precision floating point value and return it. char buffer[sizeof(registers_[0])]; memcpy(buffer, ®isters_[reg], sizeof(registers_[0])); memcpy(&dm_val, buffer, sizeof(registers_[0])); return(dm_val); } int64_t Simulator::get_fpu_register(int fpureg) const { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); return FPUregisters_[fpureg]; } int32_t Simulator::get_fpu_register_word(int fpureg) const { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff); } int32_t Simulator::get_fpu_register_signed_word(int fpureg) const { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff); } int32_t Simulator::get_fpu_register_hi_word(int fpureg) const { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff); } float Simulator::get_fpu_register_float(int fpureg) const { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg])); } double Simulator::get_fpu_register_double(int fpureg) const { DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters)); return *bit_cast<double*>(&FPUregisters_[fpureg]); } // Runtime FP routines take up to two double arguments and zero // or one integer arguments. All are constructed here, // from a0-a3 or f12 and f13 (n64), or f14 (O32). void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { if (!IsMipsSoftFloatABI) { const int fparg2 = 13; *x = get_fpu_register_double(12); *y = get_fpu_register_double(fparg2); *z = static_cast<int32_t>(get_register(a2)); } else { // TODO(plind): bad ABI stuff, refactor or remove. // We use a char buffer to get around the strict-aliasing rules which // otherwise allow the compiler to optimize away the copy. char buffer[sizeof(*x)]; int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); // Registers a0 and a1 -> x. reg_buffer[0] = get_register(a0); reg_buffer[1] = get_register(a1); memcpy(x, buffer, sizeof(buffer)); // Registers a2 and a3 -> y. reg_buffer[0] = get_register(a2); reg_buffer[1] = get_register(a3); memcpy(y, buffer, sizeof(buffer)); // Register 2 -> z. reg_buffer[0] = get_register(a2); memcpy(z, buffer, sizeof(*z)); } } // The return value is either in v0/v1 or f0. void Simulator::SetFpResult(const double& result) { if (!IsMipsSoftFloatABI) { set_fpu_register_double(0, result); } else { char buffer[2 * sizeof(registers_[0])]; int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer); memcpy(buffer, &result, sizeof(buffer)); // Copy result to v0 and v1. set_register(v0, reg_buffer[0]); set_register(v1, reg_buffer[1]); } } // Helper functions for setting and testing the FCSR register's bits. void Simulator::set_fcsr_bit(uint32_t cc, bool value) { if (value) { FCSR_ |= (1 << cc); } else { FCSR_ &= ~(1 << cc); } } bool Simulator::test_fcsr_bit(uint32_t cc) { return FCSR_ & (1 << cc); } void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) { FCSR_ |= mode & kFPURoundingModeMask; } unsigned int Simulator::get_fcsr_rounding_mode() { return FCSR_ & kFPURoundingModeMask; } // Sets the rounding error codes in FCSR based on the result of the rounding. // Returns true if the operation was invalid. bool Simulator::set_fcsr_round_error(double original, double rounded) { bool ret = false; double max_int32 = std::numeric_limits<int32_t>::max(); double min_int32 = std::numeric_limits<int32_t>::min(); if (!std::isfinite(original) || !std::isfinite(rounded)) { set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } if (original != rounded) { set_fcsr_bit(kFCSRInexactFlagBit, true); } if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { set_fcsr_bit(kFCSRUnderflowFlagBit, true); ret = true; } if (rounded > max_int32 || rounded < min_int32) { set_fcsr_bit(kFCSROverflowFlagBit, true); // The reference is not really clear but it seems this is required: set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } return ret; } // Sets the rounding error codes in FCSR based on the result of the rounding. // Returns true if the operation was invalid. bool Simulator::set_fcsr_round64_error(double original, double rounded) { bool ret = false; // The value of INT64_MAX (2^63-1) can't be represented as double exactly, // loading the most accurate representation into max_int64, which is 2^63. double max_int64 = std::numeric_limits<int64_t>::max(); double min_int64 = std::numeric_limits<int64_t>::min(); if (!std::isfinite(original) || !std::isfinite(rounded)) { set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } if (original != rounded) { set_fcsr_bit(kFCSRInexactFlagBit, true); } if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { set_fcsr_bit(kFCSRUnderflowFlagBit, true); ret = true; } if (rounded >= max_int64 || rounded < min_int64) { set_fcsr_bit(kFCSROverflowFlagBit, true); // The reference is not really clear but it seems this is required: set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } return ret; } // Sets the rounding error codes in FCSR based on the result of the rounding. // Returns true if the operation was invalid. bool Simulator::set_fcsr_round_error(float original, float rounded) { bool ret = false; double max_int32 = std::numeric_limits<int32_t>::max(); double min_int32 = std::numeric_limits<int32_t>::min(); if (!std::isfinite(original) || !std::isfinite(rounded)) { set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } if (original != rounded) { set_fcsr_bit(kFCSRInexactFlagBit, true); } if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { set_fcsr_bit(kFCSRUnderflowFlagBit, true); ret = true; } if (rounded > max_int32 || rounded < min_int32) { set_fcsr_bit(kFCSROverflowFlagBit, true); // The reference is not really clear but it seems this is required: set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } return ret; } void Simulator::set_fpu_register_word_invalid_result(float original, float rounded) { if (FCSR_ & kFCSRNaN2008FlagMask) { double max_int32 = std::numeric_limits<int32_t>::max(); double min_int32 = std::numeric_limits<int32_t>::min(); if (std::isnan(original)) { set_fpu_register_word(fd_reg(), 0); } else if (rounded > max_int32) { set_fpu_register_word(fd_reg(), kFPUInvalidResult); } else if (rounded < min_int32) { set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); } else { UNREACHABLE(); } } else { set_fpu_register_word(fd_reg(), kFPUInvalidResult); } } void Simulator::set_fpu_register_invalid_result(float original, float rounded) { if (FCSR_ & kFCSRNaN2008FlagMask) { double max_int32 = std::numeric_limits<int32_t>::max(); double min_int32 = std::numeric_limits<int32_t>::min(); if (std::isnan(original)) { set_fpu_register(fd_reg(), 0); } else if (rounded > max_int32) { set_fpu_register(fd_reg(), kFPUInvalidResult); } else if (rounded < min_int32) { set_fpu_register(fd_reg(), kFPUInvalidResultNegative); } else { UNREACHABLE(); } } else { set_fpu_register(fd_reg(), kFPUInvalidResult); } } void Simulator::set_fpu_register_invalid_result64(float original, float rounded) { if (FCSR_ & kFCSRNaN2008FlagMask) { // The value of INT64_MAX (2^63-1) can't be represented as double exactly, // loading the most accurate representation into max_int64, which is 2^63. double max_int64 = std::numeric_limits<int64_t>::max(); double min_int64 = std::numeric_limits<int64_t>::min(); if (std::isnan(original)) { set_fpu_register(fd_reg(), 0); } else if (rounded >= max_int64) { set_fpu_register(fd_reg(), kFPU64InvalidResult); } else if (rounded < min_int64) { set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); } else { UNREACHABLE(); } } else { set_fpu_register(fd_reg(), kFPU64InvalidResult); } } void Simulator::set_fpu_register_word_invalid_result(double original, double rounded) { if (FCSR_ & kFCSRNaN2008FlagMask) { double max_int32 = std::numeric_limits<int32_t>::max(); double min_int32 = std::numeric_limits<int32_t>::min(); if (std::isnan(original)) { set_fpu_register_word(fd_reg(), 0); } else if (rounded > max_int32) { set_fpu_register_word(fd_reg(), kFPUInvalidResult); } else if (rounded < min_int32) { set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative); } else { UNREACHABLE(); } } else { set_fpu_register_word(fd_reg(), kFPUInvalidResult); } } void Simulator::set_fpu_register_invalid_result(double original, double rounded) { if (FCSR_ & kFCSRNaN2008FlagMask) { double max_int32 = std::numeric_limits<int32_t>::max(); double min_int32 = std::numeric_limits<int32_t>::min(); if (std::isnan(original)) { set_fpu_register(fd_reg(), 0); } else if (rounded > max_int32) { set_fpu_register(fd_reg(), kFPUInvalidResult); } else if (rounded < min_int32) { set_fpu_register(fd_reg(), kFPUInvalidResultNegative); } else { UNREACHABLE(); } } else { set_fpu_register(fd_reg(), kFPUInvalidResult); } } void Simulator::set_fpu_register_invalid_result64(double original, double rounded) { if (FCSR_ & kFCSRNaN2008FlagMask) { // The value of INT64_MAX (2^63-1) can't be represented as double exactly, // loading the most accurate representation into max_int64, which is 2^63. double max_int64 = std::numeric_limits<int64_t>::max(); double min_int64 = std::numeric_limits<int64_t>::min(); if (std::isnan(original)) { set_fpu_register(fd_reg(), 0); } else if (rounded >= max_int64) { set_fpu_register(fd_reg(), kFPU64InvalidResult); } else if (rounded < min_int64) { set_fpu_register(fd_reg(), kFPU64InvalidResultNegative); } else { UNREACHABLE(); } } else { set_fpu_register(fd_reg(), kFPU64InvalidResult); } } // Sets the rounding error codes in FCSR based on the result of the rounding. // Returns true if the operation was invalid. bool Simulator::set_fcsr_round64_error(float original, float rounded) { bool ret = false; // The value of INT64_MAX (2^63-1) can't be represented as double exactly, // loading the most accurate representation into max_int64, which is 2^63. double max_int64 = std::numeric_limits<int64_t>::max(); double min_int64 = std::numeric_limits<int64_t>::min(); if (!std::isfinite(original) || !std::isfinite(rounded)) { set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } if (original != rounded) { set_fcsr_bit(kFCSRInexactFlagBit, true); } if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { set_fcsr_bit(kFCSRUnderflowFlagBit, true); ret = true; } if (rounded >= max_int64 || rounded < min_int64) { set_fcsr_bit(kFCSROverflowFlagBit, true); // The reference is not really clear but it seems this is required: set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } return ret; } // For cvt instructions only void Simulator::round_according_to_fcsr(double toRound, double& rounded, int32_t& rounded_int, double fs) { // 0 RN (round to nearest): Round a result to the nearest // representable value; if the result is exactly halfway between // two representable values, round to zero. Behave like round_w_d. // 1 RZ (round toward zero): Round a result to the closest // representable value whose absolute value is less than or // equal to the infinitely accurate result. Behave like trunc_w_d. // 2 RP (round up, or toward +infinity): Round a result to the // next representable value up. Behave like ceil_w_d. // 3 RN (round down, or toward −infinity): Round a result to // the next representable value down. Behave like floor_w_d. switch (FCSR_ & 3) { case kRoundToNearest: rounded = std::floor(fs + 0.5); rounded_int = static_cast<int32_t>(rounded); if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. rounded_int--; } break; case kRoundToZero: rounded = trunc(fs); rounded_int = static_cast<int32_t>(rounded); break; case kRoundToPlusInf: rounded = std::ceil(fs); rounded_int = static_cast<int32_t>(rounded); break; case kRoundToMinusInf: rounded = std::floor(fs); rounded_int = static_cast<int32_t>(rounded); break; } } void Simulator::round64_according_to_fcsr(double toRound, double& rounded, int64_t& rounded_int, double fs) { // 0 RN (round to nearest): Round a result to the nearest // representable value; if the result is exactly halfway between // two representable values, round to zero. Behave like round_w_d. // 1 RZ (round toward zero): Round a result to the closest // representable value whose absolute value is less than or. // equal to the infinitely accurate result. Behave like trunc_w_d. // 2 RP (round up, or toward +infinity): Round a result to the // next representable value up. Behave like ceil_w_d. // 3 RN (round down, or toward −infinity): Round a result to // the next representable value down. Behave like floor_w_d. switch (FCSR_ & 3) { case kRoundToNearest: rounded = std::floor(fs + 0.5); rounded_int = static_cast<int64_t>(rounded); if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. rounded_int--; } break; case kRoundToZero: rounded = trunc(fs); rounded_int = static_cast<int64_t>(rounded); break; case kRoundToPlusInf: rounded = std::ceil(fs); rounded_int = static_cast<int64_t>(rounded); break; case kRoundToMinusInf: rounded = std::floor(fs); rounded_int = static_cast<int64_t>(rounded); break; } } // for cvt instructions only void Simulator::round_according_to_fcsr(float toRound, float& rounded, int32_t& rounded_int, float fs) { // 0 RN (round to nearest): Round a result to the nearest // representable value; if the result is exactly halfway between // two representable values, round to zero. Behave like round_w_d. // 1 RZ (round toward zero): Round a result to the closest // representable value whose absolute value is less than or // equal to the infinitely accurate result. Behave like trunc_w_d. // 2 RP (round up, or toward +infinity): Round a result to the // next representable value up. Behave like ceil_w_d. // 3 RN (round down, or toward −infinity): Round a result to // the next representable value down. Behave like floor_w_d. switch (FCSR_ & 3) { case kRoundToNearest: rounded = std::floor(fs + 0.5); rounded_int = static_cast<int32_t>(rounded); if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. rounded_int--; } break; case kRoundToZero: rounded = trunc(fs); rounded_int = static_cast<int32_t>(rounded); break; case kRoundToPlusInf: rounded = std::ceil(fs); rounded_int = static_cast<int32_t>(rounded); break; case kRoundToMinusInf: rounded = std::floor(fs); rounded_int = static_cast<int32_t>(rounded); break; } } void Simulator::round64_according_to_fcsr(float toRound, float& rounded, int64_t& rounded_int, float fs) { // 0 RN (round to nearest): Round a result to the nearest // representable value; if the result is exactly halfway between // two representable values, round to zero. Behave like round_w_d. // 1 RZ (round toward zero): Round a result to the closest // representable value whose absolute value is less than or. // equal to the infinitely accurate result. Behave like trunc_w_d. // 2 RP (round up, or toward +infinity): Round a result to the // next representable value up. Behave like ceil_w_d. // 3 RN (round down, or toward −infinity): Round a result to // the next representable value down. Behave like floor_w_d. switch (FCSR_ & 3) { case kRoundToNearest: rounded = std::floor(fs + 0.5); rounded_int = static_cast<int64_t>(rounded); if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. rounded_int--; } break; case kRoundToZero: rounded = trunc(fs); rounded_int = static_cast<int64_t>(rounded); break; case kRoundToPlusInf: rounded = std::ceil(fs); rounded_int = static_cast<int64_t>(rounded); break; case kRoundToMinusInf: rounded = std::floor(fs); rounded_int = static_cast<int64_t>(rounded); break; } } // Raw access to the PC register. void Simulator::set_pc(int64_t value) { pc_modified_ = true; registers_[pc] = value; } bool Simulator::has_bad_pc() const { return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); } // Raw access to the PC register without the special adjustment when reading. int64_t Simulator::get_pc() const { return registers_[pc]; } // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an // interrupt is caused. On others it does a funky rotation thing. For now we // simply disallow unaligned reads, but at some point we may want to move to // emulating the rotate behaviour. Note that simulator runs have the runtime // system running directly on the host system and only generated code is // executed in the simulator. Since the host is typically IA32 we will not // get the correct MIPS-like behaviour on unaligned accesses. // TODO(plind): refactor this messy debug code when we do unaligned access. void Simulator::DieOrDebug() { if (1) { // Flag for this was removed. MipsDebugger dbg(this); dbg.Debug(); } else { base::OS::Abort(); } } void Simulator::TraceRegWr(int64_t value, TraceType t) { if (::v8::internal::FLAG_trace_sim) { union { int64_t fmt_int64; int32_t fmt_int32[2]; float fmt_float[2]; double fmt_double; } v; v.fmt_int64 = value; switch (t) { case WORD: SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") int32:%" PRId32 " uint32:%" PRIu32, v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0]); break; case DWORD: SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") int64:%" PRId64 " uint64:%" PRIu64, value, icount_, value, value); break; case FLOAT: SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") flt:%e", v.fmt_int64, icount_, v.fmt_float[0]); break; case DOUBLE: SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") dbl:%e", v.fmt_int64, icount_, v.fmt_double); break; case FLOAT_DOUBLE: SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") flt:%e dbl:%e", v.fmt_int64, icount_, v.fmt_float[0], v.fmt_double); break; case WORD_DWORD: SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") int32:%" PRId32 " uint32:%" PRIu32 " int64:%" PRId64 " uint64:%" PRIu64, v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0], v.fmt_int64, v.fmt_int64); break; default: UNREACHABLE(); } } } // TODO(plind): consider making icount_ printing a flag option. void Simulator::TraceMemRd(int64_t addr, int64_t value, TraceType t) { if (::v8::internal::FLAG_trace_sim) { union { int64_t fmt_int64; int32_t fmt_int32[2]; float fmt_float[2]; double fmt_double; } v; v.fmt_int64 = value; switch (t) { case WORD: SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ") int32:%" PRId32 " uint32:%" PRIu32, v.fmt_int64, addr, icount_, v.fmt_int32[0], v.fmt_int32[0]); break; case DWORD: SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ") int64:%" PRId64 " uint64:%" PRIu64, value, addr, icount_, value, value); break; case FLOAT: SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ") flt:%e", v.fmt_int64, addr, icount_, v.fmt_float[0]); break; case DOUBLE: SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ") dbl:%e", v.fmt_int64, addr, icount_, v.fmt_double); break; case FLOAT_DOUBLE: SNPrintF(trace_buf_, "%016" PRIx64 " <-- [%016" PRIx64 "] (%" PRId64 ") flt:%e dbl:%e", v.fmt_int64, addr, icount_, v.fmt_float[0], v.fmt_double); break; default: UNREACHABLE(); } } } void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) { if (::v8::internal::FLAG_trace_sim) { switch (t) { case BYTE: SNPrintF(trace_buf_, " %02" PRIx8 " --> [%016" PRIx64 "] (%" PRId64 ")", static_cast<uint8_t>(value), addr, icount_); break; case HALF: SNPrintF(trace_buf_, " %04" PRIx16 " --> [%016" PRIx64 "] (%" PRId64 ")", static_cast<uint16_t>(value), addr, icount_); break; case WORD: SNPrintF(trace_buf_, " %08" PRIx32 " --> [%016" PRIx64 "] (%" PRId64 ")", static_cast<uint32_t>(value), addr, icount_); break; case DWORD: SNPrintF(trace_buf_, "%016" PRIx64 " --> [%016" PRIx64 "] (%" PRId64 " )", value, addr, icount_); break; default: UNREACHABLE(); } } } // TODO(plind): sign-extend and zero-extend not implmented properly // on all the ReadXX functions, I don't think re-interpret cast does it. int32_t Simulator::ReadW(int64_t addr, Instruction* instr, TraceType t) { if (addr >=0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR " \n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { int32_t* ptr = reinterpret_cast<int32_t*>(addr); TraceMemRd(addr, static_cast<int64_t>(*ptr), t); return *ptr; } PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); return 0; } uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) { if (addr >=0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR " \n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); TraceMemRd(addr, static_cast<int64_t>(*ptr), WORD); return *ptr; } PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); return 0; } void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) { if (addr >= 0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR " \n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) { TraceMemWr(addr, value, WORD); int* ptr = reinterpret_cast<int*>(addr); *ptr = value; return; } PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } int64_t Simulator::Read2W(int64_t addr, Instruction* instr) { if (addr >=0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR " \n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) { int64_t* ptr = reinterpret_cast<int64_t*>(addr); TraceMemRd(addr, *ptr); return *ptr; } PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); return 0; } void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) { if (addr >= 0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) { TraceMemWr(addr, value, DWORD); int64_t* ptr = reinterpret_cast<int64_t*>(addr); *ptr = value; return; } PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } double Simulator::ReadD(int64_t addr, Instruction* instr) { if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) { double* ptr = reinterpret_cast<double*>(addr); return *ptr; } PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); base::OS::Abort(); return 0; } void Simulator::WriteD(int64_t addr, double value, Instruction* instr) { if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) { double* ptr = reinterpret_cast<double*>(addr); *ptr = value; return; } PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) { if ((addr & 1) == 0 || kArchVariant == kMips64r6) { uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); TraceMemRd(addr, static_cast<int64_t>(*ptr)); return *ptr; } PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); return 0; } int16_t Simulator::ReadH(int64_t addr, Instruction* instr) { if ((addr & 1) == 0 || kArchVariant == kMips64r6) { int16_t* ptr = reinterpret_cast<int16_t*>(addr); TraceMemRd(addr, static_cast<int64_t>(*ptr)); return *ptr; } PrintF("Unaligned signed halfword read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); return 0; } void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) { if ((addr & 1) == 0 || kArchVariant == kMips64r6) { TraceMemWr(addr, value, HALF); uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); *ptr = value; return; } PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) { if ((addr & 1) == 0 || kArchVariant == kMips64r6) { TraceMemWr(addr, value, HALF); int16_t* ptr = reinterpret_cast<int16_t*>(addr); *ptr = value; return; } PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); DieOrDebug(); } uint32_t Simulator::ReadBU(int64_t addr) { uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); TraceMemRd(addr, static_cast<int64_t>(*ptr)); return *ptr & 0xff; } int32_t Simulator::ReadB(int64_t addr) { int8_t* ptr = reinterpret_cast<int8_t*>(addr); TraceMemRd(addr, static_cast<int64_t>(*ptr)); return *ptr; } void Simulator::WriteB(int64_t addr, uint8_t value) { TraceMemWr(addr, value, BYTE); uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); *ptr = value; } void Simulator::WriteB(int64_t addr, int8_t value) { TraceMemWr(addr, value, BYTE); int8_t* ptr = reinterpret_cast<int8_t*>(addr); *ptr = value; } // Returns the limit of the stack area to enable checking for stack overflows. uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { // The simulator uses a separate JS stack. If we have exhausted the C stack, // we also drop down the JS limit to reflect the exhaustion on the JS stack. if (GetCurrentStackPosition() < c_limit) { return reinterpret_cast<uintptr_t>(get_sp()); } // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes // to prevent overrunning the stack when pushing values. return reinterpret_cast<uintptr_t>(stack_) + 1024; } // Unsupported instructions use Format to print an error and stop execution. void Simulator::Format(Instruction* instr, const char* format) { PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n", reinterpret_cast<intptr_t>(instr), format); UNIMPLEMENTED_MIPS(); } // Calls into the V8 runtime are based on this very simple interface. // Note: To be able to return two values from some calls the code in runtime.cc // uses the ObjectPair which is essentially two 32-bit values stuffed into a // 64-bit value. With the code below we assume that all runtime calls return // 64 bits of result. If they don't, the v1 result register contains a bogus // value, which is fine because it is caller-saved. typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3, int64_t arg4, int64_t arg5); typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int64_t arg0, int64_t arg1, int64_t arg2, int64_t arg3, int64_t arg4); // These prototypes handle the four types of FP calls. typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); typedef double (*SimulatorRuntimeFPCall)(double darg0); typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); // This signature supports direct call in to API function native callback // (refer to InvocationCallback in v8.h). typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0); typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1); // This signature supports direct call to accessor getter callback. typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1); typedef void (*SimulatorRuntimeProfilingGetterCall)( int64_t arg0, int64_t arg1, void* arg2); // Software interrupt instructions are used by the simulator to call into the // C-based V8 runtime. They are also used for debugging with simulator. void Simulator::SoftwareInterrupt() { // There are several instructions that could get us here, // the break_ instruction, or several variants of traps. All // Are "SPECIAL" class opcode, and are distinuished by function. int32_t func = instr_.FunctionFieldRaw(); uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1; // We first check if we met a call_rt_redirected. if (instr_.InstructionBits() == rtCallRedirInstr) { Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr()); int64_t arg0 = get_register(a0); int64_t arg1 = get_register(a1); int64_t arg2 = get_register(a2); int64_t arg3 = get_register(a3); int64_t arg4, arg5; arg4 = get_register(a4); // Abi n64 register a4. arg5 = get_register(a5); // Abi n64 register a5. bool fp_call = (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); if (!IsMipsSoftFloatABI) { // With the hard floating point calling convention, double // arguments are passed in FPU registers. Fetch the arguments // from there and call the builtin using soft floating point // convention. switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: arg0 = get_fpu_register(f12); arg1 = get_fpu_register(f13); arg2 = get_fpu_register(f14); arg3 = get_fpu_register(f15); break; case ExternalReference::BUILTIN_FP_CALL: arg0 = get_fpu_register(f12); arg1 = get_fpu_register(f13); break; case ExternalReference::BUILTIN_FP_INT_CALL: arg0 = get_fpu_register(f12); arg1 = get_fpu_register(f13); arg2 = get_register(a2); break; default: break; } } // This is dodgy but it works because the C entry stubs are never moved. // See comment in codegen-arm.cc and bug 1242173. int64_t saved_ra = get_register(ra); intptr_t external = reinterpret_cast<intptr_t>(redirection->external_function()); // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware // FPU, or gcc soft-float routines. Hardware FPU is simulated in this // simulator. Soft-float has additional abstraction of ExternalReference, // to support serialization. if (fp_call) { double dval0, dval1; // one or two double parameters int32_t ival; // zero or one integer parameters int64_t iresult = 0; // integer return value double dresult = 0; // double return value GetFpArgs(&dval0, &dval1, &ival); SimulatorRuntimeCall generic_target = reinterpret_cast<SimulatorRuntimeCall>(external); if (::v8::internal::FLAG_trace_sim) { switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Call to host function at %p with args %f, %f", static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, dval1); break; case ExternalReference::BUILTIN_FP_CALL: PrintF("Call to host function at %p with arg %f", static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0); break; case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Call to host function at %p with args %f, %d", static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, ival); break; default: UNREACHABLE(); break; } } switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: { SimulatorRuntimeCompareCall target = reinterpret_cast<SimulatorRuntimeCompareCall>(external); iresult = target(dval0, dval1); set_register(v0, static_cast<int64_t>(iresult)); // set_register(v1, static_cast<int64_t>(iresult >> 32)); break; } case ExternalReference::BUILTIN_FP_FP_CALL: { SimulatorRuntimeFPFPCall target = reinterpret_cast<SimulatorRuntimeFPFPCall>(external); dresult = target(dval0, dval1); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_CALL: { SimulatorRuntimeFPCall target = reinterpret_cast<SimulatorRuntimeFPCall>(external); dresult = target(dval0); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_INT_CALL: { SimulatorRuntimeFPIntCall target = reinterpret_cast<SimulatorRuntimeFPIntCall>(external); dresult = target(dval0, ival); SetFpResult(dresult); break; } default: UNREACHABLE(); break; } if (::v8::internal::FLAG_trace_sim) { switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); break; case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_FP_CALL: case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Returned %f\n", dresult); break; default: UNREACHABLE(); break; } } } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { if (::v8::internal::FLAG_trace_sim) { PrintF("Call to host function at %p args %08" PRIx64 " \n", reinterpret_cast<void*>(external), arg0); } SimulatorRuntimeDirectApiCall target = reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); target(arg0); } else if ( redirection->type() == ExternalReference::PROFILING_API_CALL) { if (::v8::internal::FLAG_trace_sim) { PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 " \n", reinterpret_cast<void*>(external), arg0, arg1); } SimulatorRuntimeProfilingApiCall target = reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); target(arg0, Redirection::ReverseRedirection(arg1)); } else if ( redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { if (::v8::internal::FLAG_trace_sim) { PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 " \n", reinterpret_cast<void*>(external), arg0, arg1); } SimulatorRuntimeDirectGetterCall target = reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); target(arg0, arg1); } else if ( redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { if (::v8::internal::FLAG_trace_sim) { PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64 " %08" PRIx64 " \n", reinterpret_cast<void*>(external), arg0, arg1, arg2); } SimulatorRuntimeProfilingGetterCall target = reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); target(arg0, arg1, Redirection::ReverseRedirection(arg2)); } else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) { // builtin call returning ObjectTriple. SimulatorRuntimeTripleCall target = reinterpret_cast<SimulatorRuntimeTripleCall>(external); if (::v8::internal::FLAG_trace_sim) { PrintF( "Call to host triple returning runtime function %p " "args %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 "\n", static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4, arg5); } // arg0 is a hidden argument pointing to the return location, so don't // pass it to the target function. ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5); if (::v8::internal::FLAG_trace_sim) { PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x), static_cast<void*>(result.y), static_cast<void*>(result.z)); } // Return is passed back in address pointed to by hidden first argument. ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0); *sim_result = result; set_register(v0, arg0); } else { DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); SimulatorRuntimeCall target = reinterpret_cast<SimulatorRuntimeCall>(external); if (::v8::internal::FLAG_trace_sim) { PrintF( "Call to host function at %p " "args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " \n", static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3, arg4, arg5); } // int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); // set_register(v0, static_cast<int32_t>(result)); // set_register(v1, static_cast<int32_t>(result >> 32)); ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5); set_register(v0, (int64_t)(result.x)); set_register(v1, (int64_t)(result.y)); } if (::v8::internal::FLAG_trace_sim) { PrintF("Returned %08" PRIx64 " : %08" PRIx64 " \n", get_register(v1), get_register(v0)); } set_register(ra, saved_ra); set_pc(get_register(ra)); } else if (func == BREAK && code <= kMaxStopCode) { if (IsWatchpoint(code)) { PrintWatchpoint(code); } else { IncreaseStopCounter(code); HandleStop(code, instr_.instr()); } } else { // All remaining break_ codes, and all traps are handled here. MipsDebugger dbg(this); dbg.Debug(); } } // Stop helper functions. bool Simulator::IsWatchpoint(uint64_t code) { return (code <= kMaxWatchpointCode); } void Simulator::PrintWatchpoint(uint64_t code) { MipsDebugger dbg(this); ++break_count_; PrintF("\n---- break %" PRId64 " marker: %3d (instr count: %8" PRId64 " ) ----------" "----------------------------------", code, break_count_, icount_); dbg.PrintAllRegs(); // Print registers and continue running. } void Simulator::HandleStop(uint64_t code, Instruction* instr) { // Stop if it is enabled, otherwise go on jumping over the stop // and the message address. if (IsEnabledStop(code)) { MipsDebugger dbg(this); dbg.Stop(instr); } else { set_pc(get_pc() + 2 * Instruction::kInstrSize); } } bool Simulator::IsStopInstruction(Instruction* instr) { int32_t func = instr->FunctionFieldRaw(); uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6)); return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; } bool Simulator::IsEnabledStop(uint64_t code) { DCHECK(code <= kMaxStopCode); DCHECK(code > kMaxWatchpointCode); return !(watched_stops_[code].count & kStopDisabledBit); } void Simulator::EnableStop(uint64_t code) { if (!IsEnabledStop(code)) { watched_stops_[code].count &= ~kStopDisabledBit; } } void Simulator::DisableStop(uint64_t code) { if (IsEnabledStop(code)) { watched_stops_[code].count |= kStopDisabledBit; } } void Simulator::IncreaseStopCounter(uint64_t code) { DCHECK(code <= kMaxStopCode); if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { PrintF("Stop counter for code %" PRId64 " has overflowed.\n" "Enabling this code and reseting the counter to 0.\n", code); watched_stops_[code].count = 0; EnableStop(code); } else { watched_stops_[code].count++; } } // Print a stop status. void Simulator::PrintStopInfo(uint64_t code) { if (code <= kMaxWatchpointCode) { PrintF("That is a watchpoint, not a stop.\n"); return; } else if (code > kMaxStopCode) { PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); return; } const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; int32_t count = watched_stops_[code].count & ~kStopDisabledBit; // Don't print the state of unused breakpoints. if (count != 0) { if (watched_stops_[code].desc) { PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n", code, code, state, count, watched_stops_[code].desc); } else { PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code, code, state, count); } } } void Simulator::SignalException(Exception e) { V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", static_cast<int>(e)); } // Min/Max template functions for Double and Single arguments. template <typename T> static T FPAbs(T a); template <> double FPAbs<double>(double a) { return fabs(a); } template <> float FPAbs<float>(float a) { return fabsf(a); } template <typename T> static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) { if (std::isnan(a) && std::isnan(b)) { result = a; } else if (std::isnan(a)) { result = b; } else if (std::isnan(b)) { result = a; } else if (b == a) { // Handle -0.0 == 0.0 case. // std::signbit() returns int 0 or 1 so substracting MaxMinKind::kMax // negates the result. result = std::signbit(b) - static_cast<int>(kind) ? b : a; } else { return false; } return true; } template <typename T> static T FPUMin(T a, T b) { T result; if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { return result; } else { return b < a ? b : a; } } template <typename T> static T FPUMax(T a, T b) { T result; if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) { return result; } else { return b > a ? b : a; } } template <typename T> static T FPUMinA(T a, T b) { T result; if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { if (FPAbs(a) < FPAbs(b)) { result = a; } else if (FPAbs(b) < FPAbs(a)) { result = b; } else { result = a < b ? a : b; } } return result; } template <typename T> static T FPUMaxA(T a, T b) { T result; if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) { if (FPAbs(a) > FPAbs(b)) { result = a; } else if (FPAbs(b) > FPAbs(a)) { result = b; } else { result = a > b ? a : b; } } return result; } enum class KeepSign : bool { no = false, yes }; template <typename T, typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0> T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) { DCHECK(std::isnan(arg)); T qNaN = std::numeric_limits<T>::quiet_NaN(); if (keepSign == KeepSign::yes) { return std::copysign(qNaN, result); } return qNaN; } template <typename T> T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) { if (std::isnan(first)) { return FPUCanonalizeNaNArg(result, first, keepSign); } return result; } template <typename T, typename... Args> T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) { if (std::isnan(first)) { return FPUCanonalizeNaNArg(result, first, keepSign); } return FPUCanonalizeNaNArgs(result, keepSign, args...); } template <typename Func, typename T, typename... Args> T FPUCanonalizeOperation(Func f, T first, Args... args) { return FPUCanonalizeOperation(f, KeepSign::no, first, args...); } template <typename Func, typename T, typename... Args> T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) { T result = f(first, args...); if (std::isnan(result)) { result = FPUCanonalizeNaNArgs(result, keepSign, first, args...); } return result; } // Handle execution based on instruction types. void Simulator::DecodeTypeRegisterSRsType() { float fs, ft, fd; fs = get_fpu_register_float(fs_reg()); ft = get_fpu_register_float(ft_reg()); fd = get_fpu_register_float(fd_reg()); int32_t ft_int = bit_cast<int32_t>(ft); int32_t fd_int = bit_cast<int32_t>(fd); uint32_t cc, fcsr_cc; cc = instr_.FCccValue(); fcsr_cc = get_fcsr_condition_bit(cc); switch (instr_.FunctionFieldRaw()) { case RINT: { DCHECK(kArchVariant == kMips64r6); float result, temp_result; double temp; float upper = std::ceil(fs); float lower = std::floor(fs); switch (get_fcsr_rounding_mode()) { case kRoundToNearest: if (upper - fs < fs - lower) { result = upper; } else if (upper - fs > fs - lower) { result = lower; } else { temp_result = upper / 2; float reminder = modf(temp_result, &temp); if (reminder == 0) { result = upper; } else { result = lower; } } break; case kRoundToZero: result = (fs > 0 ? lower : upper); break; case kRoundToPlusInf: result = upper; break; case kRoundToMinusInf: result = lower; break; } SetFPUFloatResult(fd_reg(), result); if (result != fs) { set_fcsr_bit(kFCSRInexactFlagBit, true); } break; } case ADD_S: SetFPUFloatResult( fd_reg(), FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; }, fs, ft)); break; case SUB_S: SetFPUFloatResult( fd_reg(), FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; }, fs, ft)); break; case MADDF_S: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), std::fma(fs, ft, fd)); break; case MSUBF_S: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), std::fma(-fs, ft, fd)); break; case MUL_S: SetFPUFloatResult( fd_reg(), FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; }, fs, ft)); break; case DIV_S: SetFPUFloatResult( fd_reg(), FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; }, fs, ft)); break; case ABS_S: SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( [](float fs) { return FPAbs(fs); }, fs)); break; case MOV_S: SetFPUFloatResult(fd_reg(), fs); break; case NEG_S: SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation([](float src) { return -src; }, KeepSign::yes, fs)); break; case SQRT_S: SetFPUFloatResult( fd_reg(), FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs)); break; case RSQRT_S: SetFPUFloatResult( fd_reg(), FPUCanonalizeOperation( [](float src) { return 1.0 / std::sqrt(src); }, fs)); break; case RECIP_S: SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation( [](float src) { return 1.0 / src; }, fs)); break; case C_F_D: set_fcsr_bit(fcsr_cc, false); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_UN_D: set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_EQ_D: set_fcsr_bit(fcsr_cc, (fs == ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_UEQ_D: set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_OLT_D: set_fcsr_bit(fcsr_cc, (fs < ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_ULT_D: set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_OLE_D: set_fcsr_bit(fcsr_cc, (fs <= ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_ULE_D: set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case CVT_D_S: SetFPUDoubleResult(fd_reg(), static_cast<double>(fs)); break; case CLASS_S: { // Mips64r6 instruction // Convert float input to uint32_t for easier bit manipulation uint32_t classed = bit_cast<uint32_t>(fs); // Extracting sign, exponent and mantissa from the input float uint32_t sign = (classed >> 31) & 1; uint32_t exponent = (classed >> 23) & 0x000000ff; uint32_t mantissa = classed & 0x007fffff; uint32_t result; float fResult; // Setting flags if input float is negative infinity, // positive infinity, negative zero or positive zero bool negInf = (classed == 0xFF800000); bool posInf = (classed == 0x7F800000); bool negZero = (classed == 0x80000000); bool posZero = (classed == 0x00000000); bool signalingNan; bool quietNan; bool negSubnorm; bool posSubnorm; bool negNorm; bool posNorm; // Setting flags if float is NaN signalingNan = false; quietNan = false; if (!negInf && !posInf && (exponent == 0xff)) { quietNan = ((mantissa & 0x00200000) == 0) && ((mantissa & (0x00200000 - 1)) == 0); signalingNan = !quietNan; } // Setting flags if float is subnormal number posSubnorm = false; negSubnorm = false; if ((exponent == 0) && (mantissa != 0)) { DCHECK(sign == 0 || sign == 1); posSubnorm = (sign == 0); negSubnorm = (sign == 1); } // Setting flags if float is normal number posNorm = false; negNorm = false; if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && !quietNan && !negZero && !posZero) { DCHECK(sign == 0 || sign == 1); posNorm = (sign == 0); negNorm = (sign == 1); } // Calculating result according to description of CLASS.S instruction result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; DCHECK(result != 0); fResult = bit_cast<float>(result); SetFPUFloatResult(fd_reg(), fResult); break; } case CVT_L_S: { float rounded; int64_t result; round64_according_to_fcsr(fs, rounded, result, fs); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case CVT_W_S: { float rounded; int32_t result; round_according_to_fcsr(fs, rounded, result, fs); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_word_invalid_result(fs, rounded); } break; } case TRUNC_W_S: { // Truncate single to word (round towards 0). float rounded = trunc(fs); int32_t result = static_cast<int32_t>(rounded); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_word_invalid_result(fs, rounded); } } break; case TRUNC_L_S: { // Mips64r2 instruction. float rounded = trunc(fs); int64_t result = static_cast<int64_t>(rounded); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case ROUND_W_S: { float rounded = std::floor(fs + 0.5); int32_t result = static_cast<int32_t>(rounded); if ((result & 1) != 0 && result - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. result--; } SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_word_invalid_result(fs, rounded); } break; } case ROUND_L_S: { // Mips64r2 instruction. float rounded = std::floor(fs + 0.5); int64_t result = static_cast<int64_t>(rounded); if ((result & 1) != 0 && result - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. result--; } int64_t i64 = static_cast<int64_t>(result); SetFPUResult(fd_reg(), i64); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case FLOOR_L_S: { // Mips64r2 instruction. float rounded = floor(fs); int64_t result = static_cast<int64_t>(rounded); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case FLOOR_W_S: // Round double to word towards negative infinity. { float rounded = std::floor(fs); int32_t result = static_cast<int32_t>(rounded); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_word_invalid_result(fs, rounded); } } break; case CEIL_W_S: // Round double to word towards positive infinity. { float rounded = std::ceil(fs); int32_t result = static_cast<int32_t>(rounded); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_invalid_result(fs, rounded); } } break; case CEIL_L_S: { // Mips64r2 instruction. float rounded = ceil(fs); int64_t result = static_cast<int64_t>(rounded); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case MINA: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), FPUMinA(ft, fs)); break; case MAXA: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), FPUMaxA(ft, fs)); break; case MIN: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), FPUMin(ft, fs)); break; case MAX: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), FPUMax(ft, fs)); break; case SEL: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); break; case SELEQZ_C: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult( fd_reg(), (ft_int & 0x1) == 0 ? get_fpu_register_float(fs_reg()) : 0.0); break; case SELNEZ_C: DCHECK(kArchVariant == kMips64r6); SetFPUFloatResult( fd_reg(), (ft_int & 0x1) != 0 ? get_fpu_register_float(fs_reg()) : 0.0); break; case MOVZ_C: { DCHECK(kArchVariant == kMips64r2); if (rt() == 0) { SetFPUFloatResult(fd_reg(), fs); } break; } case MOVN_C: { DCHECK(kArchVariant == kMips64r2); if (rt() != 0) { SetFPUFloatResult(fd_reg(), fs); } break; } case MOVF: { // Same function field for MOVT.D and MOVF.D uint32_t ft_cc = (ft_reg() >> 2) & 0x7; ft_cc = get_fcsr_condition_bit(ft_cc); if (instr_.Bit(16)) { // Read Tf bit. // MOVT.D if (test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); } else { // MOVF.D if (!test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs); } break; } default: // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. UNREACHABLE(); } } void Simulator::DecodeTypeRegisterDRsType() { double ft, fs, fd; uint32_t cc, fcsr_cc; fs = get_fpu_register_double(fs_reg()); ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg()) : 0.0; fd = get_fpu_register_double(fd_reg()); cc = instr_.FCccValue(); fcsr_cc = get_fcsr_condition_bit(cc); int64_t ft_int = bit_cast<int64_t>(ft); int64_t fd_int = bit_cast<int64_t>(fd); switch (instr_.FunctionFieldRaw()) { case RINT: { DCHECK(kArchVariant == kMips64r6); double result, temp, temp_result; double upper = std::ceil(fs); double lower = std::floor(fs); switch (get_fcsr_rounding_mode()) { case kRoundToNearest: if (upper - fs < fs - lower) { result = upper; } else if (upper - fs > fs - lower) { result = lower; } else { temp_result = upper / 2; double reminder = modf(temp_result, &temp); if (reminder == 0) { result = upper; } else { result = lower; } } break; case kRoundToZero: result = (fs > 0 ? lower : upper); break; case kRoundToPlusInf: result = upper; break; case kRoundToMinusInf: result = lower; break; } SetFPUDoubleResult(fd_reg(), result); if (result != fs) { set_fcsr_bit(kFCSRInexactFlagBit, true); } break; } case SEL: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft); break; case SELEQZ_C: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0); break; case SELNEZ_C: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0); break; case MOVZ_C: { DCHECK(kArchVariant == kMips64r2); if (rt() == 0) { SetFPUDoubleResult(fd_reg(), fs); } break; } case MOVN_C: { DCHECK(kArchVariant == kMips64r2); if (rt() != 0) { SetFPUDoubleResult(fd_reg(), fs); } break; } case MOVF: { // Same function field for MOVT.D and MOVF.D uint32_t ft_cc = (ft_reg() >> 2) & 0x7; ft_cc = get_fcsr_condition_bit(ft_cc); if (instr_.Bit(16)) { // Read Tf bit. // MOVT.D if (test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); } else { // MOVF.D if (!test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs); } break; } case MINA: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), FPUMinA(ft, fs)); break; case MAXA: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), FPUMaxA(ft, fs)); break; case MIN: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), FPUMin(ft, fs)); break; case MAX: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), FPUMax(ft, fs)); break; case ADD_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation( [](double lhs, double rhs) { return lhs + rhs; }, fs, ft)); break; case SUB_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation( [](double lhs, double rhs) { return lhs - rhs; }, fs, ft)); break; case MADDF_D: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), std::fma(fs, ft, fd)); break; case MSUBF_D: DCHECK(kArchVariant == kMips64r6); SetFPUDoubleResult(fd_reg(), std::fma(-fs, ft, fd)); break; case MUL_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation( [](double lhs, double rhs) { return lhs * rhs; }, fs, ft)); break; case DIV_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation( [](double lhs, double rhs) { return lhs / rhs; }, fs, ft)); break; case ABS_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs)); break; case MOV_D: SetFPUDoubleResult(fd_reg(), fs); break; case NEG_D: SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation([](double src) { return -src; }, KeepSign::yes, fs)); break; case SQRT_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs)); break; case RSQRT_D: SetFPUDoubleResult( fd_reg(), FPUCanonalizeOperation( [](double fs) { return 1.0 / std::sqrt(fs); }, fs)); break; case RECIP_D: SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation( [](double fs) { return 1.0 / fs; }, fs)); break; case C_UN_D: set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_EQ_D: set_fcsr_bit(fcsr_cc, (fs == ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_UEQ_D: set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_OLT_D: set_fcsr_bit(fcsr_cc, (fs < ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_ULT_D: set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_OLE_D: set_fcsr_bit(fcsr_cc, (fs <= ft)); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case C_ULE_D: set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; case CVT_W_D: { // Convert double to word. double rounded; int32_t result; round_according_to_fcsr(fs, rounded, result, fs); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_word_invalid_result(fs, rounded); } break; } case ROUND_W_D: // Round double to word (round half to even). { double rounded = std::floor(fs + 0.5); int32_t result = static_cast<int32_t>(rounded); if ((result & 1) != 0 && result - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. result--; } SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_invalid_result(fs, rounded); } } break; case TRUNC_W_D: // Truncate double to word (round towards 0). { double rounded = trunc(fs); int32_t result = static_cast<int32_t>(rounded); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_invalid_result(fs, rounded); } } break; case FLOOR_W_D: // Round double to word towards negative infinity. { double rounded = std::floor(fs); int32_t result = static_cast<int32_t>(rounded); SetFPUWordResult(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_invalid_result(fs, rounded); } } break; case CEIL_W_D: // Round double to word towards positive infinity. { double rounded = std::ceil(fs); int32_t result = static_cast<int32_t>(rounded); SetFPUWordResult2(fd_reg(), result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register_invalid_result(fs, rounded); } } break; case CVT_S_D: // Convert double to float (single). SetFPUFloatResult(fd_reg(), static_cast<float>(fs)); break; case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word. double rounded; int64_t result; round64_according_to_fcsr(fs, rounded, result, fs); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case ROUND_L_D: { // Mips64r2 instruction. double rounded = std::floor(fs + 0.5); int64_t result = static_cast<int64_t>(rounded); if ((result & 1) != 0 && result - fs == 0.5) { // If the number is halfway between two integers, // round to the even one. result--; } int64_t i64 = static_cast<int64_t>(result); SetFPUResult(fd_reg(), i64); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case TRUNC_L_D: { // Mips64r2 instruction. double rounded = trunc(fs); int64_t result = static_cast<int64_t>(rounded); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case FLOOR_L_D: { // Mips64r2 instruction. double rounded = floor(fs); int64_t result = static_cast<int64_t>(rounded); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case CEIL_L_D: { // Mips64r2 instruction. double rounded = ceil(fs); int64_t result = static_cast<int64_t>(rounded); SetFPUResult(fd_reg(), result); if (set_fcsr_round64_error(fs, rounded)) { set_fpu_register_invalid_result64(fs, rounded); } break; } case CLASS_D: { // Mips64r6 instruction // Convert double input to uint64_t for easier bit manipulation uint64_t classed = bit_cast<uint64_t>(fs); // Extracting sign, exponent and mantissa from the input double uint32_t sign = (classed >> 63) & 1; uint32_t exponent = (classed >> 52) & 0x00000000000007ff; uint64_t mantissa = classed & 0x000fffffffffffff; uint64_t result; double dResult; // Setting flags if input double is negative infinity, // positive infinity, negative zero or positive zero bool negInf = (classed == 0xFFF0000000000000); bool posInf = (classed == 0x7FF0000000000000); bool negZero = (classed == 0x8000000000000000); bool posZero = (classed == 0x0000000000000000); bool signalingNan; bool quietNan; bool negSubnorm; bool posSubnorm; bool negNorm; bool posNorm; // Setting flags if double is NaN signalingNan = false; quietNan = false; if (!negInf && !posInf && exponent == 0x7ff) { quietNan = ((mantissa & 0x0008000000000000) != 0) && ((mantissa & (0x0008000000000000 - 1)) == 0); signalingNan = !quietNan; } // Setting flags if double is subnormal number posSubnorm = false; negSubnorm = false; if ((exponent == 0) && (mantissa != 0)) { DCHECK(sign == 0 || sign == 1); posSubnorm = (sign == 0); negSubnorm = (sign == 1); } // Setting flags if double is normal number posNorm = false; negNorm = false; if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan && !quietNan && !negZero && !posZero) { DCHECK(sign == 0 || sign == 1); posNorm = (sign == 0); negNorm = (sign == 1); } // Calculating result according to description of CLASS.D instruction result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; DCHECK(result != 0); dResult = bit_cast<double>(result); SetFPUDoubleResult(fd_reg(), dResult); break; } case C_F_D: { set_fcsr_bit(fcsr_cc, false); TraceRegWr(test_fcsr_bit(fcsr_cc)); break; } default: UNREACHABLE(); } } void Simulator::DecodeTypeRegisterWRsType() { float fs = get_fpu_register_float(fs_reg()); float ft = get_fpu_register_float(ft_reg()); int64_t alu_out = 0x12345678; switch (instr_.FunctionFieldRaw()) { case CVT_S_W: // Convert word to float (single). alu_out = get_fpu_register_signed_word(fs_reg()); SetFPUFloatResult(fd_reg(), static_cast<float>(alu_out)); break; case CVT_D_W: // Convert word to double. alu_out = get_fpu_register_signed_word(fs_reg()); SetFPUDoubleResult(fd_reg(), static_cast<double>(alu_out)); break; case CMP_AF: SetFPUWordResult2(fd_reg(), 0); break; case CMP_UN: if (std::isnan(fs) || std::isnan(ft)) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_EQ: if (fs == ft) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_UEQ: if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_LT: if (fs < ft) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_ULT: if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_LE: if (fs <= ft) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_ULE: if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_OR: if (!std::isnan(fs) && !std::isnan(ft)) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_UNE: if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; case CMP_NE: if (fs != ft) { SetFPUWordResult2(fd_reg(), -1); } else { SetFPUWordResult2(fd_reg(), 0); } break; default: UNREACHABLE(); } } void Simulator::DecodeTypeRegisterLRsType() { double fs = get_fpu_register_double(fs_reg()); double ft = get_fpu_register_double(ft_reg()); int64_t i64; switch (instr_.FunctionFieldRaw()) { case CVT_D_L: // Mips32r2 instruction. i64 = get_fpu_register(fs_reg()); SetFPUDoubleResult(fd_reg(), static_cast<double>(i64)); break; case CVT_S_L: i64 = get_fpu_register(fs_reg()); SetFPUFloatResult(fd_reg(), static_cast<float>(i64)); break; case CMP_AF: SetFPUResult(fd_reg(), 0); break; case CMP_UN: if (std::isnan(fs) || std::isnan(ft)) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_EQ: if (fs == ft) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_UEQ: if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_LT: if (fs < ft) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_ULT: if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_LE: if (fs <= ft) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_ULE: if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_OR: if (!std::isnan(fs) && !std::isnan(ft)) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_UNE: if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; case CMP_NE: if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { SetFPUResult(fd_reg(), -1); } else { SetFPUResult(fd_reg(), 0); } break; default: UNREACHABLE(); } } void Simulator::DecodeTypeRegisterCOP1() { switch (instr_.RsFieldRaw()) { case BC1: // Branch on coprocessor condition. case BC1EQZ: case BC1NEZ: UNREACHABLE(); break; case CFC1: // At the moment only FCSR is supported. DCHECK(fs_reg() == kFCSRRegister); SetResult(rt_reg(), FCSR_); break; case MFC1: set_register(rt_reg(), static_cast<int64_t>(get_fpu_register_word(fs_reg()))); TraceRegWr(get_register(rt_reg()), WORD_DWORD); break; case DMFC1: SetResult(rt_reg(), get_fpu_register(fs_reg())); break; case MFHC1: SetResult(rt_reg(), get_fpu_register_hi_word(fs_reg())); break; case CTC1: { // At the moment only FCSR is supported. DCHECK(fs_reg() == kFCSRRegister); uint32_t reg = static_cast<uint32_t>(rt()); if (kArchVariant == kMips64r6) { FCSR_ = reg | kFCSRNaN2008FlagMask; } else { DCHECK(kArchVariant == kMips64r2); FCSR_ = reg & ~kFCSRNaN2008FlagMask; } TraceRegWr(FCSR_); break; } case MTC1: // Hardware writes upper 32-bits to zero on mtc1. set_fpu_register_hi_word(fs_reg(), 0); set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt())); TraceRegWr(get_fpu_register(fs_reg()), FLOAT_DOUBLE); break; case DMTC1: SetFPUResult2(fs_reg(), rt()); break; case MTHC1: set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt())); TraceRegWr(get_fpu_register(fs_reg()), DOUBLE); break; case S: DecodeTypeRegisterSRsType(); break; case D: DecodeTypeRegisterDRsType(); break; case W: DecodeTypeRegisterWRsType(); break; case L: DecodeTypeRegisterLRsType(); break; default: UNREACHABLE(); } } void Simulator::DecodeTypeRegisterCOP1X() { switch (instr_.FunctionFieldRaw()) { case MADD_S: { DCHECK(kArchVariant == kMips64r2); float fr, ft, fs; fr = get_fpu_register_float(fr_reg()); fs = get_fpu_register_float(fs_reg()); ft = get_fpu_register_float(ft_reg()); SetFPUFloatResult(fd_reg(), fs * ft + fr); break; } case MSUB_S: { DCHECK(kArchVariant == kMips64r2); float fr, ft, fs; fr = get_fpu_register_float(fr_reg()); fs = get_fpu_register_float(fs_reg()); ft = get_fpu_register_float(ft_reg()); SetFPUFloatResult(fd_reg(), fs * ft - fr); break; } case MADD_D: { DCHECK(kArchVariant == kMips64r2); double fr, ft, fs; fr = get_fpu_register_double(fr_reg()); fs = get_fpu_register_double(fs_reg()); ft = get_fpu_register_double(ft_reg()); SetFPUDoubleResult(fd_reg(), fs * ft + fr); break; } case MSUB_D: { DCHECK(kArchVariant == kMips64r2); double fr, ft, fs; fr = get_fpu_register_double(fr_reg()); fs = get_fpu_register_double(fs_reg()); ft = get_fpu_register_double(ft_reg()); SetFPUDoubleResult(fd_reg(), fs * ft - fr); break; } default: UNREACHABLE(); } } void Simulator::DecodeTypeRegisterSPECIAL() { int64_t i64hilo; uint64_t u64hilo; int64_t alu_out; bool do_interrupt = false; switch (instr_.FunctionFieldRaw()) { case SELEQZ_S: DCHECK(kArchVariant == kMips64r6); SetResult(rd_reg(), rt() == 0 ? rs() : 0); break; case SELNEZ_S: DCHECK(kArchVariant == kMips64r6); SetResult(rd_reg(), rt() != 0 ? rs() : 0); break; case JR: { int64_t next_pc = rs(); int64_t current_pc = get_pc(); Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); set_pc(next_pc); pc_modified_ = true; break; } case JALR: { int64_t next_pc = rs(); int64_t current_pc = get_pc(); int32_t return_addr_reg = rd_reg(); Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize); set_pc(next_pc); pc_modified_ = true; break; } case SLL: SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa()); break; case DSLL: SetResult(rd_reg(), rt() << sa()); break; case DSLL32: SetResult(rd_reg(), rt() << sa() << 32); break; case SRL: if (rs_reg() == 0) { // Regular logical right shift of a word by a fixed number of // bits instruction. RS field is always equal to 0. // Sign-extend the 32-bit result. alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa()); } else if (rs_reg() == 1) { // Logical right-rotate of a word by a fixed number of bits. This // is special case of SRL instruction, added in MIPS32 Release 2. // RS field is equal to 00001. alu_out = static_cast<int32_t>( base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), static_cast<const uint32_t>(sa()))); } else { UNREACHABLE(); } SetResult(rd_reg(), alu_out); break; case DSRL: if (rs_reg() == 0) { // Regular logical right shift of a word by a fixed number of // bits instruction. RS field is always equal to 0. // Sign-extend the 64-bit result. alu_out = static_cast<int64_t>(rt_u() >> sa()); } else if (rs_reg() == 1) { // Logical right-rotate of a word by a fixed number of bits. This // is special case of SRL instruction, added in MIPS32 Release 2. // RS field is equal to 00001. alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa())); } else { UNREACHABLE(); } SetResult(rd_reg(), alu_out); break; case DSRL32: if (rs_reg() == 0) { // Regular logical right shift of a word by a fixed number of // bits instruction. RS field is always equal to 0. // Sign-extend the 64-bit result. alu_out = static_cast<int64_t>(rt_u() >> sa() >> 32); } else if (rs_reg() == 1) { // Logical right-rotate of a word by a fixed number of bits. This // is special case of SRL instruction, added in MIPS32 Release 2. // RS field is equal to 00001. alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa() + 32)); } else { UNREACHABLE(); } SetResult(rd_reg(), alu_out); break; case SRA: SetResult(rd_reg(), (int32_t)rt() >> sa()); break; case DSRA: SetResult(rd_reg(), rt() >> sa()); break; case DSRA32: SetResult(rd_reg(), rt() >> sa() >> 32); break; case SLLV: SetResult(rd_reg(), (int32_t)rt() << rs()); break; case DSLLV: SetResult(rd_reg(), rt() << rs()); break; case SRLV: if (sa() == 0) { // Regular logical right-shift of a word by a variable number of // bits instruction. SA field is always equal to 0. alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs()); } else { // Logical right-rotate of a word by a variable number of bits. // This is special case od SRLV instruction, added in MIPS32 // Release 2. SA field is equal to 00001. alu_out = static_cast<int32_t>( base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()), static_cast<const uint32_t>(rs_u()))); } SetResult(rd_reg(), alu_out); break; case DSRLV: if (sa() == 0) { // Regular logical right-shift of a word by a variable number of // bits instruction. SA field is always equal to 0. alu_out = static_cast<int64_t>(rt_u() >> rs()); } else { // Logical right-rotate of a word by a variable number of bits. // This is special case od SRLV instruction, added in MIPS32 // Release 2. SA field is equal to 00001. alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), rs_u())); } SetResult(rd_reg(), alu_out); break; case SRAV: SetResult(rd_reg(), (int32_t)rt() >> rs()); break; case DSRAV: SetResult(rd_reg(), rt() >> rs()); break; case LSA: { DCHECK(kArchVariant == kMips64r6); int8_t sa = lsa_sa() + 1; int32_t _rt = static_cast<int32_t>(rt()); int32_t _rs = static_cast<int32_t>(rs()); int32_t res = _rs << sa; res += _rt; SetResult(rd_reg(), static_cast<int64_t>(res)); break; } case DLSA: DCHECK(kArchVariant == kMips64r6); SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt()); break; case MFHI: // MFHI == CLZ on R6. if (kArchVariant != kMips64r6) { DCHECK(sa() == 0); alu_out = get_register(HI); } else { // MIPS spec: If no bits were set in GPR rs(), the result written to // GPR rd() is 32. DCHECK(sa() == 1); alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u())); } SetResult(rd_reg(), alu_out); break; case MFLO: // MFLO == DCLZ on R6. if (kArchVariant != kMips64r6) { DCHECK(sa() == 0); alu_out = get_register(LO); } else { // MIPS spec: If no bits were set in GPR rs(), the result written to // GPR rd() is 64. DCHECK(sa() == 1); alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u())); } SetResult(rd_reg(), alu_out); break; // Instructions using HI and LO registers. case MULT: { // MULT == D_MUL_MUH. int32_t rs_lo = static_cast<int32_t>(rs()); int32_t rt_lo = static_cast<int32_t>(rt()); i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo); if (kArchVariant != kMips64r6) { set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); set_register(HI, static_cast<int32_t>(i64hilo >> 32)); } else { switch (sa()) { case MUL_OP: SetResult(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff)); break; case MUH_OP: SetResult(rd_reg(), static_cast<int32_t>(i64hilo >> 32)); break; default: UNIMPLEMENTED_MIPS(); break; } } break; } case MULTU: u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) * static_cast<uint64_t>(rt_u() & 0xffffffff); if (kArchVariant != kMips64r6) { set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); set_register(HI, static_cast<int32_t>(u64hilo >> 32)); } else { switch (sa()) { case MUL_OP: SetResult(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff)); break; case MUH_OP: SetResult(rd_reg(), static_cast<int32_t>(u64hilo >> 32)); break; default: UNIMPLEMENTED_MIPS(); break; } } break; case DMULT: // DMULT == D_MUL_MUH. if (kArchVariant != kMips64r6) { set_register(LO, rs() * rt()); set_register(HI, MultiplyHighSigned(rs(), rt())); } else { switch (sa()) { case MUL_OP: SetResult(rd_reg(), rs() * rt()); break; case MUH_OP: SetResult(rd_reg(), MultiplyHighSigned(rs(), rt())); break; default: UNIMPLEMENTED_MIPS(); break; } } break; case DMULTU: UNIMPLEMENTED_MIPS(); break; case DIV: case DDIV: { const int64_t int_min_value = instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN; switch (kArchVariant) { case kMips64r2: // Divide by zero and overflow was not checked in the // configuration step - div and divu do not raise exceptions. On // division by 0 the result will be UNPREDICTABLE. On overflow // (INT_MIN/-1), return INT_MIN which is what the hardware does. if (rs() == int_min_value && rt() == -1) { set_register(LO, int_min_value); set_register(HI, 0); } else if (rt() != 0) { set_register(LO, rs() / rt()); set_register(HI, rs() % rt()); } break; case kMips64r6: switch (sa()) { case DIV_OP: if (rs() == int_min_value && rt() == -1) { SetResult(rd_reg(), int_min_value); } else if (rt() != 0) { SetResult(rd_reg(), rs() / rt()); } break; case MOD_OP: if (rs() == int_min_value && rt() == -1) { SetResult(rd_reg(), 0); } else if (rt() != 0) { SetResult(rd_reg(), rs() % rt()); } break; default: UNIMPLEMENTED_MIPS(); break; } break; default: break; } break; } case DIVU: switch (kArchVariant) { case kMips64r6: { uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); switch (sa()) { case DIV_OP: if (rt_u_32 != 0) { SetResult(rd_reg(), rs_u_32 / rt_u_32); } break; case MOD_OP: if (rt_u() != 0) { SetResult(rd_reg(), rs_u_32 % rt_u_32); } break; default: UNIMPLEMENTED_MIPS(); break; } } break; default: { if (rt_u() != 0) { uint32_t rt_u_32 = static_cast<uint32_t>(rt_u()); uint32_t rs_u_32 = static_cast<uint32_t>(rs_u()); set_register(LO, rs_u_32 / rt_u_32); set_register(HI, rs_u_32 % rt_u_32); } } } break; case DDIVU: switch (kArchVariant) { case kMips64r6: { switch (instr_.SaValue()) { case DIV_OP: if (rt_u() != 0) { SetResult(rd_reg(), rs_u() / rt_u()); } break; case MOD_OP: if (rt_u() != 0) { SetResult(rd_reg(), rs_u() % rt_u()); } break; default: UNIMPLEMENTED_MIPS(); break; } } break; default: { if (rt_u() != 0) { set_register(LO, rs_u() / rt_u()); set_register(HI, rs_u() % rt_u()); } } } break; case ADD: case DADD: if (HaveSameSign(rs(), rt())) { if (rs() > 0) { if (rs() > (Registers::kMaxValue - rt())) { SignalException(kIntegerOverflow); } } else if (rs() < 0) { if (rs() < (Registers::kMinValue - rt())) { SignalException(kIntegerUnderflow); } } } SetResult(rd_reg(), rs() + rt()); break; case ADDU: { int32_t alu32_out = static_cast<int32_t>(rs() + rt()); // Sign-extend result of 32bit operation into 64bit register. SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); break; } case DADDU: SetResult(rd_reg(), rs() + rt()); break; case SUB: case DSUB: if (!HaveSameSign(rs(), rt())) { if (rs() > 0) { if (rs() > (Registers::kMaxValue + rt())) { SignalException(kIntegerOverflow); } } else if (rs() < 0) { if (rs() < (Registers::kMinValue + rt())) { SignalException(kIntegerUnderflow); } } } SetResult(rd_reg(), rs() - rt()); break; case SUBU: { int32_t alu32_out = static_cast<int32_t>(rs() - rt()); // Sign-extend result of 32bit operation into 64bit register. SetResult(rd_reg(), static_cast<int64_t>(alu32_out)); break; } case DSUBU: SetResult(rd_reg(), rs() - rt()); break; case AND: SetResult(rd_reg(), rs() & rt()); break; case OR: SetResult(rd_reg(), rs() | rt()); break; case XOR: SetResult(rd_reg(), rs() ^ rt()); break; case NOR: SetResult(rd_reg(), ~(rs() | rt())); break; case SLT: SetResult(rd_reg(), rs() < rt() ? 1 : 0); break; case SLTU: SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0); break; // Break and trap instructions. case BREAK: do_interrupt = true; break; case TGE: do_interrupt = rs() >= rt(); break; case TGEU: do_interrupt = rs_u() >= rt_u(); break; case TLT: do_interrupt = rs() < rt(); break; case TLTU: do_interrupt = rs_u() < rt_u(); break; case TEQ: do_interrupt = rs() == rt(); break; case TNE: do_interrupt = rs() != rt(); break; case SYNC: // TODO(palfia): Ignore sync instruction for now. break; // Conditional moves. case MOVN: if (rt()) { SetResult(rd_reg(), rs()); } break; case MOVCI: { uint32_t cc = instr_.FBccValue(); uint32_t fcsr_cc = get_fcsr_condition_bit(cc); if (instr_.Bit(16)) { // Read Tf bit. if (test_fcsr_bit(fcsr_cc)) SetResult(rd_reg(), rs()); } else { if (!test_fcsr_bit(fcsr_cc)) SetResult(rd_reg(), rs()); } break; } case MOVZ: if (!rt()) { SetResult(rd_reg(), rs()); } break; default: UNREACHABLE(); } if (do_interrupt) { SoftwareInterrupt(); } } void Simulator::DecodeTypeRegisterSPECIAL2() { int64_t alu_out; switch (instr_.FunctionFieldRaw()) { case MUL: alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u()); SetResult(rd_reg(), alu_out); // HI and LO are UNPREDICTABLE after the operation. set_register(LO, Unpredictable); set_register(HI, Unpredictable); break; case CLZ: // MIPS32 spec: If no bits were set in GPR rs(), the result written to // GPR rd is 32. alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u())); SetResult(rd_reg(), alu_out); break; case DCLZ: // MIPS64 spec: If no bits were set in GPR rs(), the result written to // GPR rd is 64. alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u())); SetResult(rd_reg(), alu_out); break; default: alu_out = 0x12345678; UNREACHABLE(); } } void Simulator::DecodeTypeRegisterSPECIAL3() { int64_t alu_out; switch (instr_.FunctionFieldRaw()) { case INS: { // Mips64r2 instruction. // Interpret rd field as 5-bit msb of insert. uint16_t msb = rd_reg(); // Interpret sa field as 5-bit lsb of insert. uint16_t lsb = sa(); uint16_t size = msb - lsb + 1; uint64_t mask = (1ULL << size) - 1; alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb)); SetResult(rt_reg(), alu_out); break; } case DINS: { // Mips64r2 instruction. // Interpret rd field as 5-bit msb of insert. uint16_t msb = rd_reg(); // Interpret sa field as 5-bit lsb of insert. uint16_t lsb = sa(); uint16_t size = msb - lsb + 1; uint64_t mask = (1ULL << size) - 1; alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb); SetResult(rt_reg(), alu_out); break; } case EXT: { // Mips64r2 instruction. // Interpret rd field as 5-bit msb of extract. uint16_t msb = rd_reg(); // Interpret sa field as 5-bit lsb of extract. uint16_t lsb = sa(); uint16_t size = msb + 1; uint64_t mask = (1ULL << size) - 1; alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb); SetResult(rt_reg(), alu_out); break; } case DEXT: { // Mips64r2 instruction. // Interpret rd field as 5-bit msb of extract. uint16_t msb = rd_reg(); // Interpret sa field as 5-bit lsb of extract. uint16_t lsb = sa(); uint16_t size = msb + 1; uint64_t mask = (1ULL << size) - 1; alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); SetResult(rt_reg(), alu_out); break; } case DEXTM: { // Interpret rd field as 5-bit msb of extract. uint16_t msb = rd_reg(); // Interpret sa field as 5-bit lsb of extract. uint16_t lsb = sa(); uint16_t size = msb + 33; uint64_t mask = (1ULL << size) - 1; alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); SetResult(rt_reg(), alu_out); break; } case DEXTU: { // Interpret rd field as 5-bit msb of extract. uint16_t msb = rd_reg(); // Interpret sa field as 5-bit lsb of extract. uint16_t lsb = sa() + 32; uint16_t size = msb + 1; uint64_t mask = (1ULL << size) - 1; alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb); SetResult(rt_reg(), alu_out); break; } case BSHFL: { int32_t sa = instr_.SaFieldRaw() >> kSaShift; switch (sa) { case BITSWAP: { uint32_t input = static_cast<uint32_t>(rt()); uint32_t output = 0; uint8_t i_byte, o_byte; // Reverse the bit in byte for each individual byte for (int i = 0; i < 4; i++) { output = output >> 8; i_byte = input & 0xff; // Fast way to reverse bits in byte // Devised by Sean Anderson, July 13, 2001 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | (i_byte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16); output = output | (static_cast<uint32_t>(o_byte << 24)); input = input >> 8; } alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); break; } case SEB: { uint8_t input = static_cast<uint8_t>(rt()); uint32_t output = input; uint32_t mask = 0x00000080; // Extending sign if (mask & input) { output |= 0xFFFFFF00; } alu_out = static_cast<int32_t>(output); break; } case SEH: { uint16_t input = static_cast<uint16_t>(rt()); uint32_t output = input; uint32_t mask = 0x00008000; // Extending sign if (mask & input) { output |= 0xFFFF0000; } alu_out = static_cast<int32_t>(output); break; } case WSBH: { uint32_t input = static_cast<uint32_t>(rt()); uint64_t output = 0; uint32_t mask = 0xFF000000; for (int i = 0; i < 4; i++) { uint32_t tmp = mask & input; if (i % 2 == 0) { tmp = tmp >> 8; } else { tmp = tmp << 8; } output = output | tmp; mask = mask >> 8; } mask = 0x80000000; // Extending sign if (mask & output) { output |= 0xFFFFFFFF00000000; } alu_out = static_cast<int64_t>(output); break; } default: { const uint8_t bp2 = instr_.Bp2Value(); sa >>= kBp2Bits; switch (sa) { case ALIGN: { if (bp2 == 0) { alu_out = static_cast<int32_t>(rt()); } else { uint64_t rt_hi = rt() << (8 * bp2); uint64_t rs_lo = rs() >> (8 * (4 - bp2)); alu_out = static_cast<int32_t>(rt_hi | rs_lo); } break; } default: alu_out = 0x12345678; UNREACHABLE(); break; } break; } } SetResult(rd_reg(), alu_out); break; } case DBSHFL: { int32_t sa = instr_.SaFieldRaw() >> kSaShift; switch (sa) { case DBITSWAP: { switch (sa) { case DBITSWAP_SA: { // Mips64r6 uint64_t input = static_cast<uint64_t>(rt()); uint64_t output = 0; uint8_t i_byte, o_byte; // Reverse the bit in byte for each individual byte for (int i = 0; i < 8; i++) { output = output >> 8; i_byte = input & 0xff; // Fast way to reverse bits in byte // Devised by Sean Anderson, July 13, 2001 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | (i_byte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16); output = output | ((static_cast<uint64_t>(o_byte) << 56)); input = input >> 8; } alu_out = static_cast<int64_t>(output); break; } } break; } case DSBH: { uint64_t input = static_cast<uint64_t>(rt()); uint64_t output = 0; uint64_t mask = 0xFF00000000000000; for (int i = 0; i < 8; i++) { uint64_t tmp = mask & input; if (i % 2 == 0) tmp = tmp >> 8; else tmp = tmp << 8; output = output | tmp; mask = mask >> 8; } alu_out = static_cast<int64_t>(output); break; } case DSHD: { uint64_t input = static_cast<uint64_t>(rt()); uint64_t output = 0; uint64_t mask = 0xFFFF000000000000; for (int i = 0; i < 4; i++) { uint64_t tmp = mask & input; if (i == 0) tmp = tmp >> 48; else if (i == 1) tmp = tmp >> 16; else if (i == 2) tmp = tmp << 16; else tmp = tmp << 48; output = output | tmp; mask = mask >> 16; } alu_out = static_cast<int64_t>(output); break; } default: { const uint8_t bp3 = instr_.Bp3Value(); sa >>= kBp3Bits; switch (sa) { case DALIGN: { if (bp3 == 0) { alu_out = static_cast<int64_t>(rt()); } else { uint64_t rt_hi = rt() << (8 * bp3); uint64_t rs_lo = rs() >> (8 * (8 - bp3)); alu_out = static_cast<int64_t>(rt_hi | rs_lo); } break; } default: alu_out = 0x12345678; UNREACHABLE(); break; } break; } } SetResult(rd_reg(), alu_out); break; } default: UNREACHABLE(); } } void Simulator::DecodeTypeRegister() { // ---------- Execution. switch (instr_.OpcodeFieldRaw()) { case COP1: DecodeTypeRegisterCOP1(); break; case COP1X: DecodeTypeRegisterCOP1X(); break; case SPECIAL: DecodeTypeRegisterSPECIAL(); break; case SPECIAL2: DecodeTypeRegisterSPECIAL2(); break; case SPECIAL3: DecodeTypeRegisterSPECIAL3(); break; // Unimplemented opcodes raised an error in the configuration step before, // so we can use the default here to set the destination register in common // cases. default: UNREACHABLE(); } } // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc). void Simulator::DecodeTypeImmediate() { // Instruction fields. Opcode op = instr_.OpcodeFieldRaw(); int32_t rs_reg = instr_.RsValue(); int64_t rs = get_register(instr_.RsValue()); uint64_t rs_u = static_cast<uint64_t>(rs); int32_t rt_reg = instr_.RtValue(); // Destination register. int64_t rt = get_register(rt_reg); int16_t imm16 = instr_.Imm16Value(); int32_t imm18 = instr_.Imm18Value(); int32_t ft_reg = instr_.FtValue(); // Destination register. // Zero extended immediate. uint64_t oe_imm16 = 0xffff & imm16; // Sign extended immediate. int64_t se_imm16 = imm16; int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0); // Next pc. int64_t next_pc = bad_ra; // Used for conditional branch instructions. bool execute_branch_delay_instruction = false; // Used for arithmetic instructions. int64_t alu_out = 0; // Used for memory instructions. int64_t addr = 0x0; // Alignment for 32-bit integers used in LWL, LWR, etc. const int kInt32AlignmentMask = sizeof(uint32_t) - 1; // Alignment for 64-bit integers used in LDL, LDR, etc. const int kInt64AlignmentMask = sizeof(uint64_t) - 1; // Branch instructions common part. auto BranchAndLinkHelper = [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) { execute_branch_delay_instruction = true; int64_t current_pc = get_pc(); if (do_branch) { int16_t imm16 = instr_.Imm16Value(); next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; set_register(31, current_pc + 2 * Instruction::kInstrSize); } else { next_pc = current_pc + 2 * Instruction::kInstrSize; } }; auto BranchHelper = [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) { execute_branch_delay_instruction = true; int64_t current_pc = get_pc(); if (do_branch) { int16_t imm16 = instr_.Imm16Value(); next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; } else { next_pc = current_pc + 2 * Instruction::kInstrSize; } }; auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) { int64_t current_pc = get_pc(); CheckForbiddenSlot(current_pc); if (do_branch) { int32_t imm = instr_.ImmValue(bits); imm <<= 32 - bits; imm >>= 32 - bits; next_pc = current_pc + (imm << 2) + Instruction::kInstrSize; set_register(31, current_pc + Instruction::kInstrSize); } }; auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) { int64_t current_pc = get_pc(); CheckForbiddenSlot(current_pc); if (do_branch) { int32_t imm = instr_.ImmValue(bits); imm <<= 32 - bits; imm >>= 32 - bits; next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize; } }; switch (op) { // ------------- COP1. Coprocessor instructions. case COP1: switch (instr_.RsFieldRaw()) { case BC1: { // Branch on coprocessor condition. uint32_t cc = instr_.FBccValue(); uint32_t fcsr_cc = get_fcsr_condition_bit(cc); uint32_t cc_value = test_fcsr_bit(fcsr_cc); bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value; BranchHelper(do_branch); break; } case BC1EQZ: BranchHelper(!(get_fpu_register(ft_reg) & 0x1)); break; case BC1NEZ: BranchHelper(get_fpu_register(ft_reg) & 0x1); break; default: UNREACHABLE(); } break; // ------------- REGIMM class. case REGIMM: switch (instr_.RtFieldRaw()) { case BLTZ: BranchHelper(rs < 0); break; case BGEZ: BranchHelper(rs >= 0); break; case BLTZAL: BranchAndLinkHelper(rs < 0); break; case BGEZAL: BranchAndLinkHelper(rs >= 0); break; case DAHI: SetResult(rs_reg, rs + (se_imm16 << 32)); break; case DATI: SetResult(rs_reg, rs + (se_imm16 << 48)); break; default: UNREACHABLE(); } break; // case REGIMM. // ------------- Branch instructions. // When comparing to zero, the encoding of rt field is always 0, so we don't // need to replace rt with zero. case BEQ: BranchHelper(rs == rt); break; case BNE: BranchHelper(rs != rt); break; case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6) if (kArchVariant == kMips64r6) { if (rt_reg != 0) { if (rs_reg == 0) { // BLEZALC BranchAndLinkCompactHelper(rt <= 0, 16); } else { if (rs_reg == rt_reg) { // BGEZALC BranchAndLinkCompactHelper(rt >= 0, 16); } else { // BGEUC BranchCompactHelper( static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16); } } } else { // BLEZ BranchHelper(rs <= 0); } } else { // BLEZ BranchHelper(rs <= 0); } break; case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6) if (kArchVariant == kMips64r6) { if (rt_reg != 0) { if (rs_reg == 0) { // BGTZALC BranchAndLinkCompactHelper(rt > 0, 16); } else { if (rt_reg == rs_reg) { // BLTZALC BranchAndLinkCompactHelper(rt < 0, 16); } else { // BLTUC BranchCompactHelper( static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16); } } } else { // BGTZ BranchHelper(rs > 0); } } else { // BGTZ BranchHelper(rs > 0); } break; case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6) if (kArchVariant == kMips64r6) { if (rt_reg != 0) { if (rs_reg == 0) { // BLEZC BranchCompactHelper(rt <= 0, 16); } else { if (rs_reg == rt_reg) { // BGEZC BranchCompactHelper(rt >= 0, 16); } else { // BGEC/BLEC BranchCompactHelper(rs >= rt, 16); } } } } else { // BLEZL BranchAndLinkHelper(rs <= 0); } break; case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6) if (kArchVariant == kMips64r6) { if (rt_reg != 0) { if (rs_reg == 0) { // BGTZC BranchCompactHelper(rt > 0, 16); } else { if (rs_reg == rt_reg) { // BLTZC BranchCompactHelper(rt < 0, 16); } else { // BLTC/BGTC BranchCompactHelper(rs < rt, 16); } } } } else { // BGTZL BranchAndLinkHelper(rs > 0); } break; case POP66: // BEQZC, JIC if (rs_reg != 0) { // BEQZC BranchCompactHelper(rs == 0, 21); } else { // JIC next_pc = rt + imm16; } break; case POP76: // BNEZC, JIALC if (rs_reg != 0) { // BNEZC BranchCompactHelper(rs != 0, 21); } else { // JIALC int64_t current_pc = get_pc(); set_register(31, current_pc + Instruction::kInstrSize); next_pc = rt + imm16; } break; case BC: BranchCompactHelper(true, 26); break; case BALC: BranchAndLinkCompactHelper(true, 26); break; case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6) if (kArchVariant == kMips64r6) { if (rs_reg >= rt_reg) { // BOVC bool condition = !is_int32(rs) || !is_int32(rt) || !is_int32(rs + rt); BranchCompactHelper(condition, 16); } else { if (rs_reg == 0) { // BEQZALC BranchAndLinkCompactHelper(rt == 0, 16); } else { // BEQC BranchCompactHelper(rt == rs, 16); } } } else { // ADDI if (HaveSameSign(rs, se_imm16)) { if (rs > 0) { if (rs <= Registers::kMaxValue - se_imm16) { SignalException(kIntegerOverflow); } } else if (rs < 0) { if (rs >= Registers::kMinValue - se_imm16) { SignalException(kIntegerUnderflow); } } } SetResult(rt_reg, rs + se_imm16); } break; case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6) if (kArchVariant == kMips64r6) { if (rs_reg >= rt_reg) { // BNVC bool condition = is_int32(rs) && is_int32(rt) && is_int32(rs + rt); BranchCompactHelper(condition, 16); } else { if (rs_reg == 0) { // BNEZALC BranchAndLinkCompactHelper(rt != 0, 16); } else { // BNEC BranchCompactHelper(rt != rs, 16); } } } break; // ------------- Arithmetic instructions. case ADDIU: { DCHECK(is_int32(rs)); int32_t alu32_out = static_cast<int32_t>(rs + se_imm16); // Sign-extend result of 32bit operation into 64bit register. SetResult(rt_reg, static_cast<int64_t>(alu32_out)); break; } case DADDIU: SetResult(rt_reg, rs + se_imm16); break; case SLTI: SetResult(rt_reg, rs < se_imm16 ? 1 : 0); break; case SLTIU: SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0); break; case ANDI: SetResult(rt_reg, rs & oe_imm16); break; case ORI: SetResult(rt_reg, rs | oe_imm16); break; case XORI: SetResult(rt_reg, rs ^ oe_imm16); break; case LUI: if (rs_reg != 0) { // AUI instruction. DCHECK(kArchVariant == kMips64r6); int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16)); SetResult(rt_reg, static_cast<int64_t>(alu32_out)); } else { // LUI instruction. int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16); // Sign-extend result of 32bit operation into 64bit register. SetResult(rt_reg, static_cast<int64_t>(alu32_out)); } break; case DAUI: DCHECK(kArchVariant == kMips64r6); DCHECK(rs_reg != 0); SetResult(rt_reg, rs + (se_imm16 << 16)); break; // ------------- Memory instructions. case LB: set_register(rt_reg, ReadB(rs + se_imm16)); break; case LH: set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr())); break; case LWL: { // al_offset is offset of the effective address within an aligned word. uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; uint8_t byte_shift = kInt32AlignmentMask - al_offset; uint32_t mask = (1 << byte_shift * 8) - 1; addr = rs + se_imm16 - al_offset; int32_t val = ReadW(addr, instr_.instr()); val <<= byte_shift * 8; val |= rt & mask; set_register(rt_reg, static_cast<int64_t>(val)); break; } case LW: set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr())); break; case LWU: set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr())); break; case LD: set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr())); break; case LBU: set_register(rt_reg, ReadBU(rs + se_imm16)); break; case LHU: set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr())); break; case LWR: { // al_offset is offset of the effective address within an aligned word. uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; uint8_t byte_shift = kInt32AlignmentMask - al_offset; uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; addr = rs + se_imm16 - al_offset; alu_out = ReadW(addr, instr_.instr()); alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; alu_out |= rt & mask; set_register(rt_reg, alu_out); break; } case LDL: { // al_offset is offset of the effective address within an aligned word. uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; uint8_t byte_shift = kInt64AlignmentMask - al_offset; uint64_t mask = (1UL << byte_shift * 8) - 1; addr = rs + se_imm16 - al_offset; alu_out = Read2W(addr, instr_.instr()); alu_out <<= byte_shift * 8; alu_out |= rt & mask; set_register(rt_reg, alu_out); break; } case LDR: { // al_offset is offset of the effective address within an aligned word. uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; uint8_t byte_shift = kInt64AlignmentMask - al_offset; uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL; addr = rs + se_imm16 - al_offset; alu_out = Read2W(addr, instr_.instr()); alu_out = alu_out >> al_offset * 8; alu_out |= rt & mask; set_register(rt_reg, alu_out); break; } case SB: WriteB(rs + se_imm16, static_cast<int8_t>(rt)); break; case SH: WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr()); break; case SWL: { uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; uint8_t byte_shift = kInt32AlignmentMask - al_offset; uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; addr = rs + se_imm16 - al_offset; uint64_t mem_value = ReadW(addr, instr_.instr()) & mask; mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr()); break; } case SW: WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr_.instr()); break; case SD: Write2W(rs + se_imm16, rt, instr_.instr()); break; case SWR: { uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask; uint32_t mask = (1 << al_offset * 8) - 1; addr = rs + se_imm16 - al_offset; uint64_t mem_value = ReadW(addr, instr_.instr()); mem_value = (rt << al_offset * 8) | (mem_value & mask); WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr()); break; } case SDL: { uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; uint8_t byte_shift = kInt64AlignmentMask - al_offset; uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0; addr = rs + se_imm16 - al_offset; uint64_t mem_value = Read2W(addr, instr_.instr()) & mask; mem_value |= rt >> byte_shift * 8; Write2W(addr, mem_value, instr_.instr()); break; } case SDR: { uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask; uint64_t mask = (1UL << al_offset * 8) - 1; addr = rs + se_imm16 - al_offset; uint64_t mem_value = Read2W(addr, instr_.instr()); mem_value = (rt << al_offset * 8) | (mem_value & mask); Write2W(addr, mem_value, instr_.instr()); break; } case LWC1: set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits. set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr(), FLOAT_DOUBLE)); break; case LDC1: set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr())); TraceMemRd(addr, get_fpu_register(ft_reg), DOUBLE); break; case SWC1: { int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg)); WriteW(rs + se_imm16, alu_out_32, instr_.instr()); break; } case SDC1: WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr()); TraceMemWr(rs + se_imm16, get_fpu_register(ft_reg), DWORD); break; // ------------- PC-Relative instructions. case PCREL: { // rt field: checking 5-bits. int32_t imm21 = instr_.Imm21Value(); int64_t current_pc = get_pc(); uint8_t rt = (imm21 >> kImm16Bits); switch (rt) { case ALUIPC: addr = current_pc + (se_imm16 << 16); alu_out = static_cast<int64_t>(~0x0FFFF) & addr; break; case AUIPC: alu_out = current_pc + (se_imm16 << 16); break; default: { int32_t imm19 = instr_.Imm19Value(); // rt field: checking the most significant 3-bits. rt = (imm21 >> kImm18Bits); switch (rt) { case LDPC: addr = (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3); alu_out = Read2W(addr, instr_.instr()); break; default: { // rt field: checking the most significant 2-bits. rt = (imm21 >> kImm19Bits); switch (rt) { case LWUPC: { // Set sign. imm19 <<= (kOpcodeBits + kRsBits + 2); imm19 >>= (kOpcodeBits + kRsBits + 2); addr = current_pc + (imm19 << 2); uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); alu_out = *ptr; break; } case LWPC: { // Set sign. imm19 <<= (kOpcodeBits + kRsBits + 2); imm19 >>= (kOpcodeBits + kRsBits + 2); addr = current_pc + (imm19 << 2); int32_t* ptr = reinterpret_cast<int32_t*>(addr); alu_out = *ptr; break; } case ADDIUPC: { int64_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0); alu_out = current_pc + (se_imm19 << 2); break; } default: UNREACHABLE(); break; } break; } } break; } } SetResult(rs_reg, alu_out); break; } default: UNREACHABLE(); } if (execute_branch_delay_instruction) { // Execute branch delay slot // We don't check for end_sim_pc. First it should not be met as the current // pc is valid. Secondly a jump should always execute its branch delay slot. Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); } // If needed update pc after the branch delay execution. if (next_pc != bad_ra) { set_pc(next_pc); } } // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). void Simulator::DecodeTypeJump() { SimInstruction simInstr = instr_; // Get current pc. int64_t current_pc = get_pc(); // Get unchanged bits of pc. int64_t pc_high_bits = current_pc & 0xfffffffff0000000; // Next pc. int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2); // Execute branch delay slot. // We don't check for end_sim_pc. First it should not be met as the current pc // is valid. Secondly a jump should always execute its branch delay slot. Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); // Update pc and ra if necessary. // Do this after the branch delay execution. if (simInstr.IsLinkingInstruction()) { set_register(31, current_pc + 2 * Instruction::kInstrSize); } set_pc(next_pc); pc_modified_ = true; } // Executes the current instruction. void Simulator::InstructionDecode(Instruction* instr) { if (v8::internal::FLAG_check_icache) { CheckICache(isolate_->simulator_i_cache(), instr); } pc_modified_ = false; v8::internal::EmbeddedVector<char, 256> buffer; if (::v8::internal::FLAG_trace_sim) { SNPrintF(trace_buf_, " "); disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); } instr_ = instr; switch (instr_.InstructionType()) { case Instruction::kRegisterType: DecodeTypeRegister(); break; case Instruction::kImmediateType: DecodeTypeImmediate(); break; case Instruction::kJumpType: DecodeTypeJump(); break; default: UNSUPPORTED(); } if (::v8::internal::FLAG_trace_sim) { PrintF(" 0x%08" PRIxPTR " %-44s %s\n", reinterpret_cast<intptr_t>(instr), buffer.start(), trace_buf_.start()); } if (!pc_modified_) { set_register(pc, reinterpret_cast<int64_t>(instr) + Instruction::kInstrSize); } } void Simulator::Execute() { // Get the PC to simulate. Cannot use the accessor here as we need the // raw PC value and not the one used as input to arithmetic instructions. int64_t program_counter = get_pc(); if (::v8::internal::FLAG_stop_sim_at == 0) { // Fast version of the dispatch loop without checking whether the simulator // should be stopping at a particular executed instruction. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast<Instruction*>(program_counter); icount_++; InstructionDecode(instr); program_counter = get_pc(); } } else { // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when // we reach the particular instuction count. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast<Instruction*>(program_counter); icount_++; if (icount_ == static_cast<int64_t>(::v8::internal::FLAG_stop_sim_at)) { MipsDebugger dbg(this); dbg.Debug(); } else { InstructionDecode(instr); } program_counter = get_pc(); } } } void Simulator::CallInternal(byte* entry) { // Adjust JS-based stack limit to C-based stack limit. isolate_->stack_guard()->AdjustStackLimitForSimulator(); // Prepare to execute the code at entry. set_register(pc, reinterpret_cast<int64_t>(entry)); // Put down marker for end of simulation. The simulator will stop simulation // when the PC reaches this value. By saving the "end simulation" value into // the LR the simulation stops when returning to this call point. set_register(ra, end_sim_pc); // Remember the values of callee-saved registers. // The code below assumes that r9 is not used as sb (static base) in // simulator code and therefore is regarded as a callee-saved register. int64_t s0_val = get_register(s0); int64_t s1_val = get_register(s1); int64_t s2_val = get_register(s2); int64_t s3_val = get_register(s3); int64_t s4_val = get_register(s4); int64_t s5_val = get_register(s5); int64_t s6_val = get_register(s6); int64_t s7_val = get_register(s7); int64_t gp_val = get_register(gp); int64_t sp_val = get_register(sp); int64_t fp_val = get_register(fp); // Set up the callee-saved registers with a known value. To be able to check // that they are preserved properly across JS execution. int64_t callee_saved_value = icount_; set_register(s0, callee_saved_value); set_register(s1, callee_saved_value); set_register(s2, callee_saved_value); set_register(s3, callee_saved_value); set_register(s4, callee_saved_value); set_register(s5, callee_saved_value); set_register(s6, callee_saved_value); set_register(s7, callee_saved_value); set_register(gp, callee_saved_value); set_register(fp, callee_saved_value); // Start the simulation. Execute(); // Check that the callee-saved registers have been preserved. CHECK_EQ(callee_saved_value, get_register(s0)); CHECK_EQ(callee_saved_value, get_register(s1)); CHECK_EQ(callee_saved_value, get_register(s2)); CHECK_EQ(callee_saved_value, get_register(s3)); CHECK_EQ(callee_saved_value, get_register(s4)); CHECK_EQ(callee_saved_value, get_register(s5)); CHECK_EQ(callee_saved_value, get_register(s6)); CHECK_EQ(callee_saved_value, get_register(s7)); CHECK_EQ(callee_saved_value, get_register(gp)); CHECK_EQ(callee_saved_value, get_register(fp)); // Restore callee-saved registers with the original value. set_register(s0, s0_val); set_register(s1, s1_val); set_register(s2, s2_val); set_register(s3, s3_val); set_register(s4, s4_val); set_register(s5, s5_val); set_register(s6, s6_val); set_register(s7, s7_val); set_register(gp, gp_val); set_register(sp, sp_val); set_register(fp, fp_val); } int64_t Simulator::Call(byte* entry, int argument_count, ...) { const int kRegisterPassedArguments = 8; va_list parameters; va_start(parameters, argument_count); // Set up arguments. // First four arguments passed in registers in both ABI's. DCHECK(argument_count >= 4); set_register(a0, va_arg(parameters, int64_t)); set_register(a1, va_arg(parameters, int64_t)); set_register(a2, va_arg(parameters, int64_t)); set_register(a3, va_arg(parameters, int64_t)); // Up to eight arguments passed in registers in N64 ABI. // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this. if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t)); if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t)); if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t)); if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t)); // Remaining arguments passed on stack. int64_t original_stack = get_register(sp); // Compute position of stack on entry to generated code. int stack_args_count = (argument_count > kRegisterPassedArguments) ? (argument_count - kRegisterPassedArguments) : 0; int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize; int64_t entry_stack = original_stack - stack_args_size; if (base::OS::ActivationFrameAlignment() != 0) { entry_stack &= -base::OS::ActivationFrameAlignment(); } // Store remaining arguments on stack, from low to high memory. intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); for (int i = kRegisterPassedArguments; i < argument_count; i++) { int stack_index = i - kRegisterPassedArguments + kCArgSlotCount; stack_argument[stack_index] = va_arg(parameters, int64_t); } va_end(parameters); set_register(sp, entry_stack); CallInternal(entry); // Pop stack passed arguments. CHECK_EQ(entry_stack, get_register(sp)); set_register(sp, original_stack); int64_t result = get_register(v0); return result; } double Simulator::CallFP(byte* entry, double d0, double d1) { if (!IsMipsSoftFloatABI) { const FPURegister fparg2 = f13; set_fpu_register_double(f12, d0); set_fpu_register_double(fparg2, d1); } else { int buffer[2]; DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0)); memcpy(buffer, &d0, sizeof(d0)); set_dw_register(a0, buffer); memcpy(buffer, &d1, sizeof(d1)); set_dw_register(a2, buffer); } CallInternal(entry); if (!IsMipsSoftFloatABI) { return get_fpu_register_double(f0); } else { return get_double_from_register_pair(v0); } } uintptr_t Simulator::PushAddress(uintptr_t address) { int64_t new_sp = get_register(sp) - sizeof(uintptr_t); uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); *stack_slot = address; set_register(sp, new_sp); return new_sp; } uintptr_t Simulator::PopAddress() { int64_t current_sp = get_register(sp); uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); uintptr_t address = *stack_slot; set_register(sp, current_sp + sizeof(uintptr_t)); return address; } #undef UNSUPPORTED } // namespace internal } // namespace v8 #endif // USE_SIMULATOR #endif // V8_TARGET_ARCH_MIPS64