// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "src/mips/assembler-mips.h" #if V8_TARGET_ARCH_MIPS #include "src/base/bits.h" #include "src/base/cpu.h" #include "src/mips/assembler-mips-inl.h" namespace v8 { namespace internal { // Get the CPU features enabled by the build. For cross compilation the // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS // can be defined to enable FPU instructions when building the // snapshot. static unsigned CpuFeaturesImpliedByCompiler() { unsigned answer = 0; #ifdef CAN_USE_FPU_INSTRUCTIONS answer |= 1u << FPU; #endif // def CAN_USE_FPU_INSTRUCTIONS // If the compiler is allowed to use FPU then we can use FPU too in our code // generation even when generating snapshots. This won't work for cross // compilation. #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0 answer |= 1u << FPU; #endif return answer; } void CpuFeatures::ProbeImpl(bool cross_compile) { supported_ |= CpuFeaturesImpliedByCompiler(); // Only use statically determined features for cross compile (snapshot). if (cross_compile) return; // If the compiler is allowed to use fpu then we can use fpu too in our // code generation. #ifndef __mips__ // For the simulator build, use FPU. supported_ |= 1u << FPU; #if defined(_MIPS_ARCH_MIPS32R6) // FP64 mode is implied on r6. supported_ |= 1u << FP64FPU; #endif #if defined(FPU_MODE_FP64) supported_ |= 1u << FP64FPU; #endif #else // Probe for additional features at runtime. base::CPU cpu; if (cpu.has_fpu()) supported_ |= 1u << FPU; #if defined(FPU_MODE_FPXX) if (cpu.is_fp64_mode()) supported_ |= 1u << FP64FPU; #elif defined(FPU_MODE_FP64) supported_ |= 1u << FP64FPU; #endif #if defined(_MIPS_ARCH_MIPS32RX) if (cpu.architecture() == 6) { supported_ |= 1u << MIPSr6; } else if (cpu.architecture() == 2) { supported_ |= 1u << MIPSr1; supported_ |= 1u << MIPSr2; } else { supported_ |= 1u << MIPSr1; } #endif #endif } void CpuFeatures::PrintTarget() { } void CpuFeatures::PrintFeatures() { } int ToNumber(Register reg) { DCHECK(reg.is_valid()); const int kNumbers[] = { 0, // zero_reg 1, // at 2, // v0 3, // v1 4, // a0 5, // a1 6, // a2 7, // a3 8, // t0 9, // t1 10, // t2 11, // t3 12, // t4 13, // t5 14, // t6 15, // t7 16, // s0 17, // s1 18, // s2 19, // s3 20, // s4 21, // s5 22, // s6 23, // s7 24, // t8 25, // t9 26, // k0 27, // k1 28, // gp 29, // sp 30, // fp 31, // ra }; return kNumbers[reg.code()]; } Register ToRegister(int num) { DCHECK(num >= 0 && num < kNumRegisters); const Register kRegisters[] = { zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra }; return kRegisters[num]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo. const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::INTERNAL_REFERENCE_ENCODED; bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on MIPS means that it is a lui/ori instruction, and that is // always the case inside code objects. return true; } bool RelocInfo::IsInConstantPool() { return false; } Address RelocInfo::wasm_memory_reference() { DCHECK(IsWasmMemoryReference(rmode_)); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::wasm_global_reference() { DCHECK(IsWasmGlobalReference(rmode_)); return Assembler::target_address_at(pc_, host_); } uint32_t RelocInfo::wasm_memory_size_reference() { DCHECK(IsWasmMemorySizeReference(rmode_)); return reinterpret_cast<uint32_t>(Assembler::target_address_at(pc_, host_)); } uint32_t RelocInfo::wasm_function_table_size_reference() { DCHECK(IsWasmFunctionTableSizeReference(rmode_)); return reinterpret_cast<uint32_t>(Assembler::target_address_at(pc_, host_)); } void RelocInfo::unchecked_update_wasm_memory_reference( Address address, ICacheFlushMode flush_mode) { Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode); } void RelocInfo::unchecked_update_wasm_size(uint32_t size, ICacheFlushMode flush_mode) { Assembler::set_target_address_at(isolate_, pc_, host_, reinterpret_cast<Address>(size), flush_mode); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand. // See assembler-mips-inl.h for inlined constructors. Operand::Operand(Handle<Object> handle) { AllowDeferredHandleDereference using_raw_address; rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; if (obj->IsHeapObject()) { imm32_ = reinterpret_cast<intptr_t>(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // No relocation needed. imm32_ = reinterpret_cast<intptr_t>(obj); rmode_ = RelocInfo::NONE32; } } MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { offset_ = offset; } MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier, OffsetAddend offset_addend) : Operand(rm) { offset_ = unit * multiplier + offset_addend; } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. static const int kNegOffset = 0x00008000; // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) // operations as post-increment of sp. const Instr kPopInstruction = ADDIU | (Register::kCode_sp << kRsShift) | (Register::kCode_sp << kRtShift) | (kPointerSize & kImm16Mask); // NOLINT // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. const Instr kPushInstruction = ADDIU | (Register::kCode_sp << kRsShift) | (Register::kCode_sp << kRtShift) | (-kPointerSize & kImm16Mask); // NOLINT // sw(r, MemOperand(sp, 0)) const Instr kPushRegPattern = SW | (Register::kCode_sp << kRsShift) | (0 & kImm16Mask); // NOLINT // lw(r, MemOperand(sp, 0)) const Instr kPopRegPattern = LW | (Register::kCode_sp << kRsShift) | (0 & kImm16Mask); // NOLINT const Instr kLwRegFpOffsetPattern = LW | (Register::kCode_fp << kRsShift) | (0 & kImm16Mask); // NOLINT const Instr kSwRegFpOffsetPattern = SW | (Register::kCode_fp << kRsShift) | (0 & kImm16Mask); // NOLINT const Instr kLwRegFpNegOffsetPattern = LW | (Register::kCode_fp << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT const Instr kSwRegFpNegOffsetPattern = SW | (Register::kCode_fp << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT // A mask for the Rt register for push, pop, lw, sw instructions. const Instr kRtMask = kRtFieldMask; const Instr kLwSwInstrTypeMask = 0xffe00000; const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; const Instr kLwSwOffsetMask = kImm16Mask; Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size) : AssemblerBase(isolate, buffer, buffer_size), recorded_ast_id_(TypeFeedbackId::None()) { reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); last_trampoline_pool_end_ = 0; no_trampoline_pool_before_ = 0; trampoline_pool_blocked_nesting_ = 0; // We leave space (16 * kTrampolineSlotsSize) // for BlockTrampolinePoolScope buffer. next_buffer_check_ = FLAG_force_long_branches ? kMaxInt : kMaxBranchOffset - kTrampolineSlotsSize * 16; internal_trampoline_exception_ = false; last_bound_pos_ = 0; trampoline_emitted_ = FLAG_force_long_branches; unbound_labels_count_ = 0; block_buffer_growth_ = false; ClearRecordedAstId(); } void Assembler::GetCode(CodeDesc* desc) { EmitForbiddenSlotInstruction(); DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap. // Set up code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); desc->origin = this; desc->constant_pool_size = 0; desc->unwinding_info_size = 0; desc->unwinding_info = nullptr; } void Assembler::Align(int m) { DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m)); EmitForbiddenSlotInstruction(); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { // No advantage to aligning branch/call targets to more than // single instruction, that I am aware of. Align(4); } Register Assembler::GetRtReg(Instr instr) { Register rt; rt.reg_code = (instr & kRtFieldMask) >> kRtShift; return rt; } Register Assembler::GetRsReg(Instr instr) { Register rs; rs.reg_code = (instr & kRsFieldMask) >> kRsShift; return rs; } Register Assembler::GetRdReg(Instr instr) { Register rd; rd.reg_code = (instr & kRdFieldMask) >> kRdShift; return rd; } uint32_t Assembler::GetRt(Instr instr) { return (instr & kRtFieldMask) >> kRtShift; } uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; } uint32_t Assembler::GetRs(Instr instr) { return (instr & kRsFieldMask) >> kRsShift; } uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; } uint32_t Assembler::GetRd(Instr instr) { return (instr & kRdFieldMask) >> kRdShift; } uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; } uint32_t Assembler::GetSa(Instr instr) { return (instr & kSaFieldMask) >> kSaShift; } uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; } uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; } uint32_t Assembler::GetFunction(Instr instr) { return (instr & kFunctionFieldMask) >> kFunctionShift; } uint32_t Assembler::GetFunctionField(Instr instr) { return instr & kFunctionFieldMask; } uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; } uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; } bool Assembler::IsPop(Instr instr) { return (instr & ~kRtMask) == kPopRegPattern; } bool Assembler::IsPush(Instr instr) { return (instr & ~kRtMask) == kPushRegPattern; } bool Assembler::IsSwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); } bool Assembler::IsLwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); } bool Assembler::IsSwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kSwRegFpNegOffsetPattern); } bool Assembler::IsLwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kLwRegFpNegOffsetPattern); } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // The link chain is terminated by a value in the instruction of -1, // which is an otherwise illegal value (branch -1 is inf loop). // The instruction 16-bit offset field addresses 32-bit words, but in // code is conv to an 18-bit value addressing bytes, hence the -4 value. const int kEndOfChain = -4; // Determines the end of the Jump chain (a subset of the label link chain). const int kEndOfJumpChain = 0; bool Assembler::IsBranch(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rs_field = GetRsField(instr); // Checks if the instruction is a branch. bool isBranch = opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL || (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || rt_field == BLTZAL || rt_field == BGEZAL)) || (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. (opcode == COP1 && rs_field == BC1EQZ) || (opcode == COP1 && rs_field == BC1NEZ); if (!isBranch && IsMipsArchVariant(kMips32r6)) { // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and // POP30 (BNVC, BNEC, BNEZALC) are branch ops. isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC || opcode == BALC || (opcode == POP66 && rs_field != 0) || // BEQZC (opcode == POP76 && rs_field != 0); // BNEZC } return isBranch; } bool Assembler::IsBc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a BC or BALC. return opcode == BC || opcode == BALC; } bool Assembler::IsBzc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is BEQZC or BNEZC. return (opcode == POP66 && GetRsField(instr) != 0) || (opcode == POP76 && GetRsField(instr) != 0); } bool Assembler::IsEmittedConstant(Instr instr) { uint32_t label_constant = GetLabelConst(instr); return label_constant == 0; // Emitted label const in reg-exp engine. } bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; } bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; } bool Assembler::IsBeqzc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); return opcode == POP66 && GetRsField(instr) != 0; } bool Assembler::IsBnezc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); return opcode == POP76 && GetRsField(instr) != 0; } bool Assembler::IsBeqc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rs = GetRsField(instr); uint32_t rt = GetRtField(instr); return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0 } bool Assembler::IsBnec(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rs = GetRsField(instr); uint32_t rt = GetRtField(instr); return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0 } bool Assembler::IsJicOrJialc(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rs = GetRsField(instr); return (opcode == POP66 || opcode == POP76) && rs == 0; } bool Assembler::IsJump(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rd_field = GetRdField(instr); uint32_t function_field = GetFunctionField(instr); // Checks if the instruction is a jump. return opcode == J || opcode == JAL || (opcode == SPECIAL && rt_field == 0 && ((function_field == JALR) || (rd_field == 0 && (function_field == JR)))); } bool Assembler::IsJ(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a jump. return opcode == J; } bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; } bool Assembler::IsJr(Instr instr) { if (!IsMipsArchVariant(kMips32r6)) { return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR; } else { return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) == 0 && GetFunctionField(instr) == JALR; } } bool Assembler::IsJalr(Instr instr) { return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) != 0 && GetFunctionField(instr) == JALR; } bool Assembler::IsLui(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a load upper immediate. return opcode == LUI; } bool Assembler::IsOri(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a load upper immediate. return opcode == ORI; } bool Assembler::IsNop(Instr instr, unsigned int type) { // See Assembler::nop(type). DCHECK(type < 32); uint32_t opcode = GetOpcodeField(instr); uint32_t function = GetFunctionField(instr); uint32_t rt = GetRt(instr); uint32_t rd = GetRd(instr); uint32_t sa = GetSa(instr); // Traditional mips nop == sll(zero_reg, zero_reg, 0) // When marking non-zero type, use sll(zero_reg, at, type) // to avoid use of mips ssnop and ehb special encodings // of the sll instruction. Register nop_rt_reg = (type == 0) ? zero_reg : at; bool ret = (opcode == SPECIAL && function == SLL && rd == static_cast<uint32_t>(ToNumber(zero_reg)) && rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type); return ret; } int32_t Assembler::GetBranchOffset(Instr instr) { DCHECK(IsBranch(instr)); return (static_cast<int16_t>(instr & kImm16Mask)) << 2; } bool Assembler::IsLw(Instr instr) { return (static_cast<uint32_t>(instr & kOpcodeMask) == LW); } int16_t Assembler::GetLwOffset(Instr instr) { DCHECK(IsLw(instr)); return ((instr & kImm16Mask)); } Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { DCHECK(IsLw(instr)); // We actually create a new lw instruction based on the original one. Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) | (offset & kImm16Mask); return temp_instr; } bool Assembler::IsSw(Instr instr) { return (static_cast<uint32_t>(instr & kOpcodeMask) == SW); } Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { DCHECK(IsSw(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAddImmediate(Instr instr) { return ((instr & kOpcodeMask) == ADDIU); } Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { DCHECK(IsAddImmediate(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAndImmediate(Instr instr) { return GetOpcodeField(instr) == ANDI; } static Assembler::OffsetSize OffsetSizeInBits(Instr instr) { if (IsMipsArchVariant(kMips32r6)) { if (Assembler::IsBc(instr)) { return Assembler::OffsetSize::kOffset26; } else if (Assembler::IsBzc(instr)) { return Assembler::OffsetSize::kOffset21; } } return Assembler::OffsetSize::kOffset16; } static inline int32_t AddBranchOffset(int pos, Instr instr) { int bits = OffsetSizeInBits(instr); const int32_t mask = (1 << bits) - 1; bits = 32 - bits; // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmetic shifts for signed integers. int32_t imm = ((instr & mask) << bits) >> (bits - 2); if (imm == kEndOfChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { return pos + Assembler::kBranchPCOffset + imm; } } uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) { DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic)); int16_t jic_offset = GetImmediate16(instr_jic); int16_t lui_offset = GetImmediate16(instr_lui); if (jic_offset < 0) { lui_offset += kImm16Mask; } uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift; uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask; return lui_offset_u | jic_offset_u; } // Use just lui and jic instructions. Insert lower part of the target address in // jic offset part. Since jic sign-extends offset and then add it with register, // before that addition, difference between upper part of the target address and // upper part of the sign-extended offset (0xffff or 0x0000), will be inserted // in jic register with lui instruction. void Assembler::UnpackTargetAddress(uint32_t address, int16_t& lui_offset, int16_t& jic_offset) { lui_offset = (address & kHiMask) >> kLuiShift; jic_offset = address & kLoMask; if (jic_offset < 0) { lui_offset -= kImm16Mask; } } void Assembler::UnpackTargetAddressUnsigned(uint32_t address, uint32_t& lui_offset, uint32_t& jic_offset) { int16_t lui_offset16 = (address & kHiMask) >> kLuiShift; int16_t jic_offset16 = address & kLoMask; if (jic_offset16 < 0) { lui_offset16 -= kImm16Mask; } lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask; jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask; } int Assembler::target_at(int pos, bool is_internal) { Instr instr = instr_at(pos); if (is_internal) { if (instr == 0) { return kEndOfChain; } else { int32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos); int delta = static_cast<int>(instr_address - instr); DCHECK(pos > delta); return pos - delta; } } if ((instr & ~kImm16Mask) == 0) { // Emitted label constant, not part of a branch. if (instr == 0) { return kEndOfChain; } else { int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; return (imm18 + pos); } } // Check we have a branch or jump instruction. DCHECK(IsBranch(instr) || IsLui(instr)); if (IsBranch(instr)) { return AddBranchOffset(pos, instr); } else { Instr instr1 = instr_at(pos + 0 * Assembler::kInstrSize); Instr instr2 = instr_at(pos + 1 * Assembler::kInstrSize); DCHECK(IsOri(instr2) || IsJicOrJialc(instr2)); int32_t imm; if (IsJicOrJialc(instr2)) { imm = CreateTargetAddress(instr1, instr2); } else { imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift; imm |= (instr2 & static_cast<int32_t>(kImm16Mask)); } if (imm == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos); int32_t delta = instr_address - imm; DCHECK(pos > delta); return pos - delta; } } return 0; } static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos, Instr instr) { int32_t bits = OffsetSizeInBits(instr); int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset); DCHECK((imm & 3) == 0); imm >>= 2; const int32_t mask = (1 << bits) - 1; instr &= ~mask; DCHECK(is_intn(imm, bits)); return instr | (imm & mask); } void Assembler::target_at_put(int32_t pos, int32_t target_pos, bool is_internal) { Instr instr = instr_at(pos); if (is_internal) { uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos; instr_at_put(pos, imm); return; } if ((instr & ~kImm16Mask) == 0) { DCHECK(target_pos == kEndOfChain || target_pos >= 0); // Emitted label constant, not part of a branch. // Make label relative to Code* of generated Code object. instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); return; } DCHECK(IsBranch(instr) || IsLui(instr)); if (IsBranch(instr)) { instr = SetBranchOffset(pos, target_pos, instr); instr_at_put(pos, instr); } else { Instr instr1 = instr_at(pos + 0 * Assembler::kInstrSize); Instr instr2 = instr_at(pos + 1 * Assembler::kInstrSize); DCHECK(IsOri(instr2) || IsJicOrJialc(instr2)); uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos; DCHECK((imm & 3) == 0); DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2))); instr1 &= ~kImm16Mask; instr2 &= ~kImm16Mask; if (IsJicOrJialc(instr2)) { uint32_t lui_offset_u, jic_offset_u; UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u); instr_at_put(pos + 0 * Assembler::kInstrSize, instr1 | lui_offset_u); instr_at_put(pos + 1 * Assembler::kInstrSize, instr2 | jic_offset_u); } else { instr_at_put(pos + 0 * Assembler::kInstrSize, instr1 | ((imm & kHiMask) >> kLuiShift)); instr_at_put(pos + 1 * Assembler::kInstrSize, instr2 | (imm & kImm16Mask)); } } } void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm16Mask) == 0) { PrintF("value\n"); } else { PrintF("%d\n", instr); } next(&l, is_internal_reference(&l)); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position. int32_t trampoline_pos = kInvalidSlotPos; bool is_internal = false; if (L->is_linked() && !trampoline_emitted_) { unbound_labels_count_--; if (!is_internal_reference(L)) { next_buffer_check_ += kTrampolineSlotsSize; } } while (L->is_linked()) { int32_t fixup_pos = L->pos(); int32_t dist = pos - fixup_pos; is_internal = is_internal_reference(L); next(L, is_internal); // Call next before overwriting link with target at // fixup_pos. Instr instr = instr_at(fixup_pos); if (is_internal) { target_at_put(fixup_pos, pos, is_internal); } else { if (IsBranch(instr)) { int branch_offset = BranchOffset(instr); if (dist > branch_offset) { if (trampoline_pos == kInvalidSlotPos) { trampoline_pos = get_trampoline_entry(fixup_pos); CHECK(trampoline_pos != kInvalidSlotPos); } CHECK((trampoline_pos - fixup_pos) <= branch_offset); target_at_put(fixup_pos, trampoline_pos, false); fixup_pos = trampoline_pos; } target_at_put(fixup_pos, pos, false); } else { target_at_put(fixup_pos, pos, false); } } } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::bind(Label* L) { DCHECK(!L->is_bound()); // Label can only be bound once. bind_to(L, pc_offset()); } void Assembler::next(Label* L, bool is_internal) { DCHECK(L->is_linked()); int link = target_at(L->pos(), is_internal); if (link == kEndOfChain) { L->Unuse(); } else { DCHECK(link >= 0); L->link_to(link); } } bool Assembler::is_near(Label* L) { DCHECK(L->is_bound()); return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; } bool Assembler::is_near(Label* L, OffsetSize bits) { if (L == nullptr || !L->is_bound()) return true; return pc_offset() - L->pos() < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize; } bool Assembler::is_near_branch(Label* L) { DCHECK(L->is_bound()); return IsMipsArchVariant(kMips32r6) ? is_near_r6(L) : is_near_pre_r6(L); } int Assembler::BranchOffset(Instr instr) { // At pre-R6 and for other R6 branches the offset is 16 bits. int bits = OffsetSize::kOffset16; if (IsMipsArchVariant(kMips32r6)) { uint32_t opcode = GetOpcodeField(instr); switch (opcode) { // Checks BC or BALC. case BC: case BALC: bits = OffsetSize::kOffset26; break; // Checks BEQZC or BNEZC. case POP66: case POP76: if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21; break; default: break; } } return (1 << (bits + 2 - 1)) - 1; } // We have to use a temporary register for things that can be relocated even // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool Assembler::MustUseReg(RelocInfo::Mode rmode) { return !RelocInfo::IsNone(rmode); } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) { DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func) { DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (msb << kRdShift) | (lsb << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid()); Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid()); Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPURegister fs, FPURegister fd, SecondaryField func) { DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid()); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPUControlRegister fs, SecondaryField func) { DCHECK(fs.is_valid() && rt.is_valid()); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; emit(instr); } // Instructions with immediate value. // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (j & kImm16Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | (j & kImm16Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21, CompactBranchType is_compact_branch) { DCHECK(rs.is_valid() && (is_int21(offset21))); Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21) { DCHECK(rs.is_valid() && (is_uint21(offset21))); Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26, CompactBranchType is_compact_branch) { DCHECK(is_int26(offset26)); Instr instr = opcode | (offset26 & kImm26Mask); emit(instr, is_compact_branch); } void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(is_uint26(address)); Instr instr = opcode | address; emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // Returns the next free trampoline entry. int32_t Assembler::get_trampoline_entry(int32_t pos) { int32_t trampoline_entry = kInvalidSlotPos; if (!internal_trampoline_exception_) { if (trampoline_.start() > pos) { trampoline_entry = trampoline_.take_slot(); } if (kInvalidSlotPos == trampoline_entry) { internal_trampoline_exception_ = true; } } return trampoline_entry; } uint32_t Assembler::jump_address(Label* L) { int32_t target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. L->link_to(pc_offset()); } else { L->link_to(pc_offset()); return kEndOfJumpChain; } } uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos; DCHECK((imm & 3) == 0); return imm; } int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) { int32_t target_pos; int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); L->link_to(pc_offset() + pad); } else { L->link_to(pc_offset() + pad); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } return kEndOfChain; } } int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad); DCHECK(is_intn(offset, bits + 2)); DCHECK((offset & 3) == 0); return offset; } void Assembler::label_at_put(Label* L, int at_offset) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. int32_t imm18 = target_pos - at_offset; DCHECK((imm18 & 3) == 0); int32_t imm16 = imm18 >> 2; DCHECK(is_int16(imm16)); instr_at_put(at_offset, (imm16 & kImm16Mask)); } else { target_pos = kEndOfChain; instr_at_put(at_offset, 0); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } } L->link_to(at_offset); } } //------- Branch and jump instructions -------- void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); } void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); } void Assembler::bc(int32_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::balc(int32_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::beq(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BEQ, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgezc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgeuc(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rs.is(zero_reg))); DCHECK(!(rt.is(zero_reg))); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgec(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rs.is(zero_reg))); DCHECK(!(rt.is(zero_reg))); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgezal(Register rs, int16_t offset) { DCHECK(!IsMipsArchVariant(kMips32r6) || rs.is(zero_reg)); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BGTZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtzc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BGTZL, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::blez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BLEZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::blezc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BLEZL, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltzc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!rt.is(zero_reg)); GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltuc(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rs.is(zero_reg))); DCHECK(!(rt.is(zero_reg))); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltc(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!rs.is(zero_reg)); DCHECK(!rt.is(zero_reg)); DCHECK(rs.code() != rt.code()); GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bltz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzal(Register rs, int16_t offset) { DCHECK(!IsMipsArchVariant(kMips32r6) || rs.is(zero_reg)); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bne(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BNE, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bovc(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); if (rs.code() >= rt.code()) { GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::bnvc(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); if (rs.code() >= rt.code()) { GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::blezalc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BLEZ, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgezalc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgezall(Register rs, int16_t offset) { DCHECK(!IsMipsArchVariant(kMips32r6)); DCHECK(!(rs.is(zero_reg))); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZALL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzalc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bgtzalc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(BGTZ, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::beqzalc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(ADDI, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bnezalc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rt.is(zero_reg))); GenInstrImmediate(DADDI, zero_reg, rt, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::beqc(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0); if (rs.code() < rt.code()) { GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::beqzc(Register rs, int32_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rs.is(zero_reg))); GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::bnec(Register rs, Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0); if (rs.code() < rt.code()) { GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH); } else { GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH); } } void Assembler::bnezc(Register rs, int32_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(!(rs.is(zero_reg))); GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH); } void Assembler::j(int32_t target) { #if DEBUG // Get pc of delay slot. uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize); bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >> (kImm26Bits + kImmFieldShift)) == 0; DCHECK(in_range && ((target & 3) == 0)); #endif BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrJump(J, (target >> 2) & kImm26Mask); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jr(Register rs) { if (!IsMipsArchVariant(kMips32r6)) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); BlockTrampolinePoolFor(1); // For associated delay slot. } else { jalr(rs, zero_reg); } } void Assembler::jal(int32_t target) { #ifdef DEBUG // Get pc of delay slot. uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize); bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >> (kImm26Bits + kImmFieldShift)) == 0; DCHECK(in_range && ((target & 3) == 0)); #endif BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrJump(JAL, (target >> 2) & kImm26Mask); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jalr(Register rs, Register rd) { DCHECK(rs.code() != rd.code()); BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jic(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrImmediate(POP66, zero_reg, rt, offset); } void Assembler::jialc(Register rt, int16_t offset) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrImmediate(POP76, zero_reg, rt, offset); } // -------Data-processing-instructions--------- // Arithmetic. void Assembler::addu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); } void Assembler::addiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDIU, rs, rd, j); } void Assembler::subu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); } void Assembler::mul(Register rd, Register rs, Register rt) { if (!IsMipsArchVariant(kMips32r6)) { GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); } else { GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH); } } void Assembler::mulu(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U); } void Assembler::muh(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH); } void Assembler::muhu(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U); } void Assembler::mod(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD); } void Assembler::modu(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U); } void Assembler::mult(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); } void Assembler::multu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); } void Assembler::div(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); } void Assembler::div(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD); } void Assembler::divu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); } void Assembler::divu(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U); } // Logical. void Assembler::and_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); } void Assembler::andi(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(ANDI, rs, rt, j); } void Assembler::or_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); } void Assembler::ori(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(ORI, rs, rt, j); } void Assembler::xor_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); } void Assembler::xori(Register rt, Register rs, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(XORI, rs, rt, j); } void Assembler::nor(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); } // Shifts. void Assembler::sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop) { // Don't allow nop instructions in the form sll zero_reg, zero_reg to be // generated using the sll instruction. They must be generated using // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo // instructions. DCHECK(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL); } void Assembler::sllv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); } void Assembler::srl(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL); } void Assembler::srlv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); } void Assembler::sra(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA); } void Assembler::srav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); } void Assembler::rotr(Register rd, Register rt, uint16_t sa) { // Should be called via MacroAssembler::Ror. DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa)); DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; emit(instr); } void Assembler::rotrv(Register rd, Register rt, Register rs) { // Should be called via MacroAssembler::Ror. DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; emit(instr); } void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) { DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid()); DCHECK(sa <= 3); DCHECK(IsMipsArchVariant(kMips32r6)); Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift | rd.code() << kRdShift | sa << kSaShift | LSA; emit(instr); } // ------------Memory-instructions------------- // Helper for base-reg + offset, when offset is larger than int16. void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { DCHECK(!src.rm().is(at)); if (IsMipsArchVariant(kMips32r6)) { int32_t hi = (src.offset_ >> kLuiShift) & kImm16Mask; if (src.offset_ & kNegOffset) { hi += 1; } aui(at, src.rm(), hi); addiu(at, at, src.offset_ & kImm16Mask); } else { lui(at, (src.offset_ >> kLuiShift) & kImm16Mask); ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. addu(at, at, src.rm()); // Add base register. } } // Helper for base-reg + upper part of offset, when offset is larger than int16. // Loads higher part of the offset to AT register. // Returns lower part of the offset to be used as offset // in Load/Store instructions int32_t Assembler::LoadRegPlusUpperOffsetPartToAt(const MemOperand& src) { DCHECK(!src.rm().is(at)); int32_t hi = (src.offset_ >> kLuiShift) & kImm16Mask; // If the highest bit of the lower part of the offset is 1, this would make // the offset in the load/store instruction negative. We need to compensate // for this by adding 1 to the upper part of the offset. if (src.offset_ & kNegOffset) { hi += 1; } if (IsMipsArchVariant(kMips32r6)) { aui(at, src.rm(), hi); } else { lui(at, hi); addu(at, at, src.rm()); } return (src.offset_ & kImm16Mask); } // Helper for loading base-reg + upper offset's part to AT reg when we are using // two 32-bit loads/stores instead of one 64-bit int32_t Assembler::LoadUpperOffsetForTwoMemoryAccesses(const MemOperand& src) { DCHECK(!src.rm().is(at)); if (is_int16((src.offset_ & kImm16Mask) + kIntSize)) { // Only if lower part of offset + kIntSize fits in 16bits return LoadRegPlusUpperOffsetPartToAt(src); } // In case offset's lower part + kIntSize doesn't fit in 16bits, // load reg + hole offset to AT LoadRegPlusOffsetToAt(src); return 0; } void Assembler::lb(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(LB, at, rd, off16); } } void Assembler::lbu(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(LBU, at, rd, off16); } } void Assembler::lh(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(LH, at, rd, off16); } } void Assembler::lhu(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(LHU, at, rd, off16); } } void Assembler::lw(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(LW, at, rd, off16); } } void Assembler::lwl(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); } void Assembler::lwr(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); } void Assembler::sb(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(SB, at, rd, off16); } } void Assembler::sh(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(SH, at, rd, off16); } } void Assembler::sw(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(rs); GenInstrImmediate(SW, at, rd, off16); } } void Assembler::swl(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); } void Assembler::swr(Register rd, const MemOperand& rs) { DCHECK(is_int16(rs.offset_)); DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2)); GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); } void Assembler::lui(Register rd, int32_t j) { DCHECK(is_uint16(j)); GenInstrImmediate(LUI, zero_reg, rd, j); } void Assembler::aui(Register rt, Register rs, int32_t j) { // This instruction uses same opcode as 'lui'. The difference in encoding is // 'lui' has zero reg. for rs field. DCHECK(!(rs.is(zero_reg))); DCHECK(is_uint16(j)); GenInstrImmediate(LUI, rs, rt, j); } // ---------PC-Relative instructions----------- void Assembler::addiupc(Register rs, int32_t imm19) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(rs.is_valid() && is_int19(imm19)); uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::lwpc(Register rs, int32_t offset19) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(rs.is_valid() && is_int19(offset19)); uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::auipc(Register rs, int16_t imm16) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(rs.is_valid()); uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask); GenInstrImmediate(PCREL, rs, imm21); } void Assembler::aluipc(Register rs, int16_t imm16) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(rs.is_valid()); uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask); GenInstrImmediate(PCREL, rs, imm21); } // -------------Misc-instructions-------------- // Break / Trap instructions. void Assembler::break_(uint32_t code, bool break_as_stop) { DCHECK((code & ~0xfffff) == 0); // We need to invalidate breaks that could be stops as well because the // simulator expects a char pointer after the stop instruction. // See constants-mips.h for explanation. DCHECK((break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) || (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode))); Instr break_instr = SPECIAL | BREAK | (code << 6); emit(break_instr); } void Assembler::stop(const char* msg, uint32_t code) { DCHECK(code > kMaxWatchpointCode); DCHECK(code <= kMaxStopCode); #if V8_HOST_ARCH_MIPS break_(0x54321); #else // V8_HOST_ARCH_MIPS BlockTrampolinePoolFor(2); // The Simulator will handle the stop instruction and get the message address. // On MIPS stop() is just a special kind of break_(). break_(code, true); // Do not embed the message string address! We used to do this, but that // made snapshots created from position-independent executable builds // non-deterministic. // TODO(yangguo): remove this field entirely. nop(); #endif } void Assembler::tge(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tgeu(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tlt(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tltu(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::teq(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tne(Register rs, Register rt, uint16_t code) { DCHECK(is_uint10(code)); Instr instr = SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::sync() { Instr sync_instr = SPECIAL | SYNC; emit(sync_instr); } // Move from HI/LO register. void Assembler::mfhi(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); } void Assembler::mflo(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); } // Set on less than instructions. void Assembler::slt(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); } void Assembler::sltu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); } void Assembler::slti(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTI, rs, rt, j); } void Assembler::sltiu(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTIU, rs, rt, j); } // Conditional move. void Assembler::movz(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); } void Assembler::movn(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); } void Assembler::movt(Register rd, Register rs, uint16_t cc) { Register rt; rt.reg_code = (cc & 0x0007) << 2 | 1; GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } void Assembler::movf(Register rd, Register rs, uint16_t cc) { Register rt; rt.reg_code = (cc & 0x0007) << 2 | 0; GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } void Assembler::seleqz(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S); } // Bit twiddling. void Assembler::clz(Register rd, Register rs) { if (!IsMipsArchVariant(kMips32r6)) { // Clz instr requires same GPR number in 'rd' and 'rt' fields. GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); } else { GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6); } } void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ins. // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); } void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ext. // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); } void Assembler::bitswap(Register rd, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL); } void Assembler::pref(int32_t hint, const MemOperand& rs) { DCHECK(!IsMipsArchVariant(kLoongson)); DCHECK(is_uint5(hint) && is_uint16(rs.offset_)); Instr instr = PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_); emit(instr); } void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK(is_uint3(bp)); uint16_t sa = (ALIGN << kBp2Bits) | bp; GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL); } // Byte swap. void Assembler::wsbh(Register rd, Register rt) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL); } void Assembler::seh(Register rd, Register rt) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL); } void Assembler::seb(Register rd, Register rt) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL); } // --------Coprocessor-instructions---------------- // Load, store, move. void Assembler::lwc1(FPURegister fd, const MemOperand& src) { if (is_int16(src.offset_)) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(src); GenInstrImmediate(LWC1, at, fd, off16); } } void Assembler::ldc1(FPURegister fd, const MemOperand& src) { // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit // load to two 32-bit loads. if (IsFp32Mode()) { // fp32 mode. if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_ + Register::kMantissaOffset); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + Register::kExponentOffset); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadUpperOffsetForTwoMemoryAccesses(src); GenInstrImmediate(LWC1, at, fd, off16 + Register::kMantissaOffset); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(LWC1, at, nextfpreg, off16 + Register::kExponentOffset); } } else { DCHECK(IsFp64Mode() || IsFpxxMode()); // Currently we support FPXX and FP64 on Mips32r2 and Mips32r6 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_ + Register::kMantissaOffset); GenInstrImmediate(LW, src.rm(), at, src.offset_ + Register::kExponentOffset); mthc1(at, fd); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadUpperOffsetForTwoMemoryAccesses(src); GenInstrImmediate(LWC1, at, fd, off16 + Register::kMantissaOffset); GenInstrImmediate(LW, at, at, off16 + Register::kExponentOffset); mthc1(at, fd); } } } void Assembler::swc1(FPURegister fd, const MemOperand& src) { if (is_int16(src.offset_)) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadRegPlusUpperOffsetPartToAt(src); GenInstrImmediate(SWC1, at, fd, off16); } } void Assembler::sdc1(FPURegister fd, const MemOperand& src) { // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit // store to two 32-bit stores. DCHECK(!src.rm().is(at)); DCHECK(!src.rm().is(t8)); if (IsFp32Mode()) { // fp32 mode. if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_ + Register::kMantissaOffset); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + Register::kExponentOffset); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadUpperOffsetForTwoMemoryAccesses(src); GenInstrImmediate(SWC1, at, fd, off16 + Register::kMantissaOffset); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(SWC1, at, nextfpreg, off16 + Register::kExponentOffset); } } else { DCHECK(IsFp64Mode() || IsFpxxMode()); // Currently we support FPXX and FP64 on Mips32r2 and Mips32r6 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); if (is_int16(src.offset_) && is_int16(src.offset_ + kIntSize)) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_ + Register::kMantissaOffset); mfhc1(at, fd); GenInstrImmediate(SW, src.rm(), at, src.offset_ + Register::kExponentOffset); } else { // Offset > 16 bits, use multiple instructions to load. int32_t off16 = LoadUpperOffsetForTwoMemoryAccesses(src); GenInstrImmediate(SWC1, at, fd, off16 + Register::kMantissaOffset); mfhc1(t8, fd); GenInstrImmediate(SW, at, t8, off16 + Register::kExponentOffset); } } } void Assembler::mtc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTC1, rt, fs, f0); } void Assembler::mthc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTHC1, rt, fs, f0); } void Assembler::mfc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MFC1, rt, fs, f0); } void Assembler::mfhc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MFHC1, rt, fs, f0); } void Assembler::ctc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CTC1, rt, fs); } void Assembler::cfc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CFC1, rt, fs); } void Assembler::DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) { uint64_t i; memcpy(&i, &d, 8); *lo = i & 0xffffffff; *hi = i >> 32; } void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) { DCHECK(!IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C); } void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) { DCHECK(!IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C); } void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, SEL); } void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) { sel(S, fd, fs, ft); } void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) { sel(D, fd, fs, ft); } void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C); } void Assembler::selnez(Register rd, Register rs, Register rt) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S); } void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C); } void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) { seleqz(D, fd, fs, ft); } void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) { seleqz(S, fd, fs, ft); } void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) { selnez(D, fd, fs, ft); } void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) { selnez(S, fd, fs, ft); } void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) { DCHECK(!IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C); } void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) { DCHECK(!IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C); } void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK(!IsMipsArchVariant(kMips32r6)); FPURegister ft; ft.reg_code = (cc & 0x0007) << 2 | 1; GenInstrRegister(COP1, S, ft, fs, fd, MOVF); } void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK(!IsMipsArchVariant(kMips32r6)); FPURegister ft; ft.reg_code = (cc & 0x0007) << 2 | 1; GenInstrRegister(COP1, D, ft, fs, fd, MOVF); } void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK(!IsMipsArchVariant(kMips32r6)); FPURegister ft; ft.reg_code = (cc & 0x0007) << 2 | 0; GenInstrRegister(COP1, S, ft, fs, fd, MOVF); } void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) { DCHECK(!IsMipsArchVariant(kMips32r6)); FPURegister ft; ft.reg_code = (cc & 0x0007) << 2 | 0; GenInstrRegister(COP1, D, ft, fs, fd, MOVF); } // Arithmetic. void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, ADD_S); } void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); } void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, SUB_S); } void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); } void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, MUL_S); } void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); } void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r2)); GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_S); } void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r2)); GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D); } void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r2)); GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_S); } void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r2)); GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_D); } void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S); } void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D); } void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S); } void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D); } void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, S, ft, fs, fd, DIV_S); } void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); } void Assembler::abs_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ABS_S); } void Assembler::abs_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); } void Assembler::mov_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); } void Assembler::mov_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, MOV_S); } void Assembler::neg_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, NEG_S); } void Assembler::neg_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); } void Assembler::sqrt_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, SQRT_S); } void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); } void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S); } void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D); } void Assembler::recip_d(FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D); } void Assembler::recip_s(FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S); } // Conversions. void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); } void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); } void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); } void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); } void Assembler::round_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); } void Assembler::round_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); } void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); } void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); } void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); } void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); } void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); } void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, f0, fs, fd, RINT); } void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); } void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); } void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); } void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); } void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); } void Assembler::round_l_s(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); } void Assembler::round_l_d(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); } void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); } void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); } void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); } void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); } void Assembler::class_s(FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S); } void Assembler::class_d(FPURegister fd, FPURegister fs) { DCHECK(IsMipsArchVariant(kMips32r6)); GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D); } void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MIN); } void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MINA); } void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MAX); } void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt == D) || (fmt == S)); GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA); } void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) { min(S, fd, fs, ft); } void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) { min(D, fd, fs, ft); } void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) { max(S, fd, fs, ft); } void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) { max(D, fd, fs, ft); } void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) { mina(S, fd, fs, ft); } void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) { mina(D, fd, fs, ft); } void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) { maxa(S, fd, fs, ft); } void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) { maxa(D, fd, fs, ft); } void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); } void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); } void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); } void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); } void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()); GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); } void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); } // Conditions for >= MIPSr6. void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); DCHECK((fmt & ~(31 << kRsShift)) == 0); Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift | fd.code() << kFdShift | (0 << 5) | cond; emit(instr); } void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft) { cmp(cond, W, fd, fs, ft); } void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft) { cmp(cond, L, fd, fs, ft); } void Assembler::bc1eqz(int16_t offset, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask); emit(instr); } void Assembler::bc1nez(int16_t offset, FPURegister ft) { DCHECK(IsMipsArchVariant(kMips32r6)); Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask); emit(instr); } // Conditions for < MIPSr6. void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs, FPURegister ft, uint16_t cc) { DCHECK(is_uint3(cc)); DCHECK(fmt == S || fmt == D); DCHECK((fmt & ~(31 << kRsShift)) == 0); Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 | 3 << 4 | cond; emit(instr); } void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft, uint16_t cc) { c(cond, S, fs, ft, cc); } void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft, uint16_t cc) { c(cond, D, fs, ft, cc); } void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) { DCHECK(src2 == 0.0); mtc1(zero_reg, f14); cvt_d_w(f14, f14); c(cond, D, src1, f14, 0); } void Assembler::bc1f(int16_t offset, uint16_t cc) { DCHECK(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); emit(instr); } void Assembler::bc1t(int16_t offset, uint16_t cc) { DCHECK(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); emit(instr); } int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, intptr_t pc_delta) { Instr instr = instr_at(pc); if (RelocInfo::IsInternalReference(rmode)) { int32_t* p = reinterpret_cast<int32_t*>(pc); if (*p == 0) { return 0; // Number of instructions patched. } *p += pc_delta; return 1; // Number of instructions patched. } else { DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode)); if (IsLui(instr)) { Instr instr1 = instr_at(pc + 0 * Assembler::kInstrSize); Instr instr2 = instr_at(pc + 1 * Assembler::kInstrSize); DCHECK(IsOri(instr2) || IsJicOrJialc(instr2)); int32_t imm; if (IsJicOrJialc(instr2)) { imm = CreateTargetAddress(instr1, instr2); } else { imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift; imm |= (instr2 & static_cast<int32_t>(kImm16Mask)); } if (imm == kEndOfJumpChain) { return 0; // Number of instructions patched. } imm += pc_delta; DCHECK((imm & 3) == 0); instr1 &= ~kImm16Mask; instr2 &= ~kImm16Mask; if (IsJicOrJialc(instr2)) { uint32_t lui_offset_u, jic_offset_u; Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u); instr_at_put(pc + 0 * Assembler::kInstrSize, instr1 | lui_offset_u); instr_at_put(pc + 1 * Assembler::kInstrSize, instr2 | jic_offset_u); } else { instr_at_put(pc + 0 * Assembler::kInstrSize, instr1 | ((imm >> kLuiShift) & kImm16Mask)); instr_at_put(pc + 1 * Assembler::kInstrSize, instr2 | (imm & kImm16Mask)); } return 2; // Number of instructions patched. } else { UNREACHABLE(); return 0; } } } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // The new buffer. if (buffer_size_ < 1 * MB) { desc.buffer_size = 2*buffer_size_; } else { desc.buffer_size = buffer_size_ + 1*MB; } CHECK_GT(desc.buffer_size, 0); // No overflow. // Set up new buffer. desc.buffer = NewArray<byte>(desc.buffer_size); desc.origin = this; desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); MemMove(desc.buffer, buffer_, desc.instr_size); MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // Relocate runtime entries. for (RelocIterator it(desc); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::INTERNAL_REFERENCE_ENCODED || rmode == RelocInfo::INTERNAL_REFERENCE) { byte* p = reinterpret_cast<byte*>(it.rinfo()->pc()); RelocateInternalReference(rmode, p, pc_delta); } } DCHECK(!overflow()); } void Assembler::db(uint8_t data) { CheckForEmitInForbiddenSlot(); EmitHelper(data); } void Assembler::dd(uint32_t data) { CheckForEmitInForbiddenSlot(); EmitHelper(data); } void Assembler::dq(uint64_t data) { CheckForEmitInForbiddenSlot(); EmitHelper(data); } void Assembler::dd(Label* label) { uint32_t data; CheckForEmitInForbiddenSlot(); if (label->is_bound()) { data = reinterpret_cast<uint32_t>(buffer_ + label->pos()); } else { data = jump_address(label); unbound_labels_count_++; internal_reference_positions_.insert(label->pos()); } RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); EmitHelper(data); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { // We do not try to reuse pool constants. RelocInfo rinfo(isolate(), pc_, rmode, data, NULL); if (rmode >= RelocInfo::COMMENT && rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL) { // Adjust code for new modes. DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode)); // These modes do not need an entry in the constant pool. } if (!RelocInfo::IsNone(rinfo.rmode())) { // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() && !emit_debug_code()) { return; } DCHECK(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { RelocInfo reloc_info_with_ast_id(isolate(), pc_, rmode, RecordedAstId().ToInt(), NULL); ClearRecordedAstId(); reloc_info_writer.Write(&reloc_info_with_ast_id); } else { reloc_info_writer.Write(&rinfo); } } } void Assembler::BlockTrampolinePoolFor(int instructions) { CheckTrampolinePoolQuick(instructions); BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); } void Assembler::CheckTrampolinePool() { // Some small sequences of instructions must not be broken up by the // insertion of a trampoline pool; such sequences are protected by setting // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, // which are both checked here. Also, recursive calls to CheckTrampolinePool // are blocked by trampoline_pool_blocked_nesting_. if ((trampoline_pool_blocked_nesting_ > 0) || (pc_offset() < no_trampoline_pool_before_)) { // Emission is currently blocked; make sure we try again as soon as // possible. if (trampoline_pool_blocked_nesting_ > 0) { next_buffer_check_ = pc_offset() + kInstrSize; } else { next_buffer_check_ = no_trampoline_pool_before_; } return; } DCHECK(!trampoline_emitted_); DCHECK(unbound_labels_count_ >= 0); if (unbound_labels_count_ > 0) { // First we emit jump (2 instructions), then we emit trampoline pool. { BlockTrampolinePoolScope block_trampoline_pool(this); Label after_pool; if (IsMipsArchVariant(kMips32r6)) { bc(&after_pool); } else { b(&after_pool); nop(); } int pool_start = pc_offset(); if (IsMipsArchVariant(kMips32r6)) { for (int i = 0; i < unbound_labels_count_; i++) { uint32_t imm32; imm32 = jump_address(&after_pool); uint32_t lui_offset, jic_offset; UnpackTargetAddressUnsigned(imm32, lui_offset, jic_offset); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal // references until associated instructions are emitted and // available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED); lui(at, lui_offset); jic(at, jic_offset); } CheckBuffer(); } } else { for (int i = 0; i < unbound_labels_count_; i++) { uint32_t imm32; imm32 = jump_address(&after_pool); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal // references until associated instructions are emitted and // available to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED); lui(at, (imm32 & kHiMask) >> kLuiShift); ori(at, at, (imm32 & kImm16Mask)); } CheckBuffer(); jr(at); nop(); } } bind(&after_pool); trampoline_ = Trampoline(pool_start, unbound_labels_count_); trampoline_emitted_ = true; // As we are only going to emit trampoline once, we need to prevent any // further emission. next_buffer_check_ = kMaxInt; } } else { // Number of branches to unbound label at this point is zero, so we can // move next buffer check to maximum. next_buffer_check_ = pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16; } return; } Address Assembler::target_address_at(Address pc) { Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Interpret 2 instructions generated by li: lui/ori if (IsLui(instr1) && IsOri(instr2)) { // Assemble the 32 bit value. return reinterpret_cast<Address>((GetImmediate16(instr1) << kLuiShift) | GetImmediate16(instr2)); } // We should never get here, force a bad address if we do. UNREACHABLE(); return (Address)0x0; } // MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32 // qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap // snapshot generated on ia32, the resulting MIPS sNaN must be quieted. // OS::nan_value() returns a qNaN. void Assembler::QuietNaN(HeapObject* object) { HeapNumber::cast(object)->set_value(std::numeric_limits<double>::quiet_NaN()); } // On Mips, a target address is stored in a lui/ori instruction pair, each // of which load 16 bits of the 32-bit address to a register. // Patching the address must replace both instr, and flush the i-cache. // On r6, target address is stored in a lui/jic pair, and both instr have to be // patched. // // There is an optimization below, which emits a nop when the address // fits in just 16 bits. This is unlikely to help, and should be benchmarked, // and possibly removed. void Assembler::set_target_address_at(Isolate* isolate, Address pc, Address target, ICacheFlushMode icache_flush_mode) { Instr instr2 = instr_at(pc + kInstrSize); uint32_t rt_code = GetRtField(instr2); uint32_t* p = reinterpret_cast<uint32_t*>(pc); uint32_t itarget = reinterpret_cast<uint32_t>(target); #ifdef DEBUG // Check we have the result from a li macro-instruction, using instr pair. Instr instr1 = instr_at(pc); CHECK(IsLui(instr1) && (IsOri(instr2) || IsJicOrJialc(instr2))); #endif if (IsJicOrJialc(instr2)) { // Must use 2 instructions to insure patchable code => use lui and jic uint32_t lui_offset, jic_offset; Assembler::UnpackTargetAddressUnsigned(itarget, lui_offset, jic_offset); *p &= ~kImm16Mask; *(p + 1) &= ~kImm16Mask; *p |= lui_offset; *(p + 1) |= jic_offset; } else { // Must use 2 instructions to insure patchable code => just use lui and ori. // lui rt, upper-16. // ori rt rt, lower-16. *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); *(p + 1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); } if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate, pc, 2 * sizeof(int32_t)); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS