// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS #include "src/code-stubs.h" #include "src/api-arguments.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/mips/code-stubs-mips.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { __ sll(t9, a0, kPointerSizeLog2); __ Addu(t9, sp, t9); __ sw(a1, MemOperand(t9, 0)); __ Push(a1); __ Push(a2); __ Addu(a0, a0, Operand(3)); __ TailCallRuntime(Runtime::kNewArray); } static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cc); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* rhs_not_nan, Label* slow, bool strict); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetRegisterParameterCount(); { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); DCHECK(param_count == 0 || a0.is(descriptor.GetRegisterParameter(param_count - 1))); // Push arguments, adjust sp. __ Subu(sp, sp, Operand(param_count * kPointerSize)); for (int i = 0; i < param_count; ++i) { // Store argument to stack. __ sw(descriptor.GetRegisterParameter(i), MemOperand(sp, (param_count - 1 - i) * kPointerSize)); } __ CallExternalReference(miss, param_count); } __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done; Register input_reg = source(); Register result_reg = destination(); int double_offset = offset(); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += 3 * kPointerSize; Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); Register scratch2 = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); Register scratch3 = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2); DoubleRegister double_scratch = kLithiumScratchDouble; __ Push(scratch, scratch2, scratch3); if (!skip_fastpath()) { // Load double input. __ ldc1(double_scratch, MemOperand(input_reg, double_offset)); // Clear cumulative exception flags and save the FCSR. __ cfc1(scratch2, FCSR); __ ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. __ Trunc_w_d(double_scratch, double_scratch); // Move the converted value into the result register. __ mfc1(scratch3, double_scratch); // Retrieve and restore the FCSR. __ cfc1(scratch, FCSR); __ ctc1(scratch2, FCSR); // Check for overflow and NaNs. __ And( scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions then set result_reg and we are done. Label error; __ Branch(&error, ne, scratch, Operand(zero_reg)); __ Move(result_reg, scratch3); __ Branch(&done); __ bind(&error); } // Load the double value and perform a manual truncation. Register input_high = scratch2; Register input_low = scratch3; __ lw(input_low, MemOperand(input_reg, double_offset + Register::kMantissaOffset)); __ lw(input_high, MemOperand(input_reg, double_offset + Register::kExponentOffset)); Label normal_exponent, restore_sign; // Extract the biased exponent in result. __ Ext(result_reg, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Check for Infinity and NaNs, which should return 0. __ Subu(scratch, result_reg, HeapNumber::kExponentMask); __ Movz(result_reg, zero_reg, scratch); __ Branch(&done, eq, scratch, Operand(zero_reg)); // Express exponent as delta to (number of mantissa bits + 31). __ Subu(result_reg, result_reg, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); // If the delta is strictly positive, all bits would be shifted away, // which means that we can return 0. __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); __ mov(result_reg, zero_reg); __ Branch(&done); __ bind(&normal_exponent); const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; // Calculate shift. __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); // Save the sign. Register sign = result_reg; result_reg = no_reg; __ And(sign, input_high, Operand(HeapNumber::kSignMask)); // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need // to check for this specific case. Label high_shift_needed, high_shift_done; __ Branch(&high_shift_needed, lt, scratch, Operand(32)); __ mov(input_high, zero_reg); __ Branch(&high_shift_done); __ bind(&high_shift_needed); // Set the implicit 1 before the mantissa part in input_high. __ Or(input_high, input_high, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); // Shift the mantissa bits to the correct position. // We don't need to clear non-mantissa bits as they will be shifted away. // If they weren't, it would mean that the answer is in the 32bit range. __ sllv(input_high, input_high, scratch); __ bind(&high_shift_done); // Replace the shifted bits with bits from the lower mantissa word. Label pos_shift, shift_done; __ li(at, 32); __ subu(scratch, at, scratch); __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); // Negate scratch. __ Subu(scratch, zero_reg, scratch); __ sllv(input_low, input_low, scratch); __ Branch(&shift_done); __ bind(&pos_shift); __ srlv(input_low, input_low, scratch); __ bind(&shift_done); __ Or(input_high, input_high, Operand(input_low)); // Restore sign if necessary. __ mov(scratch, sign); result_reg = sign; sign = no_reg; __ Subu(result_reg, zero_reg, input_high); __ Movz(result_reg, input_high, scratch); __ bind(&done); __ Pop(scratch, scratch2, scratch3); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cc) { Label not_identical; Label heap_number, return_equal; Register exp_mask_reg = t5; __ Branch(¬_identical, ne, a0, Operand(a1)); __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. __ GetObjectType(a0, t4, t4); if (cc == less || cc == greater) { // Call runtime on identical JSObjects. __ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE)); // Call runtime on identical symbols since we need to throw a TypeError. __ Branch(slow, eq, t4, Operand(SYMBOL_TYPE)); } else { __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE)); // Comparing JS objects with <=, >= is complicated. if (cc != eq) { __ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE)); // Call runtime on identical symbols since we need to throw a TypeError. __ Branch(slow, eq, t4, Operand(SYMBOL_TYPE)); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cc == less_equal || cc == greater_equal) { __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE)); __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); __ Branch(&return_equal, ne, a0, Operand(t2)); DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == le) { // undefined <= undefined should fail. __ li(v0, Operand(GREATER)); } else { // undefined >= undefined should fail. __ li(v0, Operand(LESS)); } } } } __ bind(&return_equal); DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == less) { __ li(v0, Operand(GREATER)); // Things aren't less than themselves. } else if (cc == greater) { __ li(v0, Operand(LESS)); // Things aren't greater than themselves. } else { __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves. } // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cc != lt && cc != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. __ And(t3, t2, Operand(exp_mask_reg)); // If all bits not set (ne cond), then not a NaN, objects are equal. __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg)); // Shift out flag and all exponent bits, retaining only mantissa. __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord); // Or with all low-bits of mantissa. __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); __ Or(v0, t3, Operand(t2)); // For equal we already have the right value in v0: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load v0 with the failing // value if it's a NaN. if (cc != eq) { // All-zero means Infinity means equal. __ Ret(eq, v0, Operand(zero_reg)); DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == le) { __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. } else { __ li(v0, Operand(LESS)); // NaN >= NaN should fail. } } } // No fall through here. __ bind(¬_identical); } static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* slow, bool strict) { DCHECK((lhs.is(a0) && rhs.is(a1)) || (lhs.is(a1) && rhs.is(a0))); Label lhs_is_smi; __ JumpIfSmi(lhs, &lhs_is_smi); // Rhs is a Smi. // Check whether the non-smi is a heap number. __ GetObjectType(lhs, t4, t4); if (strict) { // If lhs was not a number and rhs was a Smi then strict equality cannot // succeed. Return non-equal (lhs is already not zero). __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE)); __ mov(v0, lhs); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); } // Rhs is a smi, lhs is a number. // Convert smi rhs to double. __ sra(at, rhs, kSmiTagSize); __ mtc1(at, f14); __ cvt_d_w(f14, f14); __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); // We now have both loaded as doubles. __ jmp(both_loaded_as_doubles); __ bind(&lhs_is_smi); // Lhs is a Smi. Check whether the non-smi is a heap number. __ GetObjectType(rhs, t4, t4); if (strict) { // If lhs was not a number and rhs was a Smi then strict equality cannot // succeed. Return non-equal. __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE)); __ li(v0, Operand(1)); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); } // Lhs is a smi, rhs is a number. // Convert smi lhs to double. __ sra(at, lhs, kSmiTagSize); __ mtc1(at, f12); __ cvt_d_w(f12, f12); __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); // Fall through to both_loaded_as_doubles. } static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Label first_non_object; // Get the type of the first operand into a2 and compare it with // FIRST_JS_RECEIVER_TYPE. __ GetObjectType(lhs, a2, a2); __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE)); // Return non-zero. Label return_not_equal; __ bind(&return_not_equal); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(1)); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE)); __ GetObjectType(rhs, a3, a3); __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE)); // Check for oddballs: true, false, null, undefined. __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE)); // Now that we have the types we might as well check for // internalized-internalized. STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ Or(a2, a2, Operand(a3)); __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ Branch(&return_not_equal, eq, at, Operand(zero_reg)); } static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { __ GetObjectType(lhs, a3, a2); __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset)); // If first was a heap number & second wasn't, go to slow case. __ Branch(slow, ne, a3, Operand(a2)); // Both are heap numbers. Load them up then jump to the code we have // for that. __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ jmp(both_loaded_as_doubles); } // Fast negative check for internalized-to-internalized equality. static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* runtime_call) { DCHECK((lhs.is(a0) && rhs.is(a1)) || (lhs.is(a1) && rhs.is(a0))); // a2 is object type of rhs. Label object_test, return_equal, return_unequal, undetectable; STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ And(at, a2, Operand(kIsNotStringMask)); __ Branch(&object_test, ne, at, Operand(zero_reg)); __ And(at, a2, Operand(kIsNotInternalizedMask)); __ Branch(possible_strings, ne, at, Operand(zero_reg)); __ GetObjectType(rhs, a3, a3); __ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE)); __ And(at, a3, Operand(kIsNotInternalizedMask)); __ Branch(possible_strings, ne, at, Operand(zero_reg)); // Both are internalized. We already checked they weren't the same pointer so // they are not equal. Return non-equal by returning the non-zero object // pointer in v0. __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // In delay slot. __ bind(&object_test); __ lw(a2, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ lw(a3, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset)); __ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset)); __ And(at, t0, Operand(1 << Map::kIsUndetectable)); __ Branch(&undetectable, ne, at, Operand(zero_reg)); __ And(at, t1, Operand(1 << Map::kIsUndetectable)); __ Branch(&return_unequal, ne, at, Operand(zero_reg)); __ GetInstanceType(a2, a2); __ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE)); __ GetInstanceType(a3, a3); __ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE)); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in v0. __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // In delay slot. __ bind(&undetectable); __ And(at, t1, Operand(1 << Map::kIsUndetectable)); __ Branch(&return_unequal, eq, at, Operand(zero_reg)); // If both sides are JSReceivers, then the result is false according to // the HTML specification, which says that only comparisons with null or // undefined are affected by special casing for document.all. __ GetInstanceType(a2, a2); __ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE)); __ GetInstanceType(a3, a3); __ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE)); __ bind(&return_equal); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(EQUAL)); // In delay slot. } static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about internalized/string here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry a1 and a2 are the values to be compared. // On exit a0 is 0, positive or negative to indicate the result of // the comparison. void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = a1; Register rhs = a0; Condition cc = GetCondition(); Label miss; CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss); CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles; Label not_two_smis, smi_done; __ Or(a2, a1, a0); __ JumpIfNotSmi(a2, ¬_two_smis); __ sra(a1, a1, 1); __ sra(a0, a0, 1); __ Ret(USE_DELAY_SLOT); __ subu(v0, a1, a0); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero); __ And(t2, lhs, Operand(rhs)); __ JumpIfNotSmi(t2, ¬_smis, t0); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to rhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison and the numbers have been loaded into f12 and f14 as doubles, // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU. EmitSmiNonsmiComparison(masm, lhs, rhs, &both_loaded_as_doubles, &slow, strict()); __ bind(&both_loaded_as_doubles); // f12, f14 are the double representations of the left hand side // and the right hand side if we have FPU. Otherwise a2, a3 represent // left hand side and a0, a1 represent right hand side. Label nan; __ li(t0, Operand(LESS)); __ li(t1, Operand(GREATER)); __ li(t2, Operand(EQUAL)); // Check if either rhs or lhs is NaN. __ BranchF(NULL, &nan, eq, f12, f14); // Check if LESS condition is satisfied. If true, move conditionally // result to v0. if (!IsMipsArchVariant(kMips32r6)) { __ c(OLT, D, f12, f14); __ Movt(v0, t0); // Use previous check to store conditionally to v0 oposite condition // (GREATER). If rhs is equal to lhs, this will be corrected in next // check. __ Movf(v0, t1); // Check if EQUAL condition is satisfied. If true, move conditionally // result to v0. __ c(EQ, D, f12, f14); __ Movt(v0, t2); } else { Label skip; __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14); __ mov(v0, t0); // Return LESS as result. __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14); __ mov(v0, t2); // Return EQUAL as result. __ mov(v0, t1); // Return GREATER as result. __ bind(&skip); } __ Ret(); __ bind(&nan); // NaN comparisons always fail. // Load whatever we need in v0 to make the comparison fail. DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == lt || cc == le) { __ li(v0, Operand(GREATER)); } else { __ li(v0, Operand(LESS)); } __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in lhs_ and rhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles and jump to the code that handles // that case. If the inputs are not doubles then jumps to // check_for_internalized_strings. // In this case a2 will contain the type of lhs_. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_internalized_strings, &flat_string_check); __ bind(&check_for_internalized_strings); if (cc == eq && !strict()) { // Returns an answer for two internalized strings or two // detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that a2 is the type of lhs_ on entry. EmitCheckForInternalizedStringsOrObjects( masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential one-byte strings, // and inline if that is the case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2, a3); if (cc == eq) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, t0); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, t0, t1); } // Never falls through to here. __ bind(&slow); if (cc == eq) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(cp); __ Call(strict() ? isolate()->builtins()->StrictEqual() : isolate()->builtins()->Equal(), RelocInfo::CODE_TARGET); __ Pop(cp); } // Turn true into 0 and false into some non-zero value. STATIC_ASSERT(EQUAL == 0); __ LoadRoot(a0, Heap::kTrueValueRootIndex); __ Ret(USE_DELAY_SLOT); __ subu(v0, v0, a0); // In delay slot. } else { // Prepare for call to builtin. Push object pointers, a0 (lhs) first, // a1 (rhs) second. __ Push(lhs, rhs); int ncr; // NaN compare result. if (cc == lt || cc == le) { ncr = GREATER; } else { DCHECK(cc == gt || cc == ge); // Remaining cases. ncr = LESS; } __ li(a0, Operand(Smi::FromInt(ncr))); __ push(a0); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void StoreRegistersStateStub::Generate(MacroAssembler* masm) { __ mov(t9, ra); __ pop(ra); __ PushSafepointRegisters(); __ Jump(t9); } void RestoreRegistersStateStub::Generate(MacroAssembler* masm) { __ mov(t9, ra); __ pop(ra); __ PopSafepointRegisters(); __ Jump(t9); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ MultiPush(kJSCallerSaved | ra.bit()); if (save_doubles()) { __ MultiPushFPU(kCallerSavedFPU); } const int argument_count = 1; const int fp_argument_count = 0; const Register scratch = a1; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ li(a0, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { __ MultiPopFPU(kCallerSavedFPU); } __ MultiPop(kJSCallerSaved | ra.bit()); __ Ret(); } void MathPowStub::Generate(MacroAssembler* masm) { const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(a2)); const DoubleRegister double_base = f2; const DoubleRegister double_exponent = f4; const DoubleRegister double_result = f0; const DoubleRegister double_scratch = f6; const FPURegister single_scratch = f8; const Register scratch = t5; const Register scratch2 = t3; Label call_runtime, done, int_exponent; if (exponent_type() == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ ldc1(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { Label int_exponent_convert; // Detect integer exponents stored as double. __ EmitFPUTruncate(kRoundToMinusInf, scratch, double_exponent, at, double_scratch, scratch2, kCheckForInexactConversion); // scratch2 == 0 means there was no conversion error. __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg)); __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch2); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(ra); __ MovFromFloatResult(double_result); __ jmp(&done); __ bind(&int_exponent_convert); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type() == INTEGER) { __ mov(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); } __ mov_d(double_scratch, double_base); // Back up base. __ Move(double_result, 1.0); // Get absolute value of exponent. Label positive_exponent, bail_out; __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg)); __ Subu(scratch, zero_reg, scratch); // Check when Subu overflows and we get negative result // (happens only when input is MIN_INT). __ Branch(&bail_out, gt, zero_reg, Operand(scratch)); __ bind(&positive_exponent); __ Assert(ge, kUnexpectedNegativeValue, scratch, Operand(zero_reg)); Label while_true, no_carry, loop_end; __ bind(&while_true); __ And(scratch2, scratch, 1); __ Branch(&no_carry, eq, scratch2, Operand(zero_reg)); __ mul_d(double_result, double_result, double_scratch); __ bind(&no_carry); __ sra(scratch, scratch, 1); __ Branch(&loop_end, eq, scratch, Operand(zero_reg)); __ mul_d(double_scratch, double_scratch, double_scratch); __ Branch(&while_true); __ bind(&loop_end); __ Branch(&done, ge, exponent, Operand(zero_reg)); __ Move(double_scratch, 1.0); __ div_d(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero); // double_exponent may not contain the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ bind(&bail_out); __ mtc1(exponent, single_scratch); __ cvt_d_w(double_exponent, single_scratch); // Returning or bailing out. __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(ra); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } bool CEntryStub::NeedsImmovableCode() { return true; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); CreateWeakCellStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); StoreRegistersStateStub::GenerateAheadOfTime(isolate); RestoreRegistersStateStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); } void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { StoreRegistersStateStub stub(isolate); stub.GetCode(); } void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { RestoreRegistersStateStub stub(isolate); stub.GetCode(); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. SaveFPRegsMode mode = kSaveFPRegs; CEntryStub(isolate, 1, mode).GetCode(); StoreBufferOverflowStub(isolate, mode).GetCode(); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function // a0: number of arguments including receiver // a1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_in_register(): // a2: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); if (argv_in_register()) { // Move argv into the correct register. __ mov(s1, a2); } else { // Compute the argv pointer in a callee-saved register. __ Lsa(s1, sp, a0, kPointerSizeLog2); __ Subu(s1, s1, kPointerSize); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame(save_doubles(), 0, is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // s0: number of arguments including receiver (C callee-saved) // s1: pointer to first argument (C callee-saved) // s2: pointer to builtin function (C callee-saved) // Prepare arguments for C routine. // a0 = argc __ mov(s0, a0); __ mov(s2, a1); // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We // also need to reserve the 4 argument slots on the stack. __ AssertStackIsAligned(); int frame_alignment = MacroAssembler::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; int result_stack_size; if (result_size() <= 2) { // a0 = argc, a1 = argv, a2 = isolate __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); __ mov(a1, s1); result_stack_size = 0; } else { DCHECK_EQ(3, result_size()); // Allocate additional space for the result. result_stack_size = ((result_size() * kPointerSize) + frame_alignment_mask) & ~frame_alignment_mask; __ Subu(sp, sp, Operand(result_stack_size)); // a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate. __ li(a3, Operand(ExternalReference::isolate_address(isolate()))); __ mov(a2, s1); __ mov(a1, a0); __ mov(a0, sp); } // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); int kNumInstructionsToJump = 4; Label find_ra; // Adjust the value in ra to point to the correct return location, 2nd // instruction past the real call into C code (the jalr(t9)), and push it. // This is the return address of the exit frame. if (kArchVariant >= kMips32r6) { __ addiupc(ra, kNumInstructionsToJump + 1); } else { // This branch-and-link sequence is needed to find the current PC on mips // before r6, saved to the ra register. __ bal(&find_ra); // bal exposes branch delay slot. __ Addu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize); } __ bind(&find_ra); // This spot was reserved in EnterExitFrame. __ sw(ra, MemOperand(sp, result_stack_size)); // Stack space reservation moved to the branch delay slot below. // Stack is still aligned. // Call the C routine. __ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. __ jalr(t9); // Set up sp in the delay slot. __ addiu(sp, sp, -kCArgsSlotsSize); // Make sure the stored 'ra' points to this position. DCHECK_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); } if (result_size() > 2) { DCHECK_EQ(3, result_size()); // Read result values stored on stack. __ lw(a0, MemOperand(v0, 2 * kPointerSize)); __ lw(v1, MemOperand(v0, 1 * kPointerSize)); __ lw(v0, MemOperand(v0, 0 * kPointerSize)); } // Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ LoadRoot(t0, Heap::kExceptionRootIndex); __ Branch(&exception_returned, eq, t0, Operand(v0)); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); __ li(a2, Operand(pending_exception_address)); __ lw(a2, MemOperand(a2)); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ Branch(&okay, eq, t0, Operand(a2)); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // v0:v1: result // sp: stack pointer // fp: frame pointer Register argc; if (argv_in_register()) { // We don't want to pop arguments so set argc to no_reg. argc = no_reg; } else { // s0: still holds argc (callee-saved). argc = s0; } __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address( Isolate::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_code_address( Isolate::kPendingHandlerCodeAddress, isolate()); ExternalReference pending_handler_offset_address( Isolate::kPendingHandlerOffsetAddress, isolate()); ExternalReference pending_handler_fp_address( Isolate::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( Isolate::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set v0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, a0); __ mov(a0, zero_reg); __ mov(a1, zero_reg); __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ li(cp, Operand(pending_handler_context_address)); __ lw(cp, MemOperand(cp)); __ li(sp, Operand(pending_handler_sp_address)); __ lw(sp, MemOperand(sp)); __ li(fp, Operand(pending_handler_fp_address)); __ lw(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label zero; __ Branch(&zero, eq, cp, Operand(zero_reg)); __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&zero); // Compute the handler entry address and jump to it. __ li(a1, Operand(pending_handler_code_address)); __ lw(a1, MemOperand(a1)); __ li(a2, Operand(pending_handler_offset_address)); __ lw(a2, MemOperand(a2)); __ Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Addu(t9, a1, a2); __ Jump(t9); } void JSEntryStub::Generate(MacroAssembler* masm) { Label invoke, handler_entry, exit; Isolate* isolate = masm->isolate(); // Registers: // a0: entry address // a1: function // a2: receiver // a3: argc // // Stack: // 4 args slots // args ProfileEntryHookStub::MaybeCallEntryHook(masm); // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved | ra.bit()); // Save callee-saved FPU registers. __ MultiPushFPU(kCalleeSavedFPU); // Set up the reserved register for 0.0. __ Move(kDoubleRegZero, 0.0); // Load argv in s0 register. int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; offset_to_argv += kNumCalleeSavedFPU * kDoubleSize; __ InitializeRootRegister(); __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize)); // We build an EntryFrame. __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. StackFrame::Type marker = type(); __ li(t2, Operand(StackFrame::TypeToMarker(marker))); __ li(t1, Operand(StackFrame::TypeToMarker(marker))); __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ lw(t0, MemOperand(t0)); __ Push(t3, t2, t1, t0); // Set up frame pointer for the frame to be pushed. __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); // Registers: // a0: entry_address // a1: function // a2: receiver_pointer // a3: argc // s0: argv // // Stack: // caller fp | // function slot | entry frame // context slot | // bad fp (0xff...f) | // callee saved registers + ra // 4 args slots // args // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); __ li(t1, Operand(ExternalReference(js_entry_sp))); __ lw(t2, MemOperand(t1)); __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg)); __ sw(fp, MemOperand(t1)); __ li(t0, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont); __ nop(); // Branch delay slot nop. __ bind(&non_outermost_js); __ li(t0, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ push(t0); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. __ LoadRoot(v0, Heap::kExceptionRootIndex); __ b(&exit); // b exposes branch delay slot. __ nop(); // Branch delay slot nop. // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bal(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Registers: // a0: entry_address // a1: function // a2: receiver_pointer // a3: argc // s0: argv // // Stack: // handler frame // entry frame // callee saved registers + ra // 4 args slots // args if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate); __ li(t0, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate()); __ li(t0, Operand(entry)); } __ lw(t9, MemOperand(t0)); // Deref address. // Call JSEntryTrampoline. __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); __ Call(t9); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // v0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(t1); __ Branch(&non_outermost_js_2, ne, t1, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ li(t1, Operand(ExternalReference(js_entry_sp))); __ sw(zero_reg, MemOperand(t1)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(t1); __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ sw(t1, MemOperand(t0)); // Reset the stack to the callee saved registers. __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); // Restore callee-saved fpu registers. __ MultiPopFPU(kCalleeSavedFPU); // Restore callee saved registers from the stack. __ MultiPop(kCalleeSaved | ra.bit()); // Return. __ Jump(ra); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. // MIPS - using s0..s2, since we are not using CEntry Stub. Register subject = s0; Register regexp_data = s1; Register last_match_info_elements = s2; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ li(a0, Operand(address_of_regexp_stack_memory_size)); __ lw(a0, MemOperand(a0, 0)); __ Branch(&runtime, eq, a0, Operand(zero_reg)); // Check that the first argument is a JSRegExp object. __ lw(a0, MemOperand(sp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(a0, &runtime); __ GetObjectType(a0, a1, a1); __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE)); // Check that the RegExp has been compiled (data contains a fixed array). __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ SmiTst(regexp_data, t0); __ Check(nz, kUnexpectedTypeForRegExpDataFixedArrayExpected, t0, Operand(zero_reg)); __ GetObjectType(regexp_data, a0, a0); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected, a0, Operand(FIXED_ARRAY_TYPE)); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ lw(a2, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // Multiplying by 2 comes for free since a2 is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ Branch( &runtime, hi, a2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); // Reset offset for possibly sliced string. __ mov(t0, zero_reg); __ lw(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ mov(a3, subject); // Make a copy of the original subject string. // subject: subject string // a3: subject string // regexp_data: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (4). // (2) Sequential or cons? If not, go to (5). // (3) Cons string. If the string is flat, replace subject with first string // and go to (1). Otherwise bail out to runtime. // (4) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (5) Long external string? If not, go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. // Go to (4). // (7) Short external string or not a string? If yes, bail out to runtime. // (8) Sliced or thin string. Replace subject with parent. Go to (1). Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */, not_seq_nor_cons /* 5 */, not_long_external /* 7 */; __ bind(&check_underlying); __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); // (1) Sequential string? If yes, go to (4). __ And(a1, a0, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (5). // (2) Sequential or cons? If not, go to (5). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kThinStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); // Go to (5). __ Branch(¬_seq_nor_cons, ge, a1, Operand(kExternalStringTag)); // (3) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ LoadRoot(a1, Heap::kempty_stringRootIndex); __ Branch(&runtime, ne, a0, Operand(a1)); __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); __ jmp(&check_underlying); // (4) Sequential string. Load regexp code according to encoding. __ bind(&seq_string); // subject: sequential subject string (or look-alike, external string) // a3: original subject string // Load previous index and check range before a3 is overwritten. We have to // use a3 instead of subject here because subject might have been only made // to look like a sequential string when it actually is an external string. __ lw(a1, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(a1, &runtime); __ lw(a3, FieldMemOperand(a3, String::kLengthOffset)); __ Branch(&runtime, ls, a3, Operand(a1)); __ sra(a1, a1, kSmiTagSize); // Untag the Smi. STATIC_ASSERT(kStringEncodingMask == 8); STATIC_ASSERT(kOneByteStringTag == 8); STATIC_ASSERT(kTwoByteStringTag == 0); __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one-byte. __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset)); __ sra(a3, a0, 3); // a3 is 1 for ASCII, 0 for UC16 (used below). __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); __ Movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset. // (E) Carry on. String handling is done. // t9: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(t9, &runtime); // a1: previous index // a3: encoding of subject string (1 if one_byte, 0 if two_byte); // t9: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, a0, a2); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 9; const int kParameterRegisters = 4; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers, meaning we // treat the return address as argument 5. Thus every argument after that // needs to be shifted back by 1. Since DirectCEntryStub will handle // allocating space for the c argument slots, we don't need to calculate // that into the argument positions on the stack. This is how the stack will // look (sp meaning the value of sp at this moment): // [sp + 5] - Argument 9 // [sp + 4] - Argument 8 // [sp + 3] - Argument 7 // [sp + 2] - Argument 6 // [sp + 1] - Argument 5 // [sp + 0] - saved ra // Argument 9: Pass current isolate address. // CFunctionArgumentOperand handles MIPS stack argument slots. __ li(a0, Operand(ExternalReference::isolate_address(isolate()))); __ sw(a0, MemOperand(sp, 5 * kPointerSize)); // Argument 8: Indicate that this is a direct call from JavaScript. __ li(a0, Operand(1)); __ sw(a0, MemOperand(sp, 4 * kPointerSize)); // Argument 7: Start (high end) of backtracking stack memory area. __ li(a0, Operand(address_of_regexp_stack_memory_address)); __ lw(a0, MemOperand(a0, 0)); __ li(a2, Operand(address_of_regexp_stack_memory_size)); __ lw(a2, MemOperand(a2, 0)); __ addu(a0, a0, a2); __ sw(a0, MemOperand(sp, 3 * kPointerSize)); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(a0, zero_reg); __ sw(a0, MemOperand(sp, 2 * kPointerSize)); // Argument 5: static offsets vector buffer. __ li(a0, Operand( ExternalReference::address_of_static_offsets_vector(isolate()))); __ sw(a0, MemOperand(sp, 1 * kPointerSize)); // For arguments 4 and 3 get string length, calculate start of string data // calculate the shift of the index (0 for one-byte and 1 for two-byte). __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte. // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, a3: End of string data // Argument 3, a2: Start of string data // Prepare start and end index of the input. __ sllv(t1, t0, a3); __ addu(t0, t2, t1); __ sllv(t1, a1, a3); __ addu(a2, t0, t1); __ lw(t2, FieldMemOperand(subject, String::kLengthOffset)); __ sra(t2, t2, kSmiTagSize); __ sllv(t1, t2, a3); __ addu(a3, t0, t1); // Argument 2 (a1): Previous index. // Already there // Argument 1 (a0): Subject string. __ mov(a0, subject); // Locate the code entry and call it. __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, t9); __ LeaveExitFrame(false, no_reg, true); // v0: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ Branch(&success, eq, v0, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. Label failure; __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE)); // If not exception it can only be retry. Handle that in the runtime system. __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ li(a1, Operand(isolate()->factory()->the_hole_value())); __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ lw(v0, MemOperand(a2, 0)); __ Branch(&runtime, eq, v0, Operand(a1)); // For exception, throw the exception again. __ TailCallRuntime(Runtime::kRegExpExecReThrow); __ bind(&failure); // For failure and exception return null. __ li(v0, Operand(isolate()->factory()->null_value())); __ DropAndRet(4); // Process the result from the native regexp code. __ bind(&success); __ lw(a1, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. // Multiplying by 2 comes for free since r1 is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ Addu(a1, a1, Operand(2)); // a1 was a smi. // Check that the last match info is a FixedArray. __ lw(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(last_match_info_elements, &runtime); // Check that the object has fast elements. __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); __ Branch(&runtime, ne, a0, Operand(at)); // Check that the last match info has space for the capture registers and the // additional information. __ lw(a0, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ Addu(a2, a1, Operand(RegExpMatchInfo::kLastMatchOverhead)); __ sra(at, a0, kSmiTagSize); __ Branch(&runtime, gt, a2, Operand(at)); // a1: number of capture registers // subject: subject string // Store the capture count. __ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi. __ sw(a2, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kNumberOfCapturesOffset)); // Store last subject and last input. __ sw(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset)); __ mov(a2, subject); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset, subject, t3, kRAHasNotBeenSaved, kDontSaveFPRegs); __ mov(subject, a2); __ sw(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastInputOffset)); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastInputOffset, subject, t3, kRAHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ li(a2, Operand(address_of_static_offsets_vector)); // a1: number of capture registers // a2: offsets vector Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wrapping after zero. __ Addu(a0, last_match_info_elements, Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag)); __ bind(&next_capture); __ Subu(a1, a1, Operand(1)); __ Branch(&done, lt, a1, Operand(zero_reg)); // Read the value from the static offsets vector buffer. __ lw(a3, MemOperand(a2, 0)); __ addiu(a2, a2, kPointerSize); // Store the smi value in the last match info. __ sll(a3, a3, kSmiTagSize); // Convert to Smi. __ sw(a3, MemOperand(a0, 0)); __ Branch(&next_capture, USE_DELAY_SLOT); __ addiu(a0, a0, kPointerSize); // In branch delay slot. __ bind(&done); // Return last match info. __ mov(v0, last_match_info_elements); __ DropAndRet(4); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec); // Deferred code for string handling. // (5) Long external string? If not, go to (7). __ bind(¬_seq_nor_cons); // Go to (7). __ Branch(¬_long_external, gt, a1, Operand(kExternalStringTag)); // (6) External string. Make it, offset-wise, look like a sequential string. __ bind(&external_string); __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ And(at, a0, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound, at, Operand(zero_reg)); } __ lw(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ Subu(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); __ jmp(&seq_string); // Go to (5). // (7) Short external string or not a string? If yes, bail out to runtime. __ bind(¬_long_external); STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask)); __ Branch(&runtime, ne, at, Operand(zero_reg)); // (8) Sliced or thin string. Replace subject with parent. Go to (4). Label thin_string; __ Branch(&thin_string, eq, a1, Operand(kThinStringTag)); // Load offset into t0 and replace subject string with parent. __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ sra(t0, t0, kSmiTagSize); __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ jmp(&check_underlying); // Go to (4). __ bind(&thin_string); __ lw(subject, FieldMemOperand(subject, ThinString::kActualOffset)); __ jmp(&check_underlying); // Go to (4). #endif // V8_INTERPRETED_REGEXP } static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { // a0 : number of arguments to the construct function // a2 : feedback vector // a3 : slot in feedback vector (Smi) // a1 : the function to call FrameScope scope(masm, StackFrame::INTERNAL); const RegList kSavedRegs = 1 << 4 | // a0 1 << 5 | // a1 1 << 6 | // a2 1 << 7 | // a3 1 << cp.code(); // Number-of-arguments register must be smi-tagged to call out. __ SmiTag(a0); __ MultiPush(kSavedRegs); __ CallStub(stub); __ MultiPop(kSavedRegs); __ SmiUntag(a0); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // a0 : number of arguments to the construct function // a1 : the function to call // a2 : feedback vector // a3 : slot in feedback vector (Smi) Label initialize, done, miss, megamorphic, not_array_function; DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); // Load the cache state into t2. __ Lsa(t2, a2, a3, kPointerSizeLog2 - kSmiTagSize); __ lw(t2, FieldMemOperand(t2, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. // We don't know if t2 is a WeakCell or a Symbol, but it's harmless to read at // this position in a symbol (see static asserts in feedback-vector.h). Label check_allocation_site; Register feedback_map = t1; Register weak_value = t4; __ lw(weak_value, FieldMemOperand(t2, WeakCell::kValueOffset)); __ Branch(&done, eq, a1, Operand(weak_value)); __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ Branch(&done, eq, t2, Operand(at)); __ lw(feedback_map, FieldMemOperand(t2, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kWeakCellMapRootIndex); __ Branch(&check_allocation_site, ne, feedback_map, Operand(at)); // If the weak cell is cleared, we have a new chance to become monomorphic. __ JumpIfSmi(weak_value, &initialize); __ jmp(&megamorphic); __ bind(&check_allocation_site); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Branch(&miss, ne, feedback_map, Operand(at)); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2); __ Branch(&megamorphic, ne, a1, Operand(t2)); __ jmp(&done); __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex); __ Branch(&initialize, eq, t2, Operand(at)); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ Lsa(t2, a2, a3, kPointerSizeLog2 - kSmiTagSize); __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ sw(at, FieldMemOperand(t2, FixedArray::kHeaderSize)); __ jmp(&done); // An uninitialized cache is patched with the function. __ bind(&initialize); // Make sure the function is the Array() function. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2); __ Branch(¬_array_function, ne, a1, Operand(t2)); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. CreateAllocationSiteStub create_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &create_stub); __ Branch(&done); __ bind(¬_array_function); CreateWeakCellStub weak_cell_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &weak_cell_stub); __ bind(&done); // Increment the call count for all function calls. __ Lsa(at, a2, a3, kPointerSizeLog2 - kSmiTagSize); __ lw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize)); __ Addu(t0, t0, Operand(Smi::FromInt(1))); __ sw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize)); } void CallConstructStub::Generate(MacroAssembler* masm) { // a0 : number of arguments // a1 : the function to call // a2 : feedback vector // a3 : slot in feedback vector (Smi, for RecordCallTarget) Label non_function; // Check that the function is not a smi. __ JumpIfSmi(a1, &non_function); // Check that the function is a JSFunction. __ GetObjectType(a1, t1, t1); __ Branch(&non_function, ne, t1, Operand(JS_FUNCTION_TYPE)); GenerateRecordCallTarget(masm); __ Lsa(t1, a2, a3, kPointerSizeLog2 - kSmiTagSize); Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into a2, or undefined. __ lw(a2, FieldMemOperand(t1, FixedArray::kHeaderSize)); __ lw(t1, FieldMemOperand(a2, AllocationSite::kMapOffset)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Branch(&feedback_register_initialized, eq, t1, Operand(at)); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); __ AssertUndefinedOrAllocationSite(a2, t1); // Pass function as new target. __ mov(a3, a1); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kConstructStubOffset)); __ Addu(at, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); __ bind(&non_function); __ mov(a3, a1); __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } // StringCharCodeAtGenerator. void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { DCHECK(!t0.is(index_)); DCHECK(!t0.is(result_)); DCHECK(!t0.is(object_)); if (check_mode_ == RECEIVER_IS_UNKNOWN) { // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ And(t0, result_, Operand(kIsNotStringMask)); __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg)); } // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ lw(t0, FieldMemOperand(object_, String::kLengthOffset)); __ Branch(index_out_of_range_, ls, t0, Operand(index_)); __ sra(index_, index_, kSmiTagSize); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ sll(result_, result_, kSmiTagSize); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, EmbedMode embed_mode, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); // Consumed by runtime conversion function: if (embed_mode == PART_OF_IC_HANDLER) { __ Push(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_, index_); } else { __ Push(object_, index_); } __ CallRuntime(Runtime::kNumberToSmi); // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, v0); if (embed_mode == PART_OF_IC_HANDLER) { __ Pop(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_); } else { __ pop(object_); } // Reload the instance type. __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ Branch(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ sll(index_, index_, kSmiTagSize); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT); __ Move(result_, v0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } void StringHelper::GenerateFlatOneByteStringEquals( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ lw(length, FieldMemOperand(left, String::kLengthOffset)); __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Branch(&check_zero_length, eq, length, Operand(scratch2)); __ bind(&strings_not_equal); DCHECK(is_int16(NOT_EQUAL)); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(NOT_EQUAL))); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ Branch(&compare_chars, ne, length, Operand(zero_reg)); DCHECK(is_int16(EQUAL)); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(EQUAL))); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3, v0, &strings_not_equal); // Characters are equal. __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(EQUAL))); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Subu(scratch3, scratch1, Operand(scratch2)); Register length_delta = scratch3; __ slt(scratch4, scratch2, scratch1); __ Movn(scratch1, scratch2, scratch4); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg)); // Compare loop. GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, v0, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); // Use length_delta as result if it's zero. __ mov(scratch2, length_delta); __ mov(scratch4, zero_reg); __ mov(v0, zero_reg); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. Label ret; __ Branch(&ret, eq, scratch2, Operand(scratch4)); __ li(v0, Operand(Smi::FromInt(GREATER))); __ Branch(&ret, gt, scratch2, Operand(scratch4)); __ li(v0, Operand(Smi::FromInt(LESS))); __ bind(&ret); __ Ret(); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Register scratch3, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ Addu(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ Addu(left, left, Operand(scratch1)); __ Addu(right, right, Operand(scratch1)); __ Subu(length, zero_reg, length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ Addu(scratch3, left, index); __ lbu(scratch1, MemOperand(scratch3)); __ Addu(scratch3, right, index); __ lbu(scratch2, MemOperand(scratch3)); __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2)); __ Addu(index, index, 1); __ Branch(&loop, ne, index, Operand(zero_reg)); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a1 : left // -- a0 : right // -- ra : return address // ----------------------------------- // Load a2 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ li(a2, isolate()->factory()->undefined_value()); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ And(at, a2, Operand(kSmiTagMask)); __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg)); __ lw(t0, FieldMemOperand(a2, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite, t0, Operand(at)); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateBooleans(MacroAssembler* masm) { DCHECK_EQ(CompareICState::BOOLEAN, state()); Label miss; __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); if (!Token::IsEqualityOp(op())) { __ lw(a1, FieldMemOperand(a1, Oddball::kToNumberOffset)); __ AssertSmi(a1); __ lw(a0, FieldMemOperand(a0, Oddball::kToNumberOffset)); __ AssertSmi(a0); } __ Ret(USE_DELAY_SLOT); __ Subu(v0, a1, a0); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ Or(a2, a1, a0); __ JumpIfNotSmi(a2, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ Ret(USE_DELAY_SLOT); __ Subu(v0, a0, a1); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(a1); __ SmiUntag(a0); __ Ret(USE_DELAY_SLOT); __ Subu(v0, a1, a0); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(a1, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(a0, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved. // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(a0, &right_smi); __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ Subu(a2, a0, Operand(kHeapObjectTag)); __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset)); __ Branch(&left); __ bind(&right_smi); __ SmiUntag(a2, a0); // Can't clobber a0 yet. FPURegister single_scratch = f6; __ mtc1(a2, single_scratch); __ cvt_d_w(f2, single_scratch); __ bind(&left); __ JumpIfSmi(a1, &left_smi); __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ Subu(a2, a1, Operand(kHeapObjectTag)); __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); __ Branch(&done); __ bind(&left_smi); __ SmiUntag(a2, a1); // Can't clobber a1 yet. single_scratch = f8; __ mtc1(a2, single_scratch); __ cvt_d_w(f0, single_scratch); __ bind(&done); // Return a result of -1, 0, or 1, or use CompareStub for NaNs. Label fpu_eq, fpu_lt; // Test if equal, and also handle the unordered/NaN case. __ BranchF(&fpu_eq, &unordered, eq, f0, f2); // Test if less (unordered case is already handled). __ BranchF(&fpu_lt, NULL, lt, f0, f2); // Otherwise it's greater, so just fall thru, and return. DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(GREATER)); __ bind(&fpu_eq); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(EQUAL)); __ bind(&fpu_lt); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(LESS)); __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&miss, ne, a0, Operand(at)); __ JumpIfSmi(a1, &unordered); __ GetObjectType(a1, a2, a2); __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&unordered, eq, a1, Operand(at)); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); Label miss; // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are internalized strings. __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ Or(tmp1, tmp1, Operand(tmp2)); __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ Branch(&miss, ne, at, Operand(zero_reg)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(a0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(v0, right); // Internalized strings are compared by identity. __ Ret(ne, left, Operand(right)); DCHECK(is_int16(EQUAL)); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == eq); Label miss; // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss); // Use a0 as result __ mov(v0, a0); // Unique names are compared by identity. Label done; __ Branch(&done, ne, left, Operand(right)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(a0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ bind(&done); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; Register tmp3 = t0; Register tmp4 = t1; Register tmp5 = t2; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ Or(tmp3, tmp1, tmp2); __ And(tmp5, tmp3, Operand(kIsNotStringMask)); __ Branch(&miss, ne, tmp5, Operand(zero_reg)); // Fast check for identical strings. Label left_ne_right; STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Branch(&left_ne_right, ne, left, Operand(right)); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); // In the delay slot. __ bind(&left_ne_right); // Handle not identical strings. // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { DCHECK(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); __ Or(tmp3, tmp1, Operand(tmp2)); __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask)); Label is_symbol; __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(a0)); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // In the delay slot. __ bind(&is_symbol); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat one-byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2, tmp3); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3, tmp4); } // Handle more complex cases in runtime. __ bind(&runtime); if (equality) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(left, right); __ CallRuntime(Runtime::kStringEqual); } __ LoadRoot(a0, Heap::kTrueValueRootIndex); __ Ret(USE_DELAY_SLOT); __ Subu(v0, v0, a0); // In delay slot. } else { __ Push(left, right); __ TailCallRuntime(Runtime::kStringCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateReceivers(MacroAssembler* masm) { DCHECK_EQ(CompareICState::RECEIVER, state()); Label miss; __ And(a2, a1, Operand(a0)); __ JumpIfSmi(a2, &miss); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ GetObjectType(a0, a2, a2); __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE)); __ GetObjectType(a1, a2, a2); __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE)); DCHECK_EQ(eq, GetCondition()); __ Ret(USE_DELAY_SLOT); __ subu(v0, a0, a1); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { Label miss; Handle<WeakCell> cell = Map::WeakCellForMap(known_map_); __ And(a2, a1, a0); __ JumpIfSmi(a2, &miss); __ GetWeakValue(t0, cell); __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Branch(&miss, ne, a2, Operand(t0)); __ Branch(&miss, ne, a3, Operand(t0)); if (Token::IsEqualityOp(op())) { __ Ret(USE_DELAY_SLOT); __ subu(v0, a0, a1); } else { if (op() == Token::LT || op() == Token::LTE) { __ li(a2, Operand(Smi::FromInt(GREATER))); } else { __ li(a2, Operand(Smi::FromInt(LESS))); } __ Push(a1, a0, a2); __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a0); __ Push(ra, a1, a0); __ li(t0, Operand(Smi::FromInt(op()))); __ addiu(sp, sp, -kPointerSize); __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs, USE_DELAY_SLOT); __ sw(t0, MemOperand(sp)); // In the delay slot. // Compute the entry point of the rewritten stub. __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ Pop(a1, a0, ra); } __ Jump(a2); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // Make place for arguments to fit C calling convention. Most of the callers // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame // so they handle stack restoring and we don't have to do that here. // Any caller of DirectCEntryStub::GenerateCall must take care of dropping // kCArgsSlotsSize stack space after the call. __ Subu(sp, sp, Operand(kCArgsSlotsSize)); // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ sw(ra, MemOperand(sp, kCArgsSlotsSize)); __ Call(t9); // Call the C++ function. __ lw(t9, MemOperand(sp, kCArgsSlotsSize)); if (FLAG_debug_code && FLAG_enable_slow_asserts) { // In case of an error the return address may point to a memory area // filled with kZapValue by the GC. // Dereference the address and check for this. __ lw(t0, MemOperand(t9)); __ Assert(ne, kReceivedInvalidReturnAddress, t0, Operand(reinterpret_cast<uint32_t>(kZapValue))); } __ Jump(t9); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { intptr_t loc = reinterpret_cast<intptr_t>(GetCode().location()); __ Move(t9, target); __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE); __ Call(at); } void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle<Name> name, Register scratch0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ lw(index, FieldMemOperand(properties, kCapacityOffset)); __ Subu(index, index, Operand(1)); __ And(index, index, Operand( Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ Lsa(index, index, index, 1); Register entity_name = scratch0; // Having undefined at this place means the name is not contained. STATIC_ASSERT(kSmiTagSize == 1); Register tmp = properties; __ Lsa(tmp, properties, index, 1); __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); DCHECK(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ Branch(done, eq, entity_name, Operand(tmp)); // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name))); Label good; __ Branch(&good, eq, entity_name, Operand(tmp)); // Check if the entry name is not a unique name. __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ lbu(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entity_name, miss); __ bind(&good); // Restore the properties. __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } const int spill_mask = (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()); __ MultiPush(spill_mask); __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ li(a1, Operand(Handle<Name>(name))); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); __ mov(at, v0); __ MultiPop(spill_mask); __ Branch(done, eq, at, Operand(zero_reg)); __ Branch(miss, ne, at, Operand(zero_reg)); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: NameDictionary to probe // a1: key // dictionary: NameDictionary to probe. // index: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = v0; Register dictionary = a0; Register key = a1; Register index = a2; Register mask = a3; Register hash = t0; Register undefined = t1; Register entry_key = t2; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ sra(mask, mask, kSmiTagSize); __ Subu(mask, mask, Operand(1)); __ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ Addu(index, hash, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } else { __ mov(index, hash); } __ srl(index, index, Name::kHashShift); __ And(index, mask, index); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); // index *= 3. __ Lsa(index, index, index, 1); STATIC_ASSERT(kSmiTagSize == 1); __ Lsa(index, dictionary, index, 2); __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined)); // Stop if found the property. __ Branch(&in_dictionary, eq, entry_key, Operand(key)); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ lbu(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ Ret(USE_DELAY_SLOT); __ mov(result, zero_reg); } __ bind(&in_dictionary); __ Ret(USE_DELAY_SLOT); __ li(result, 1); __ bind(¬_in_dictionary); __ Ret(USE_DELAY_SLOT); __ mov(result, zero_reg); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); // Hydrogen code stubs need stub2 at snapshot time. StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two branch+nop instructions are generated with labels so as to // get the offset fixed up correctly by the bind(Label*) call. We patch it // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this // position) and the "beq zero_reg, zero_reg, ..." when we start and stop // incremental heap marking. // See RecordWriteStub::Patch for details. __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting); __ nop(); __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting); __ nop(); if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. PatchBranchIntoNop(masm, 0); PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(), &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = a0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); DCHECK(!address.is(regs_.object())); DCHECK(!address.is(a0)); __ Move(address, regs_.address()); __ Move(a0, regs_.object()); __ Move(a1, address); __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ JumpIfWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; __ lw(a1, MemOperand(fp, parameter_count_offset)); if (function_mode() == JS_FUNCTION_STUB_MODE) { __ Addu(a1, a1, Operand(1)); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ sll(a1, a1, kPointerSizeLog2); __ Ret(USE_DELAY_SLOT); __ Addu(sp, sp, a1); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); __ push(ra); __ CallStub(&stub); __ pop(ra); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push ra" instruction, followed by a call. // Note: on MIPS "push" is 2 instruction const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize); // This should contain all kJSCallerSaved registers. const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. s5.bit(); // Saved stack pointer. // We also save ra, so the count here is one higher than the mask indicates. const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; // Save all caller-save registers as this may be called from anywhere. __ MultiPush(kSavedRegs | ra.bit()); // Compute the function's address for the first argument. __ Subu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is above the saved temporaries. // Grab that for the second argument to the hook. __ Addu(a1, sp, Operand(kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mov(s5, sp); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); __ And(sp, sp, Operand(-frame_alignment)); } __ Subu(sp, sp, kCArgsSlotsSize); #if defined(V8_HOST_ARCH_MIPS) int32_t entry_hook = reinterpret_cast<int32_t>(isolate()->function_entry_hook()); __ li(t9, Operand(entry_hook)); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter. __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ li(t9, Operand(ExternalReference(&dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); #endif // Call C function through t9 to conform ABI for PIC. __ Call(t9); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mov(sp, s5); } else { __ Addu(sp, sp, kCArgsSlotsSize); } // Also pop ra to get Ret(0). __ MultiPop(kSavedRegs | ra.bit()); __ Ret(); } template<class T> static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq, a3, Operand(kind)); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // a3 - kind (if mode != DISABLE_ALLOCATION_SITES) // a0 - number of arguments // a1 - constructor? // sp[0] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ And(at, a3, Operand(1)); __ Branch(&normal_sequence, ne, at, Operand(zero_reg)); } // look at the first argument __ lw(t1, MemOperand(sp, 0)); __ Branch(&normal_sequence, eq, t1, Operand(zero_reg)); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ Addu(a3, a3, Operand(1)); if (FLAG_debug_code) { __ lw(t1, FieldMemOperand(a2, 0)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite, t1, Operand(at)); } // Save the resulting elements kind in type info. We can't just store a3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ lw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset)); __ Addu(t0, t0, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); __ sw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset)); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq, a3, Operand(kind)); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template<class T> static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( isolate); ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( isolate); ArrayNArgumentsConstructorStub stub(isolate); stub.GetCode(); ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things. InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { Label not_zero_case, not_one_case; __ And(at, a0, a0); __ Branch(¬_zero_case, ne, at, Operand(zero_reg)); CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); __ bind(¬_zero_case); __ Branch(¬_one_case, gt, a0, Operand(1)); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); ArrayNArgumentsConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc (only if argument_count() is ANY or MORE_THAN_ONE) // -- a1 : constructor // -- a2 : AllocationSite or undefined // -- a3 : Original constructor // -- sp[0] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ lw(t0, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ SmiTst(t0, at); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, at, Operand(zero_reg)); __ GetObjectType(t0, t0, t1); __ Assert(eq, kUnexpectedInitialMapForArrayFunction, t1, Operand(MAP_TYPE)); // We should either have undefined in a2 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(a2, t0); } // Enter the context of the Array function. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); Label subclassing; __ Branch(&subclassing, ne, a1, Operand(a3)); Label no_info; // Get the elements kind and case on that. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&no_info, eq, a2, Operand(at)); __ lw(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(a3); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); // Subclassing. __ bind(&subclassing); __ Lsa(at, sp, a0, kPointerSizeLog2); __ sw(a1, MemOperand(at)); __ li(at, Operand(3)); __ addu(a0, a0, at); __ Push(a3, a2); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lo, a0, Operand(1)); ArrayNArgumentsConstructorStub stubN(isolate()); __ TailCallStub(&stubN, hi, a0, Operand(1)); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument. __ lw(at, MemOperand(sp, 0)); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg)); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- a1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ SmiTst(a3, at); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, at, Operand(zero_reg)); __ GetObjectType(a3, a3, t0); __ Assert(eq, kUnexpectedInitialMapForArrayFunction, t0, Operand(MAP_TYPE)); } // Figure out the right elements kind. __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into a3. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(a3); if (FLAG_debug_code) { Label done; __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS)); __ Assert( eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray, a3, Operand(FAST_HOLEY_ELEMENTS)); __ bind(&done); } Label fast_elements_case; __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS)); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn( MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset, MemOperand return_value_operand, MemOperand* context_restore_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); DCHECK(function_address.is(a1) || function_address.is(a2)); Label profiler_disabled; Label end_profiler_check; __ li(t9, Operand(ExternalReference::is_profiling_address(isolate))); __ lb(t9, MemOperand(t9, 0)); __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg)); // Additional parameter is the address of the actual callback. __ li(t9, Operand(thunk_ref)); __ jmp(&end_profiler_check); __ bind(&profiler_disabled); __ mov(t9, function_address); __ bind(&end_profiler_check); // Allocate HandleScope in callee-save registers. __ li(s3, Operand(next_address)); __ lw(s0, MemOperand(s3, kNextOffset)); __ lw(s1, MemOperand(s3, kLimitOffset)); __ lw(s2, MemOperand(s3, kLevelOffset)); __ Addu(s2, s2, Operand(1)); __ sw(s2, MemOperand(s3, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, a0); __ li(a0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, t9); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, a0); __ li(a0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // Load value from ReturnValue. __ lw(v0, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ sw(s0, MemOperand(s3, kNextOffset)); if (__ emit_debug_code()) { __ lw(a1, MemOperand(s3, kLevelOffset)); __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); } __ Subu(s2, s2, Operand(1)); __ sw(s2, MemOperand(s3, kLevelOffset)); __ lw(at, MemOperand(s3, kLimitOffset)); __ Branch(&delete_allocated_handles, ne, s1, Operand(at)); // Leave the API exit frame. __ bind(&leave_exit_frame); bool restore_context = context_restore_operand != NULL; if (restore_context) { __ lw(cp, *context_restore_operand); } if (stack_space_offset != kInvalidStackOffset) { // ExitFrame contains four MIPS argument slots after DirectCEntryStub call // so this must be accounted for. __ lw(s0, MemOperand(sp, stack_space_offset + kCArgsSlotsSize)); } else { __ li(s0, Operand(stack_space)); } __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN, stack_space_offset != kInvalidStackOffset); // Check if the function scheduled an exception. __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate))); __ lw(t1, MemOperand(at)); __ Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); __ Ret(); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ sw(s1, MemOperand(s3, kLimitOffset)); __ mov(s0, v0); __ mov(a0, v0); __ PrepareCallCFunction(1, s1); __ li(a0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), 1); __ mov(v0, s0); __ jmp(&leave_exit_frame); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : callee // -- t0 : call_data // -- a2 : holder // -- a1 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1)* 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register callee = a0; Register call_data = t0; Register holder = a2; Register api_function_address = a1; Register context = cp; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kNewTargetIndex == 7); STATIC_ASSERT(FCA::kArgsLength == 8); // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // Save context, callee and call data. __ Push(context, callee, call_data); if (!is_lazy()) { // Load context from callee. __ lw(context, FieldMemOperand(callee, JSFunction::kContextOffset)); } Register scratch = call_data; if (!call_data_undefined()) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // Push return value and default return value. __ Push(scratch, scratch); __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate()))); // Push isolate and holder. __ Push(scratch, holder); // Prepare arguments. __ mov(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 3; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(!api_function_address.is(a0) && !scratch.is(a0)); // a0 = FunctionCallbackInfo& // Arguments is after the return address. __ Addu(a0, sp, Operand(1 * kPointerSize)); // FunctionCallbackInfo::implicit_args_ __ sw(scratch, MemOperand(a0, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ Addu(at, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ sw(at, MemOperand(a0, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ li(at, Operand(argc())); __ sw(at, MemOperand(a0, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument. int return_value_offset = 0; if (is_store()) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); int stack_space = 0; int32_t stack_space_offset = 3 * kPointerSize; stack_space = argc() + FCA::kArgsLength + 1; // TODO(adamk): Why are we clobbering this immediately? stack_space_offset = kInvalidStackOffset; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_offset, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = t0; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = a2; // Here and below +1 is for name() pushed after the args_ array. typedef PropertyCallbackArguments PCA; __ Subu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize); __ sw(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize)); __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ sw(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ sw(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize)); __ sw(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) * kPointerSize)); __ li(scratch, Operand(ExternalReference::isolate_address(isolate()))); __ sw(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize)); __ sw(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize)); // should_throw_on_error -> false DCHECK(Smi::kZero == nullptr); __ sw(zero_reg, MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize)); __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ sw(scratch, MemOperand(sp, 0 * kPointerSize)); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ mov(a0, sp); // a0 = Handle<Name> __ Addu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_ const int kApiStackSpace = 1; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ sw(a1, MemOperand(sp, 1 * kPointerSize)); __ Addu(a1, sp, Operand(1 * kPointerSize)); // a1 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ lw(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, kInvalidStackOffset, return_value_operand, NULL); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS