// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/isolate.h" #include <stdlib.h> #include <fstream> // NOLINT(readability/streams) #include <sstream> #include "src/assembler-inl.h" #include "src/ast/ast-value-factory.h" #include "src/ast/context-slot-cache.h" #include "src/base/hashmap.h" #include "src/base/platform/platform.h" #include "src/base/sys-info.h" #include "src/base/utils/random-number-generator.h" #include "src/basic-block-profiler.h" #include "src/bootstrapper.h" #include "src/cancelable-task.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compilation-statistics.h" #include "src/compiler-dispatcher/compiler-dispatcher.h" #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h" #include "src/crankshaft/hydrogen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/elements.h" #include "src/external-reference-table.h" #include "src/frames-inl.h" #include "src/ic/access-compiler-data.h" #include "src/ic/stub-cache.h" #include "src/interface-descriptors.h" #include "src/interpreter/interpreter.h" #include "src/isolate-inl.h" #include "src/libsampler/sampler.h" #include "src/log.h" #include "src/messages.h" #include "src/profiler/cpu-profiler.h" #include "src/prototype.h" #include "src/regexp/regexp-stack.h" #include "src/runtime-profiler.h" #include "src/simulator.h" #include "src/snapshot/deserializer.h" #include "src/tracing/tracing-category-observer.h" #include "src/v8.h" #include "src/version.h" #include "src/vm-state-inl.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-objects.h" #include "src/zone/accounting-allocator.h" namespace v8 { namespace internal { base::Atomic32 ThreadId::highest_thread_id_ = 0; int ThreadId::AllocateThreadId() { int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1); return new_id; } int ThreadId::GetCurrentThreadId() { int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_); if (thread_id == 0) { thread_id = AllocateThreadId(); base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id); } return thread_id; } ThreadLocalTop::ThreadLocalTop() { InitializeInternal(); } void ThreadLocalTop::InitializeInternal() { c_entry_fp_ = 0; c_function_ = 0; handler_ = 0; #ifdef USE_SIMULATOR simulator_ = NULL; #endif js_entry_sp_ = NULL; external_callback_scope_ = NULL; current_vm_state_ = EXTERNAL; try_catch_handler_ = NULL; context_ = NULL; thread_id_ = ThreadId::Invalid(); external_caught_exception_ = false; failed_access_check_callback_ = NULL; save_context_ = NULL; promise_on_stack_ = NULL; // These members are re-initialized later after deserialization // is complete. pending_exception_ = NULL; rethrowing_message_ = false; pending_message_obj_ = NULL; scheduled_exception_ = NULL; } void ThreadLocalTop::Initialize() { InitializeInternal(); #ifdef USE_SIMULATOR simulator_ = Simulator::current(isolate_); #endif thread_id_ = ThreadId::Current(); } void ThreadLocalTop::Free() { // Match unmatched PopPromise calls. while (promise_on_stack_) isolate_->PopPromise(); } base::Thread::LocalStorageKey Isolate::isolate_key_; base::Thread::LocalStorageKey Isolate::thread_id_key_; base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_; base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER; Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL; base::Atomic32 Isolate::isolate_counter_ = 0; #if DEBUG base::Atomic32 Isolate::isolate_key_created_ = 0; #endif Isolate::PerIsolateThreadData* Isolate::FindOrAllocatePerThreadDataForThisThread() { ThreadId thread_id = ThreadId::Current(); PerIsolateThreadData* per_thread = NULL; { base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer()); per_thread = thread_data_table_->Lookup(this, thread_id); if (per_thread == NULL) { per_thread = new PerIsolateThreadData(this, thread_id); thread_data_table_->Insert(per_thread); } DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread); } return per_thread; } void Isolate::DiscardPerThreadDataForThisThread() { int thread_id_int = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_); if (thread_id_int) { ThreadId thread_id = ThreadId(thread_id_int); DCHECK(!thread_manager_->mutex_owner_.Equals(thread_id)); base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer()); PerIsolateThreadData* per_thread = thread_data_table_->Lookup(this, thread_id); if (per_thread) { DCHECK(!per_thread->thread_state_); thread_data_table_->Remove(per_thread); } } } Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() { ThreadId thread_id = ThreadId::Current(); return FindPerThreadDataForThread(thread_id); } Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread( ThreadId thread_id) { PerIsolateThreadData* per_thread = NULL; { base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer()); per_thread = thread_data_table_->Lookup(this, thread_id); } return per_thread; } void Isolate::InitializeOncePerProcess() { base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer()); CHECK(thread_data_table_ == NULL); isolate_key_ = base::Thread::CreateThreadLocalKey(); #if DEBUG base::NoBarrier_Store(&isolate_key_created_, 1); #endif thread_id_key_ = base::Thread::CreateThreadLocalKey(); per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey(); thread_data_table_ = new Isolate::ThreadDataTable(); } Address Isolate::get_address_from_id(Isolate::AddressId id) { return isolate_addresses_[id]; } char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) { ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage); Iterate(v, thread); return thread_storage + sizeof(ThreadLocalTop); } void Isolate::IterateThread(ThreadVisitor* v, char* t) { ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t); v->VisitThread(this, thread); } void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) { // Visit the roots from the top for a given thread. v->VisitPointer(&thread->pending_exception_); v->VisitPointer(&(thread->pending_message_obj_)); v->VisitPointer(bit_cast<Object**>(&(thread->context_))); v->VisitPointer(&thread->scheduled_exception_); for (v8::TryCatch* block = thread->try_catch_handler(); block != NULL; block = block->next_) { v->VisitPointer(bit_cast<Object**>(&(block->exception_))); v->VisitPointer(bit_cast<Object**>(&(block->message_obj_))); } // Iterate over pointers on native execution stack. for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) { it.frame()->Iterate(v); } } void Isolate::Iterate(ObjectVisitor* v) { ThreadLocalTop* current_t = thread_local_top(); Iterate(v, current_t); } void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) { for (DeferredHandles* deferred = deferred_handles_head_; deferred != NULL; deferred = deferred->next_) { deferred->Iterate(visitor); } } #ifdef DEBUG bool Isolate::IsDeferredHandle(Object** handle) { // Each DeferredHandles instance keeps the handles to one job in the // concurrent recompilation queue, containing a list of blocks. Each block // contains kHandleBlockSize handles except for the first block, which may // not be fully filled. // We iterate through all the blocks to see whether the argument handle // belongs to one of the blocks. If so, it is deferred. for (DeferredHandles* deferred = deferred_handles_head_; deferred != NULL; deferred = deferred->next_) { List<Object**>* blocks = &deferred->blocks_; for (int i = 0; i < blocks->length(); i++) { Object** block_limit = (i == 0) ? deferred->first_block_limit_ : blocks->at(i) + kHandleBlockSize; if (blocks->at(i) <= handle && handle < block_limit) return true; } } return false; } #endif // DEBUG void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) { thread_local_top()->set_try_catch_handler(that); } void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) { DCHECK(thread_local_top()->try_catch_handler() == that); thread_local_top()->set_try_catch_handler(that->next_); } Handle<String> Isolate::StackTraceString() { if (stack_trace_nesting_level_ == 0) { stack_trace_nesting_level_++; HeapStringAllocator allocator; StringStream::ClearMentionedObjectCache(this); StringStream accumulator(&allocator); incomplete_message_ = &accumulator; PrintStack(&accumulator); Handle<String> stack_trace = accumulator.ToString(this); incomplete_message_ = NULL; stack_trace_nesting_level_ = 0; return stack_trace; } else if (stack_trace_nesting_level_ == 1) { stack_trace_nesting_level_++; base::OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); base::OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message_->OutputToStdOut(); return factory()->empty_string(); } else { base::OS::Abort(); // Unreachable return factory()->empty_string(); } } void Isolate::PushStackTraceAndDie(unsigned int magic, void* ptr1, void* ptr2, unsigned int magic2) { const int kMaxStackTraceSize = 32 * KB; Handle<String> trace = StackTraceString(); uint8_t buffer[kMaxStackTraceSize]; int length = Min(kMaxStackTraceSize - 1, trace->length()); String::WriteToFlat(*trace, buffer, 0, length); buffer[length] = '\0'; // TODO(dcarney): convert buffer to utf8? base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2, ptr1, ptr2, reinterpret_cast<char*>(buffer)); base::OS::Abort(); } namespace { class StackTraceHelper { public: StackTraceHelper(Isolate* isolate, FrameSkipMode mode, Handle<Object> caller) : isolate_(isolate), mode_(mode), caller_(caller), skip_next_frame_(true) { switch (mode_) { case SKIP_FIRST: skip_next_frame_ = true; break; case SKIP_UNTIL_SEEN: DCHECK(caller_->IsJSFunction()); skip_next_frame_ = true; break; case SKIP_NONE: skip_next_frame_ = false; break; } encountered_strict_function_ = false; } // Poison stack frames below the first strict mode frame. // The stack trace API should not expose receivers and function // objects on frames deeper than the top-most one with a strict mode // function. bool IsStrictFrame(JSFunction* fun) { if (!encountered_strict_function_) { encountered_strict_function_ = is_strict(fun->shared()->language_mode()); } return encountered_strict_function_; } // Determines whether the given stack frame should be displayed in a stack // trace. bool IsVisibleInStackTrace(JSFunction* fun) { return ShouldIncludeFrame(fun) && IsNotHidden(fun) && IsInSameSecurityContext(fun); } private: // This mechanism excludes a number of uninteresting frames from the stack // trace. This can be be the first frame (which will be a builtin-exit frame // for the error constructor builtin) or every frame until encountering a // user-specified function. bool ShouldIncludeFrame(JSFunction* fun) { switch (mode_) { case SKIP_NONE: return true; case SKIP_FIRST: if (!skip_next_frame_) return true; skip_next_frame_ = false; return false; case SKIP_UNTIL_SEEN: if (skip_next_frame_ && (fun == *caller_)) { skip_next_frame_ = false; return false; } return !skip_next_frame_; } UNREACHABLE(); return false; } bool IsNotHidden(JSFunction* fun) { // Functions defined not in user scripts are not visible unless directly // exposed, in which case the native flag is set. // The --builtins-in-stack-traces command line flag allows including // internal call sites in the stack trace for debugging purposes. if (!FLAG_builtins_in_stack_traces && !fun->shared()->IsUserJavaScript()) { return fun->shared()->native(); } return true; } bool IsInSameSecurityContext(JSFunction* fun) { return isolate_->context()->HasSameSecurityTokenAs(fun->context()); } Isolate* isolate_; const FrameSkipMode mode_; const Handle<Object> caller_; bool skip_next_frame_; bool encountered_strict_function_; }; // TODO(jgruber): Fix all cases in which frames give us a hole value (e.g. the // receiver in RegExp constructor frames. Handle<Object> TheHoleToUndefined(Isolate* isolate, Handle<Object> in) { return (in->IsTheHole(isolate)) ? Handle<Object>::cast(isolate->factory()->undefined_value()) : in; } bool GetStackTraceLimit(Isolate* isolate, int* result) { Handle<JSObject> error = isolate->error_function(); Handle<String> key = isolate->factory()->stackTraceLimit_string(); Handle<Object> stack_trace_limit = JSReceiver::GetDataProperty(error, key); if (!stack_trace_limit->IsNumber()) return false; // Ensure that limit is not negative. *result = Max(FastD2IChecked(stack_trace_limit->Number()), 0); return true; } } // namespace Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSReceiver> error_object, FrameSkipMode mode, Handle<Object> caller) { DisallowJavascriptExecution no_js(this); int limit; if (!GetStackTraceLimit(this, &limit)) return factory()->undefined_value(); const int initial_size = Min(limit, 10); Handle<FrameArray> elements = factory()->NewFrameArray(initial_size); StackTraceHelper helper(this, mode, caller); for (StackFrameIterator iter(this); !iter.done() && elements->FrameCount() < limit; iter.Advance()) { StackFrame* frame = iter.frame(); switch (frame->type()) { case StackFrame::JAVA_SCRIPT: case StackFrame::OPTIMIZED: case StackFrame::INTERPRETED: case StackFrame::BUILTIN: { JavaScriptFrame* js_frame = JavaScriptFrame::cast(frame); // Set initial size to the maximum inlining level + 1 for the outermost // function. List<FrameSummary> frames(FLAG_max_inlining_levels + 1); js_frame->Summarize(&frames); for (int i = frames.length() - 1; i >= 0; i--) { const auto& summ = frames[i].AsJavaScript(); Handle<JSFunction> fun = summ.function(); // Filter out internal frames that we do not want to show. if (!helper.IsVisibleInStackTrace(*fun)) continue; Handle<Object> recv = frames[i].receiver(); Handle<AbstractCode> abstract_code = summ.abstract_code(); const int offset = frames[i].code_offset(); bool force_constructor = false; if (frame->type() == StackFrame::BUILTIN) { // Help CallSite::IsConstructor correctly detect hand-written // construct stubs. if (Code::cast(*abstract_code)->is_construct_stub()) { force_constructor = true; } } int flags = 0; if (helper.IsStrictFrame(*fun)) flags |= FrameArray::kIsStrict; if (force_constructor) flags |= FrameArray::kForceConstructor; elements = FrameArray::AppendJSFrame( elements, TheHoleToUndefined(this, recv), fun, abstract_code, offset, flags); } } break; case StackFrame::BUILTIN_EXIT: { BuiltinExitFrame* exit_frame = BuiltinExitFrame::cast(frame); Handle<JSFunction> fun = handle(exit_frame->function(), this); // Filter out internal frames that we do not want to show. if (!helper.IsVisibleInStackTrace(*fun)) continue; Handle<Object> recv(exit_frame->receiver(), this); Handle<Code> code(exit_frame->LookupCode(), this); const int offset = static_cast<int>(exit_frame->pc() - code->instruction_start()); int flags = 0; if (helper.IsStrictFrame(*fun)) flags |= FrameArray::kIsStrict; if (exit_frame->IsConstructor()) flags |= FrameArray::kForceConstructor; elements = FrameArray::AppendJSFrame(elements, recv, fun, Handle<AbstractCode>::cast(code), offset, flags); } break; case StackFrame::WASM_COMPILED: { WasmCompiledFrame* wasm_frame = WasmCompiledFrame::cast(frame); Handle<WasmInstanceObject> instance(wasm_frame->wasm_instance(), this); const int wasm_function_index = wasm_frame->function_index(); Code* code = wasm_frame->unchecked_code(); Handle<AbstractCode> abstract_code(AbstractCode::cast(code), this); const int offset = static_cast<int>(wasm_frame->pc() - code->instruction_start()); int flags = 0; if (instance->compiled_module()->is_asm_js()) { flags |= FrameArray::kIsAsmJsWasmFrame; if (wasm_frame->at_to_number_conversion()) { flags |= FrameArray::kAsmJsAtNumberConversion; } } else { flags |= FrameArray::kIsWasmFrame; } elements = FrameArray::AppendWasmFrame(elements, instance, wasm_function_index, abstract_code, offset, flags); } break; case StackFrame::WASM_INTERPRETER_ENTRY: // TODO(clemensh): Add frames. break; default: break; } } elements->ShrinkToFit(); // TODO(yangguo): Queue this structured stack trace for preprocessing on GC. return factory()->NewJSArrayWithElements(elements); } MaybeHandle<JSReceiver> Isolate::CaptureAndSetDetailedStackTrace( Handle<JSReceiver> error_object) { if (capture_stack_trace_for_uncaught_exceptions_) { // Capture stack trace for a detailed exception message. Handle<Name> key = factory()->detailed_stack_trace_symbol(); Handle<JSArray> stack_trace = CaptureCurrentStackTrace( stack_trace_for_uncaught_exceptions_frame_limit_, stack_trace_for_uncaught_exceptions_options_); RETURN_ON_EXCEPTION( this, JSReceiver::SetProperty(error_object, key, stack_trace, STRICT), JSReceiver); } return error_object; } MaybeHandle<JSReceiver> Isolate::CaptureAndSetSimpleStackTrace( Handle<JSReceiver> error_object, FrameSkipMode mode, Handle<Object> caller) { // Capture stack trace for simple stack trace string formatting. Handle<Name> key = factory()->stack_trace_symbol(); Handle<Object> stack_trace = CaptureSimpleStackTrace(error_object, mode, caller); RETURN_ON_EXCEPTION( this, JSReceiver::SetProperty(error_object, key, stack_trace, STRICT), JSReceiver); return error_object; } Handle<JSArray> Isolate::GetDetailedStackTrace(Handle<JSObject> error_object) { Handle<Name> key_detailed = factory()->detailed_stack_trace_symbol(); Handle<Object> stack_trace = JSReceiver::GetDataProperty(error_object, key_detailed); if (stack_trace->IsJSArray()) return Handle<JSArray>::cast(stack_trace); return Handle<JSArray>(); } class CaptureStackTraceHelper { public: CaptureStackTraceHelper(Isolate* isolate, StackTrace::StackTraceOptions options) : isolate_(isolate) { if (options & StackTrace::kColumnOffset) { column_key_ = factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column")); } if (options & StackTrace::kLineNumber) { line_key_ = factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber")); } if (options & StackTrace::kScriptId) { script_id_key_ = factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId")); } if (options & StackTrace::kScriptName) { script_name_key_ = factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName")); } if (options & StackTrace::kScriptNameOrSourceURL) { script_name_or_source_url_key_ = factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("scriptNameOrSourceURL")); } if (options & StackTrace::kFunctionName) { function_key_ = factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("functionName")); } if (options & StackTrace::kIsEval) { eval_key_ = factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval")); } if (options & StackTrace::kIsConstructor) { constructor_key_ = factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("isConstructor")); } } Handle<JSObject> NewStackFrameObject(FrameSummary& summ) { if (summ.IsJavaScript()) return NewStackFrameObject(summ.AsJavaScript()); if (summ.IsWasm()) return NewStackFrameObject(summ.AsWasm()); UNREACHABLE(); return Handle<JSObject>::null(); } Handle<JSObject> NewStackFrameObject( const FrameSummary::JavaScriptFrameSummary& summ) { Handle<JSObject> stack_frame = factory()->NewJSObject(isolate_->object_function()); Handle<Script> script = Handle<Script>::cast(summ.script()); if (!line_key_.is_null()) { Script::PositionInfo info; bool valid_pos = Script::GetPositionInfo(script, summ.SourcePosition(), &info, Script::WITH_OFFSET); if (!column_key_.is_null() && valid_pos) { JSObject::AddProperty(stack_frame, column_key_, handle(Smi::FromInt(info.column + 1), isolate_), NONE); } JSObject::AddProperty(stack_frame, line_key_, handle(Smi::FromInt(info.line + 1), isolate_), NONE); } if (!script_id_key_.is_null()) { JSObject::AddProperty(stack_frame, script_id_key_, handle(Smi::FromInt(script->id()), isolate_), NONE); } if (!script_name_key_.is_null()) { JSObject::AddProperty(stack_frame, script_name_key_, handle(script->name(), isolate_), NONE); } if (!script_name_or_source_url_key_.is_null()) { Handle<Object> result(script->GetNameOrSourceURL(), isolate_); JSObject::AddProperty(stack_frame, script_name_or_source_url_key_, result, NONE); } if (!eval_key_.is_null()) { Handle<Object> is_eval = factory()->ToBoolean( script->compilation_type() == Script::COMPILATION_TYPE_EVAL); JSObject::AddProperty(stack_frame, eval_key_, is_eval, NONE); } if (!function_key_.is_null()) { Handle<String> fun_name = summ.FunctionName(); JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE); } if (!constructor_key_.is_null()) { Handle<Object> is_constructor_obj = factory()->ToBoolean(summ.is_constructor()); JSObject::AddProperty(stack_frame, constructor_key_, is_constructor_obj, NONE); } return stack_frame; } Handle<JSObject> NewStackFrameObject(BuiltinExitFrame* frame) { Handle<JSObject> stack_frame = factory()->NewJSObject(isolate_->object_function()); Handle<JSFunction> fun = handle(frame->function(), isolate_); if (!function_key_.is_null()) { Handle<Object> fun_name = JSFunction::GetDebugName(fun); JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE); } // We don't have a script and hence cannot set line and col positions. DCHECK(!fun->shared()->script()->IsScript()); return stack_frame; } Handle<JSObject> NewStackFrameObject( const FrameSummary::WasmFrameSummary& summ) { Handle<JSObject> stack_frame = factory()->NewJSObject(isolate_->object_function()); if (!function_key_.is_null()) { Handle<WasmCompiledModule> compiled_module( summ.wasm_instance()->compiled_module(), isolate_); Handle<String> name = WasmCompiledModule::GetFunctionName( isolate_, compiled_module, summ.function_index()); JSObject::AddProperty(stack_frame, function_key_, name, NONE); } // Encode the function index as line number (1-based). if (!line_key_.is_null()) { JSObject::AddProperty( stack_frame, line_key_, isolate_->factory()->NewNumberFromInt(summ.function_index() + 1), NONE); } // Encode the byte offset as column (1-based). if (!column_key_.is_null()) { int position = summ.byte_offset(); // Make position 1-based. if (position >= 0) ++position; JSObject::AddProperty(stack_frame, column_key_, isolate_->factory()->NewNumberFromInt(position), NONE); } if (!script_id_key_.is_null()) { int script_id = summ.script()->id(); JSObject::AddProperty(stack_frame, script_id_key_, handle(Smi::FromInt(script_id), isolate_), NONE); } return stack_frame; } private: inline Factory* factory() { return isolate_->factory(); } Isolate* isolate_; Handle<String> column_key_; Handle<String> line_key_; Handle<String> script_id_key_; Handle<String> script_name_key_; Handle<String> script_name_or_source_url_key_; Handle<String> function_key_; Handle<String> eval_key_; Handle<String> constructor_key_; }; Handle<JSArray> Isolate::CaptureCurrentStackTrace( int frame_limit, StackTrace::StackTraceOptions options) { DisallowJavascriptExecution no_js(this); CaptureStackTraceHelper helper(this, options); // Ensure no negative values. int limit = Max(frame_limit, 0); Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit); Handle<FixedArray> stack_trace_elems( FixedArray::cast(stack_trace->elements()), this); int frames_seen = 0; for (StackTraceFrameIterator it(this); !it.done() && (frames_seen < limit); it.Advance()) { StandardFrame* frame = it.frame(); // Set initial size to the maximum inlining level + 1 for the outermost // function. List<FrameSummary> frames(FLAG_max_inlining_levels + 1); frame->Summarize(&frames); for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) { // Filter frames from other security contexts. if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) && !this->context()->HasSameSecurityTokenAs(*frames[i].native_context())) continue; Handle<JSObject> new_frame_obj = helper.NewStackFrameObject(frames[i]); stack_trace_elems->set(frames_seen, *new_frame_obj); frames_seen++; } } stack_trace->set_length(Smi::FromInt(frames_seen)); return stack_trace; } void Isolate::PrintStack(FILE* out, PrintStackMode mode) { if (stack_trace_nesting_level_ == 0) { stack_trace_nesting_level_++; StringStream::ClearMentionedObjectCache(this); HeapStringAllocator allocator; StringStream accumulator(&allocator); incomplete_message_ = &accumulator; PrintStack(&accumulator, mode); accumulator.OutputToFile(out); InitializeLoggingAndCounters(); accumulator.Log(this); incomplete_message_ = NULL; stack_trace_nesting_level_ = 0; } else if (stack_trace_nesting_level_ == 1) { stack_trace_nesting_level_++; base::OS::PrintError( "\n\nAttempt to print stack while printing stack (double fault)\n"); base::OS::PrintError( "If you are lucky you may find a partial stack dump on stdout.\n\n"); incomplete_message_->OutputToFile(out); } } static void PrintFrames(Isolate* isolate, StringStream* accumulator, StackFrame::PrintMode mode) { StackFrameIterator it(isolate); for (int i = 0; !it.done(); it.Advance()) { it.frame()->Print(accumulator, mode, i++); } } void Isolate::PrintStack(StringStream* accumulator, PrintStackMode mode) { // The MentionedObjectCache is not GC-proof at the moment. DisallowHeapAllocation no_gc; HandleScope scope(this); DCHECK(accumulator->IsMentionedObjectCacheClear(this)); // Avoid printing anything if there are no frames. if (c_entry_fp(thread_local_top()) == 0) return; accumulator->Add( "\n==== JS stack trace =========================================\n\n"); PrintFrames(this, accumulator, StackFrame::OVERVIEW); if (mode == kPrintStackVerbose) { accumulator->Add( "\n==== Details ================================================\n\n"); PrintFrames(this, accumulator, StackFrame::DETAILS); accumulator->PrintMentionedObjectCache(this); } accumulator->Add("=====================\n\n"); } void Isolate::SetFailedAccessCheckCallback( v8::FailedAccessCheckCallback callback) { thread_local_top()->failed_access_check_callback_ = callback; } void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver) { if (!thread_local_top()->failed_access_check_callback_) { return ScheduleThrow(*factory()->NewTypeError(MessageTemplate::kNoAccess)); } DCHECK(receiver->IsAccessCheckNeeded()); DCHECK(context()); // Get the data object from access check info. HandleScope scope(this); Handle<Object> data; { DisallowHeapAllocation no_gc; AccessCheckInfo* access_check_info = AccessCheckInfo::Get(this, receiver); if (!access_check_info) { AllowHeapAllocation doesnt_matter_anymore; return ScheduleThrow( *factory()->NewTypeError(MessageTemplate::kNoAccess)); } data = handle(access_check_info->data(), this); } // Leaving JavaScript. VMState<EXTERNAL> state(this); thread_local_top()->failed_access_check_callback_( v8::Utils::ToLocal(receiver), v8::ACCESS_HAS, v8::Utils::ToLocal(data)); } bool Isolate::MayAccess(Handle<Context> accessing_context, Handle<JSObject> receiver) { DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded()); // Check for compatibility between the security tokens in the // current lexical context and the accessed object. // During bootstrapping, callback functions are not enabled yet. if (bootstrapper()->IsActive()) return true; { DisallowHeapAllocation no_gc; if (receiver->IsJSGlobalProxy()) { Object* receiver_context = JSGlobalProxy::cast(*receiver)->native_context(); if (!receiver_context->IsContext()) return false; // Get the native context of current top context. // avoid using Isolate::native_context() because it uses Handle. Context* native_context = accessing_context->global_object()->native_context(); if (receiver_context == native_context) return true; if (Context::cast(receiver_context)->security_token() == native_context->security_token()) return true; } } HandleScope scope(this); Handle<Object> data; v8::AccessCheckCallback callback = nullptr; { DisallowHeapAllocation no_gc; AccessCheckInfo* access_check_info = AccessCheckInfo::Get(this, receiver); if (!access_check_info) return false; Object* fun_obj = access_check_info->callback(); callback = v8::ToCData<v8::AccessCheckCallback>(fun_obj); data = handle(access_check_info->data(), this); } LOG(this, ApiSecurityCheck()); { // Leaving JavaScript. VMState<EXTERNAL> state(this); return callback(v8::Utils::ToLocal(accessing_context), v8::Utils::ToLocal(receiver), v8::Utils::ToLocal(data)); } } Object* Isolate::StackOverflow() { if (FLAG_abort_on_stack_overflow) { FATAL("Aborting on stack overflow"); } DisallowJavascriptExecution no_js(this); HandleScope scope(this); Handle<JSFunction> fun = range_error_function(); Handle<Object> msg = factory()->NewStringFromAsciiChecked( MessageTemplate::TemplateString(MessageTemplate::kStackOverflow)); Handle<Object> no_caller; Handle<Object> exception; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( this, exception, ErrorUtils::Construct(this, fun, fun, msg, SKIP_NONE, no_caller, true)); Throw(*exception, nullptr); #ifdef VERIFY_HEAP if (FLAG_verify_heap && FLAG_stress_compaction) { heap()->CollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kTesting); } #endif // VERIFY_HEAP return heap()->exception(); } Object* Isolate::TerminateExecution() { return Throw(heap_.termination_exception(), nullptr); } void Isolate::CancelTerminateExecution() { if (try_catch_handler()) { try_catch_handler()->has_terminated_ = false; } if (has_pending_exception() && pending_exception() == heap_.termination_exception()) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); } if (has_scheduled_exception() && scheduled_exception() == heap_.termination_exception()) { thread_local_top()->external_caught_exception_ = false; clear_scheduled_exception(); } } void Isolate::RequestInterrupt(InterruptCallback callback, void* data) { ExecutionAccess access(this); api_interrupts_queue_.push(InterruptEntry(callback, data)); stack_guard()->RequestApiInterrupt(); } void Isolate::InvokeApiInterruptCallbacks() { RuntimeCallTimerScope runtimeTimer( this, &RuntimeCallStats::InvokeApiInterruptCallbacks); // Note: callback below should be called outside of execution access lock. while (true) { InterruptEntry entry; { ExecutionAccess access(this); if (api_interrupts_queue_.empty()) return; entry = api_interrupts_queue_.front(); api_interrupts_queue_.pop(); } VMState<EXTERNAL> state(this); HandleScope handle_scope(this); entry.first(reinterpret_cast<v8::Isolate*>(this), entry.second); } } void ReportBootstrappingException(Handle<Object> exception, MessageLocation* location) { base::OS::PrintError("Exception thrown during bootstrapping\n"); if (location == NULL || location->script().is_null()) return; // We are bootstrapping and caught an error where the location is set // and we have a script for the location. // In this case we could have an extension (or an internal error // somewhere) and we print out the line number at which the error occured // to the console for easier debugging. int line_number = location->script()->GetLineNumber(location->start_pos()) + 1; if (exception->IsString() && location->script()->name()->IsString()) { base::OS::PrintError( "Extension or internal compilation error: %s in %s at line %d.\n", String::cast(*exception)->ToCString().get(), String::cast(location->script()->name())->ToCString().get(), line_number); } else if (location->script()->name()->IsString()) { base::OS::PrintError( "Extension or internal compilation error in %s at line %d.\n", String::cast(location->script()->name())->ToCString().get(), line_number); } else if (exception->IsString()) { base::OS::PrintError("Extension or internal compilation error: %s.\n", String::cast(*exception)->ToCString().get()); } else { base::OS::PrintError("Extension or internal compilation error.\n"); } #ifdef OBJECT_PRINT // Since comments and empty lines have been stripped from the source of // builtins, print the actual source here so that line numbers match. if (location->script()->source()->IsString()) { Handle<String> src(String::cast(location->script()->source())); PrintF("Failing script:"); int len = src->length(); if (len == 0) { PrintF(" <not available>\n"); } else { PrintF("\n"); int line_number = 1; PrintF("%5d: ", line_number); for (int i = 0; i < len; i++) { uint16_t character = src->Get(i); PrintF("%c", character); if (character == '\n' && i < len - 2) { PrintF("%5d: ", ++line_number); } } PrintF("\n"); } } #endif } Object* Isolate::Throw(Object* exception, MessageLocation* location) { DCHECK(!has_pending_exception()); HandleScope scope(this); Handle<Object> exception_handle(exception, this); if (FLAG_print_all_exceptions) { printf("=========================================================\n"); printf("Exception thrown:\n"); if (location) { Handle<Script> script = location->script(); Handle<Object> name(script->GetNameOrSourceURL(), this); printf("at "); if (name->IsString() && String::cast(*name)->length() > 0) String::cast(*name)->PrintOn(stdout); else printf("<anonymous>"); // Script::GetLineNumber and Script::GetColumnNumber can allocate on the heap to // initialize the line_ends array, so be careful when calling them. #ifdef DEBUG if (AllowHeapAllocation::IsAllowed()) { #else if (false) { #endif printf(", %d:%d - %d:%d\n", Script::GetLineNumber(script, location->start_pos()) + 1, Script::GetColumnNumber(script, location->start_pos()), Script::GetLineNumber(script, location->end_pos()) + 1, Script::GetColumnNumber(script, location->end_pos())); } else { printf(", line %d\n", script->GetLineNumber(location->start_pos()) + 1); } } exception->Print(); printf("Stack Trace:\n"); PrintStack(stdout); printf("=========================================================\n"); } // Determine whether a message needs to be created for the given exception // depending on the following criteria: // 1) External v8::TryCatch missing: Always create a message because any // JavaScript handler for a finally-block might re-throw to top-level. // 2) External v8::TryCatch exists: Only create a message if the handler // captures messages or is verbose (which reports despite the catch). // 3) ReThrow from v8::TryCatch: The message from a previous throw still // exists and we preserve it instead of creating a new message. bool requires_message = try_catch_handler() == nullptr || try_catch_handler()->is_verbose_ || try_catch_handler()->capture_message_; bool rethrowing_message = thread_local_top()->rethrowing_message_; thread_local_top()->rethrowing_message_ = false; // Notify debugger of exception. if (is_catchable_by_javascript(exception)) { debug()->OnThrow(exception_handle); } // Generate the message if required. if (requires_message && !rethrowing_message) { MessageLocation computed_location; // If no location was specified we try to use a computed one instead. if (location == NULL && ComputeLocation(&computed_location)) { location = &computed_location; } if (bootstrapper()->IsActive()) { // It's not safe to try to make message objects or collect stack traces // while the bootstrapper is active since the infrastructure may not have // been properly initialized. ReportBootstrappingException(exception_handle, location); } else { Handle<Object> message_obj = CreateMessage(exception_handle, location); thread_local_top()->pending_message_obj_ = *message_obj; // For any exception not caught by JavaScript, even when an external // handler is present: // If the abort-on-uncaught-exception flag is specified, and if the // embedder didn't specify a custom uncaught exception callback, // or if the custom callback determined that V8 should abort, then // abort. if (FLAG_abort_on_uncaught_exception) { CatchType prediction = PredictExceptionCatcher(); if ((prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) && (!abort_on_uncaught_exception_callback_ || abort_on_uncaught_exception_callback_( reinterpret_cast<v8::Isolate*>(this)))) { // Prevent endless recursion. FLAG_abort_on_uncaught_exception = false; // This flag is intended for use by JavaScript developers, so // print a user-friendly stack trace (not an internal one). PrintF(stderr, "%s\n\nFROM\n", MessageHandler::GetLocalizedMessage(this, message_obj).get()); PrintCurrentStackTrace(stderr); base::OS::Abort(); } } } } // Set the exception being thrown. set_pending_exception(*exception_handle); return heap()->exception(); } Object* Isolate::ReThrow(Object* exception) { DCHECK(!has_pending_exception()); // Set the exception being re-thrown. set_pending_exception(exception); return heap()->exception(); } Object* Isolate::UnwindAndFindHandler() { Object* exception = pending_exception(); Code* code = nullptr; Context* context = nullptr; intptr_t offset = 0; Address handler_sp = nullptr; Address handler_fp = nullptr; // Special handling of termination exceptions, uncatchable by JavaScript and // Wasm code, we unwind the handlers until the top ENTRY handler is found. bool catchable_by_js = is_catchable_by_javascript(exception); // Compute handler and stack unwinding information by performing a full walk // over the stack and dispatching according to the frame type. for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) { StackFrame* frame = iter.frame(); // For JSEntryStub frames we always have a handler. if (frame->is_entry() || frame->is_entry_construct()) { StackHandler* handler = frame->top_handler(); // Restore the next handler. thread_local_top()->handler_ = handler->next()->address(); // Gather information from the handler. code = frame->LookupCode(); handler_sp = handler->address() + StackHandlerConstants::kSize; offset = Smi::cast(code->handler_table()->get(0))->value(); break; } if (FLAG_wasm_eh_prototype) { if (frame->is_wasm() && is_catchable_by_wasm(exception)) { int stack_slots = 0; // Will contain stack slot count of frame. WasmCompiledFrame* wasm_frame = static_cast<WasmCompiledFrame*>(frame); offset = wasm_frame->LookupExceptionHandlerInTable(&stack_slots); if (offset >= 0) { // Compute the stack pointer from the frame pointer. This ensures that // argument slots on the stack are dropped as returning would. Address return_sp = frame->fp() + StandardFrameConstants::kFixedFrameSizeAboveFp - stack_slots * kPointerSize; // Gather information from the frame. code = frame->LookupCode(); handler_sp = return_sp; handler_fp = frame->fp(); break; } } } // For optimized frames we perform a lookup in the handler table. if (frame->is_optimized() && catchable_by_js) { OptimizedFrame* js_frame = static_cast<OptimizedFrame*>(frame); int stack_slots = 0; // Will contain stack slot count of frame. offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, nullptr); if (offset >= 0) { // Compute the stack pointer from the frame pointer. This ensures that // argument slots on the stack are dropped as returning would. Address return_sp = frame->fp() + StandardFrameConstants::kFixedFrameSizeAboveFp - stack_slots * kPointerSize; // Gather information from the frame. code = frame->LookupCode(); // TODO(bmeurer): Turbofanned BUILTIN frames appear as OPTIMIZED, but // do not have a code kind of OPTIMIZED_FUNCTION. if (code->kind() == Code::OPTIMIZED_FUNCTION && code->marked_for_deoptimization()) { // If the target code is lazy deoptimized, we jump to the original // return address, but we make a note that we are throwing, so that // the deoptimizer can do the right thing. offset = static_cast<int>(frame->pc() - code->entry()); set_deoptimizer_lazy_throw(true); } handler_sp = return_sp; handler_fp = frame->fp(); break; } } // For interpreted frame we perform a range lookup in the handler table. if (frame->is_interpreted() && catchable_by_js) { InterpretedFrame* js_frame = static_cast<InterpretedFrame*>(frame); int register_slots = js_frame->GetBytecodeArray()->register_count(); int context_reg = 0; // Will contain register index holding context. offset = js_frame->LookupExceptionHandlerInTable(&context_reg, nullptr); if (offset >= 0) { // Compute the stack pointer from the frame pointer. This ensures that // argument slots on the stack are dropped as returning would. // Note: This is only needed for interpreted frames that have been // materialized by the deoptimizer. If there is a handler frame // in between then {frame->sp()} would already be correct. Address return_sp = frame->fp() - InterpreterFrameConstants::kFixedFrameSizeFromFp - register_slots * kPointerSize; // Patch the bytecode offset in the interpreted frame to reflect the // position of the exception handler. The special builtin below will // take care of continuing to dispatch at that position. Also restore // the correct context for the handler from the interpreter register. context = Context::cast(js_frame->ReadInterpreterRegister(context_reg)); js_frame->PatchBytecodeOffset(static_cast<int>(offset)); offset = 0; // Gather information from the frame. code = *builtins()->InterpreterEnterBytecodeDispatch(); handler_sp = return_sp; handler_fp = frame->fp(); break; } } // For JavaScript frames we are guaranteed not to find a handler. if (frame->is_java_script() && catchable_by_js) { JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame); offset = js_frame->LookupExceptionHandlerInTable(nullptr, nullptr); CHECK_EQ(-1, offset); } // TODO(clemensh): Handle unwinding interpreted wasm frames (stored in the // WasmInterpreter C++ object). RemoveMaterializedObjectsOnUnwind(frame); } // Handler must exist. CHECK(code != nullptr); // Store information to be consumed by the CEntryStub. thread_local_top()->pending_handler_context_ = context; thread_local_top()->pending_handler_code_ = code; thread_local_top()->pending_handler_offset_ = offset; thread_local_top()->pending_handler_fp_ = handler_fp; thread_local_top()->pending_handler_sp_ = handler_sp; // Return and clear pending exception. clear_pending_exception(); return exception; } namespace { HandlerTable::CatchPrediction PredictException(JavaScriptFrame* frame) { HandlerTable::CatchPrediction prediction; if (frame->is_optimized()) { if (frame->LookupExceptionHandlerInTable(nullptr, nullptr) > 0) { // This optimized frame will catch. It's handler table does not include // exception prediction, and we need to use the corresponding handler // tables on the unoptimized code objects. List<FrameSummary> summaries; frame->Summarize(&summaries); for (const FrameSummary& summary : summaries) { Handle<AbstractCode> code = summary.AsJavaScript().abstract_code(); if (code->IsCode() && code->kind() == AbstractCode::BUILTIN) { if (code->GetCode()->is_promise_rejection()) { return HandlerTable::PROMISE; } // This the exception throw in PromiseHandle which doesn't // cause a promise rejection. if (code->GetCode()->is_exception_caught()) { return HandlerTable::CAUGHT; } } if (code->kind() == AbstractCode::OPTIMIZED_FUNCTION) { DCHECK(summary.AsJavaScript().function()->shared()->asm_function()); // asm code cannot contain try-catch. continue; } // Must have been constructed from a bytecode array. CHECK_EQ(AbstractCode::INTERPRETED_FUNCTION, code->kind()); int code_offset = summary.code_offset(); BytecodeArray* bytecode = code->GetBytecodeArray(); HandlerTable* table = HandlerTable::cast(bytecode->handler_table()); int index = table->LookupRange(code_offset, nullptr, &prediction); if (index <= 0) continue; if (prediction == HandlerTable::UNCAUGHT) continue; return prediction; } } } else if (frame->LookupExceptionHandlerInTable(nullptr, &prediction) > 0) { return prediction; } return HandlerTable::UNCAUGHT; } } // anonymous namespace Isolate::CatchType Isolate::PredictExceptionCatcher() { Address external_handler = thread_local_top()->try_catch_handler_address(); Address entry_handler = Isolate::handler(thread_local_top()); if (IsExternalHandlerOnTop(nullptr)) return CAUGHT_BY_EXTERNAL; // Search for an exception handler by performing a full walk over the stack. for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) { StackFrame* frame = iter.frame(); // For JSEntryStub frames we update the JS_ENTRY handler. if (frame->is_entry() || frame->is_entry_construct()) { entry_handler = frame->top_handler()->next()->address(); } // For JavaScript frames we perform a lookup in the handler table. if (frame->is_java_script()) { JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame); HandlerTable::CatchPrediction prediction = PredictException(js_frame); if (prediction == HandlerTable::DESUGARING) return CAUGHT_BY_DESUGARING; if (prediction == HandlerTable::ASYNC_AWAIT) return CAUGHT_BY_ASYNC_AWAIT; if (prediction == HandlerTable::PROMISE) return CAUGHT_BY_PROMISE; if (prediction != HandlerTable::UNCAUGHT) return CAUGHT_BY_JAVASCRIPT; } // The exception has been externally caught if and only if there is an // external handler which is on top of the top-most JS_ENTRY handler. if (external_handler != nullptr && !try_catch_handler()->is_verbose_) { if (entry_handler == nullptr || entry_handler > external_handler) { return CAUGHT_BY_EXTERNAL; } } } // Handler not found. return NOT_CAUGHT; } void Isolate::RemoveMaterializedObjectsOnUnwind(StackFrame* frame) { if (frame->is_optimized()) { bool removed = materialized_object_store_->Remove(frame->fp()); USE(removed); // If there were any materialized objects, the code should be // marked for deopt. DCHECK(!removed || frame->LookupCode()->marked_for_deoptimization()); } } Object* Isolate::ThrowIllegalOperation() { if (FLAG_stack_trace_on_illegal) PrintStack(stdout); return Throw(heap()->illegal_access_string()); } void Isolate::ScheduleThrow(Object* exception) { // When scheduling a throw we first throw the exception to get the // error reporting if it is uncaught before rescheduling it. Throw(exception); PropagatePendingExceptionToExternalTryCatch(); if (has_pending_exception()) { thread_local_top()->scheduled_exception_ = pending_exception(); thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); } } void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) { DCHECK(handler == try_catch_handler()); DCHECK(handler->HasCaught()); DCHECK(handler->rethrow_); DCHECK(handler->capture_message_); Object* message = reinterpret_cast<Object*>(handler->message_obj_); DCHECK(message->IsJSMessageObject() || message->IsTheHole(this)); thread_local_top()->pending_message_obj_ = message; } void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) { DCHECK(has_scheduled_exception()); if (scheduled_exception() == handler->exception_) { DCHECK(scheduled_exception() != heap()->termination_exception()); clear_scheduled_exception(); } if (thread_local_top_.pending_message_obj_ == handler->message_obj_) { clear_pending_message(); } } Object* Isolate::PromoteScheduledException() { Object* thrown = scheduled_exception(); clear_scheduled_exception(); // Re-throw the exception to avoid getting repeated error reporting. return ReThrow(thrown); } void Isolate::PrintCurrentStackTrace(FILE* out) { for (StackTraceFrameIterator it(this); !it.done(); it.Advance()) { if (!it.is_javascript()) continue; HandleScope scope(this); JavaScriptFrame* frame = it.javascript_frame(); Handle<Object> receiver(frame->receiver(), this); Handle<JSFunction> function(frame->function(), this); Handle<AbstractCode> code(AbstractCode::cast(frame->LookupCode()), this); const int offset = static_cast<int>(frame->pc() - code->instruction_start()); JSStackFrame site(this, receiver, function, code, offset); Handle<String> line = site.ToString().ToHandleChecked(); if (line->length() > 0) { line->PrintOn(out); PrintF(out, "\n"); } } } bool Isolate::ComputeLocation(MessageLocation* target) { StackTraceFrameIterator it(this); if (it.done()) return false; StandardFrame* frame = it.frame(); // Compute the location from the function and the relocation info of the // baseline code. For optimized code this will use the deoptimization // information to get canonical location information. List<FrameSummary> frames(FLAG_max_inlining_levels + 1); frame->Summarize(&frames); FrameSummary& summary = frames.last(); int pos = summary.SourcePosition(); Handle<SharedFunctionInfo> shared; Handle<Object> script = summary.script(); if (!script->IsScript() || (Script::cast(*script)->source()->IsUndefined(this))) { return false; } // TODO(wasm): Remove this once trap-if is always on. // Background: Without trap-if, the information on the stack trace is // incomplete (see bug v8:5007). if (summary.IsWasmCompiled() && !FLAG_wasm_trap_if) return false; if (summary.IsJavaScript()) { shared = handle(summary.AsJavaScript().function()->shared()); } *target = MessageLocation(Handle<Script>::cast(script), pos, pos + 1, shared); return true; } bool Isolate::ComputeLocationFromException(MessageLocation* target, Handle<Object> exception) { if (!exception->IsJSObject()) return false; Handle<Name> start_pos_symbol = factory()->error_start_pos_symbol(); Handle<Object> start_pos = JSReceiver::GetDataProperty( Handle<JSObject>::cast(exception), start_pos_symbol); if (!start_pos->IsSmi()) return false; int start_pos_value = Handle<Smi>::cast(start_pos)->value(); Handle<Name> end_pos_symbol = factory()->error_end_pos_symbol(); Handle<Object> end_pos = JSReceiver::GetDataProperty( Handle<JSObject>::cast(exception), end_pos_symbol); if (!end_pos->IsSmi()) return false; int end_pos_value = Handle<Smi>::cast(end_pos)->value(); Handle<Name> script_symbol = factory()->error_script_symbol(); Handle<Object> script = JSReceiver::GetDataProperty( Handle<JSObject>::cast(exception), script_symbol); if (!script->IsScript()) return false; Handle<Script> cast_script(Script::cast(*script)); *target = MessageLocation(cast_script, start_pos_value, end_pos_value); return true; } bool Isolate::ComputeLocationFromStackTrace(MessageLocation* target, Handle<Object> exception) { if (!exception->IsJSObject()) return false; Handle<Name> key = factory()->stack_trace_symbol(); Handle<Object> property = JSReceiver::GetDataProperty(Handle<JSObject>::cast(exception), key); if (!property->IsJSArray()) return false; Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property); Handle<FrameArray> elements(FrameArray::cast(simple_stack_trace->elements())); const int frame_count = elements->FrameCount(); for (int i = 0; i < frame_count; i++) { if (elements->IsWasmFrame(i) || elements->IsAsmJsWasmFrame(i)) { Handle<WasmCompiledModule> compiled_module( WasmInstanceObject::cast(elements->WasmInstance(i)) ->compiled_module()); int func_index = elements->WasmFunctionIndex(i)->value(); int code_offset = elements->Offset(i)->value(); // TODO(wasm): Clean this up (bug 5007). int pos = code_offset < 0 ? (-1 - code_offset) : elements->Code(i)->SourcePosition(code_offset); if (elements->IsAsmJsWasmFrame(i)) { // For asm.js frames, make an additional translation step to get the // asm.js source position. bool at_to_number_conversion = elements->Flags(i)->value() & FrameArray::kAsmJsAtNumberConversion; pos = WasmCompiledModule::GetAsmJsSourcePosition( compiled_module, func_index, pos, at_to_number_conversion); } else { // For pure wasm, make the function-local position module-relative by // adding the function offset. pos += compiled_module->GetFunctionOffset(func_index); } Handle<Script> script(compiled_module->script()); *target = MessageLocation(script, pos, pos + 1); return true; } Handle<JSFunction> fun = handle(elements->Function(i), this); if (!fun->shared()->IsSubjectToDebugging()) continue; Object* script = fun->shared()->script(); if (script->IsScript() && !(Script::cast(script)->source()->IsUndefined(this))) { AbstractCode* abstract_code = elements->Code(i); const int code_offset = elements->Offset(i)->value(); const int pos = abstract_code->SourcePosition(code_offset); Handle<Script> casted_script(Script::cast(script)); *target = MessageLocation(casted_script, pos, pos + 1); return true; } } return false; } Handle<JSMessageObject> Isolate::CreateMessage(Handle<Object> exception, MessageLocation* location) { Handle<JSArray> stack_trace_object; if (capture_stack_trace_for_uncaught_exceptions_) { if (exception->IsJSError()) { // We fetch the stack trace that corresponds to this error object. // If the lookup fails, the exception is probably not a valid Error // object. In that case, we fall through and capture the stack trace // at this throw site. stack_trace_object = GetDetailedStackTrace(Handle<JSObject>::cast(exception)); } if (stack_trace_object.is_null()) { // Not an error object, we capture stack and location at throw site. stack_trace_object = CaptureCurrentStackTrace( stack_trace_for_uncaught_exceptions_frame_limit_, stack_trace_for_uncaught_exceptions_options_); } } MessageLocation computed_location; if (location == NULL && (ComputeLocationFromException(&computed_location, exception) || ComputeLocationFromStackTrace(&computed_location, exception) || ComputeLocation(&computed_location))) { location = &computed_location; } return MessageHandler::MakeMessageObject( this, MessageTemplate::kUncaughtException, location, exception, stack_trace_object); } bool Isolate::IsJavaScriptHandlerOnTop(Object* exception) { DCHECK_NE(heap()->the_hole_value(), exception); // For uncatchable exceptions, the JavaScript handler cannot be on top. if (!is_catchable_by_javascript(exception)) return false; // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist. Address entry_handler = Isolate::handler(thread_local_top()); if (entry_handler == nullptr) return false; // Get the address of the external handler so we can compare the address to // determine which one is closer to the top of the stack. Address external_handler = thread_local_top()->try_catch_handler_address(); if (external_handler == nullptr) return true; // The exception has been externally caught if and only if there is an // external handler which is on top of the top-most JS_ENTRY handler. // // Note, that finally clauses would re-throw an exception unless it's aborted // by jumps in control flow (like return, break, etc.) and we'll have another // chance to set proper v8::TryCatch later. return (entry_handler < external_handler); } bool Isolate::IsExternalHandlerOnTop(Object* exception) { DCHECK_NE(heap()->the_hole_value(), exception); // Get the address of the external handler so we can compare the address to // determine which one is closer to the top of the stack. Address external_handler = thread_local_top()->try_catch_handler_address(); if (external_handler == nullptr) return false; // For uncatchable exceptions, the external handler is always on top. if (!is_catchable_by_javascript(exception)) return true; // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist. Address entry_handler = Isolate::handler(thread_local_top()); if (entry_handler == nullptr) return true; // The exception has been externally caught if and only if there is an // external handler which is on top of the top-most JS_ENTRY handler. // // Note, that finally clauses would re-throw an exception unless it's aborted // by jumps in control flow (like return, break, etc.) and we'll have another // chance to set proper v8::TryCatch later. return (entry_handler > external_handler); } void Isolate::ReportPendingMessages() { DCHECK(AllowExceptions::IsAllowed(this)); Object* exception = pending_exception(); // Try to propagate the exception to an external v8::TryCatch handler. If // propagation was unsuccessful, then we will get another chance at reporting // the pending message if the exception is re-thrown. bool has_been_propagated = PropagatePendingExceptionToExternalTryCatch(); if (!has_been_propagated) return; // Clear the pending message object early to avoid endless recursion. Object* message_obj = thread_local_top_.pending_message_obj_; clear_pending_message(); // For uncatchable exceptions we do nothing. If needed, the exception and the // message have already been propagated to v8::TryCatch. if (!is_catchable_by_javascript(exception)) return; // Determine whether the message needs to be reported to all message handlers // depending on whether and external v8::TryCatch or an internal JavaScript // handler is on top. bool should_report_exception; if (IsExternalHandlerOnTop(exception)) { // Only report the exception if the external handler is verbose. should_report_exception = try_catch_handler()->is_verbose_; } else { // Report the exception if it isn't caught by JavaScript code. should_report_exception = !IsJavaScriptHandlerOnTop(exception); } // Actually report the pending message to all message handlers. if (!message_obj->IsTheHole(this) && should_report_exception) { HandleScope scope(this); Handle<JSMessageObject> message(JSMessageObject::cast(message_obj), this); Handle<JSValue> script_wrapper(JSValue::cast(message->script()), this); Handle<Script> script(Script::cast(script_wrapper->value()), this); int start_pos = message->start_position(); int end_pos = message->end_position(); MessageLocation location(script, start_pos, end_pos); MessageHandler::ReportMessage(this, &location, message); } } MessageLocation Isolate::GetMessageLocation() { DCHECK(has_pending_exception()); if (thread_local_top_.pending_exception_ != heap()->termination_exception() && !thread_local_top_.pending_message_obj_->IsTheHole(this)) { Handle<JSMessageObject> message_obj( JSMessageObject::cast(thread_local_top_.pending_message_obj_), this); Handle<JSValue> script_wrapper(JSValue::cast(message_obj->script()), this); Handle<Script> script(Script::cast(script_wrapper->value()), this); int start_pos = message_obj->start_position(); int end_pos = message_obj->end_position(); return MessageLocation(script, start_pos, end_pos); } return MessageLocation(); } bool Isolate::OptionalRescheduleException(bool is_bottom_call) { DCHECK(has_pending_exception()); PropagatePendingExceptionToExternalTryCatch(); bool is_termination_exception = pending_exception() == heap_.termination_exception(); // Do not reschedule the exception if this is the bottom call. bool clear_exception = is_bottom_call; if (is_termination_exception) { if (is_bottom_call) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); return false; } } else if (thread_local_top()->external_caught_exception_) { // If the exception is externally caught, clear it if there are no // JavaScript frames on the way to the C++ frame that has the // external handler. DCHECK(thread_local_top()->try_catch_handler_address() != NULL); Address external_handler_address = thread_local_top()->try_catch_handler_address(); JavaScriptFrameIterator it(this); if (it.done() || (it.frame()->sp() > external_handler_address)) { clear_exception = true; } } // Clear the exception if needed. if (clear_exception) { thread_local_top()->external_caught_exception_ = false; clear_pending_exception(); return false; } // Reschedule the exception. thread_local_top()->scheduled_exception_ = pending_exception(); clear_pending_exception(); return true; } void Isolate::PushPromise(Handle<JSObject> promise) { ThreadLocalTop* tltop = thread_local_top(); PromiseOnStack* prev = tltop->promise_on_stack_; Handle<JSObject> global_promise = Handle<JSObject>::cast(global_handles()->Create(*promise)); tltop->promise_on_stack_ = new PromiseOnStack(global_promise, prev); } void Isolate::PopPromise() { ThreadLocalTop* tltop = thread_local_top(); if (tltop->promise_on_stack_ == NULL) return; PromiseOnStack* prev = tltop->promise_on_stack_->prev(); Handle<Object> global_promise = tltop->promise_on_stack_->promise(); delete tltop->promise_on_stack_; tltop->promise_on_stack_ = prev; global_handles()->Destroy(global_promise.location()); } namespace { bool InternalPromiseHasUserDefinedRejectHandler(Isolate* isolate, Handle<JSPromise> promise); bool PromiseHandlerCheck(Isolate* isolate, Handle<JSReceiver> handler, Handle<JSReceiver> deferred_promise) { // Recurse to the forwarding Promise, if any. This may be due to // - await reaction forwarding to the throwaway Promise, which has // a dependency edge to the outer Promise. // - PromiseIdResolveHandler forwarding to the output of .then // - Promise.all/Promise.race forwarding to a throwaway Promise, which // has a dependency edge to the generated outer Promise. // Otherwise, this is a real reject handler for the Promise. Handle<Symbol> key = isolate->factory()->promise_forwarding_handler_symbol(); Handle<Object> forwarding_handler = JSReceiver::GetDataProperty(handler, key); if (forwarding_handler->IsUndefined(isolate)) { return true; } if (!deferred_promise->IsJSPromise()) { return true; } return InternalPromiseHasUserDefinedRejectHandler( isolate, Handle<JSPromise>::cast(deferred_promise)); } bool InternalPromiseHasUserDefinedRejectHandler(Isolate* isolate, Handle<JSPromise> promise) { // If this promise was marked as being handled by a catch block // in an async function, then it has a user-defined reject handler. if (promise->handled_hint()) return true; // If this Promise is subsumed by another Promise (a Promise resolved // with another Promise, or an intermediate, hidden, throwaway Promise // within async/await), then recurse on the outer Promise. // In this case, the dependency is one possible way that the Promise // could be resolved, so it does not subsume the other following cases. Handle<Symbol> key = isolate->factory()->promise_handled_by_symbol(); Handle<Object> outer_promise_obj = JSObject::GetDataProperty(promise, key); if (outer_promise_obj->IsJSPromise() && InternalPromiseHasUserDefinedRejectHandler( isolate, Handle<JSPromise>::cast(outer_promise_obj))) { return true; } Handle<Object> queue(promise->reject_reactions(), isolate); Handle<Object> deferred_promise(promise->deferred_promise(), isolate); if (queue->IsUndefined(isolate)) { return false; } if (queue->IsCallable()) { return PromiseHandlerCheck(isolate, Handle<JSReceiver>::cast(queue), Handle<JSReceiver>::cast(deferred_promise)); } if (queue->IsSymbol()) { return InternalPromiseHasUserDefinedRejectHandler( isolate, Handle<JSPromise>::cast(deferred_promise)); } Handle<FixedArray> queue_arr = Handle<FixedArray>::cast(queue); Handle<FixedArray> deferred_promise_arr = Handle<FixedArray>::cast(deferred_promise); for (int i = 0; i < deferred_promise_arr->length(); i++) { Handle<JSReceiver> queue_item(JSReceiver::cast(queue_arr->get(i))); Handle<JSReceiver> deferred_promise_item( JSReceiver::cast(deferred_promise_arr->get(i))); if (PromiseHandlerCheck(isolate, queue_item, deferred_promise_item)) { return true; } } return false; } } // namespace bool Isolate::PromiseHasUserDefinedRejectHandler(Handle<Object> promise) { if (!promise->IsJSPromise()) return false; return InternalPromiseHasUserDefinedRejectHandler( this, Handle<JSPromise>::cast(promise)); } Handle<Object> Isolate::GetPromiseOnStackOnThrow() { Handle<Object> undefined = factory()->undefined_value(); ThreadLocalTop* tltop = thread_local_top(); if (tltop->promise_on_stack_ == NULL) return undefined; // Find the top-most try-catch or try-finally handler. CatchType prediction = PredictExceptionCatcher(); if (prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) { return undefined; } Handle<Object> retval = undefined; PromiseOnStack* promise_on_stack = tltop->promise_on_stack_; for (JavaScriptFrameIterator it(this); !it.done(); it.Advance()) { switch (PredictException(it.frame())) { case HandlerTable::UNCAUGHT: continue; case HandlerTable::CAUGHT: case HandlerTable::DESUGARING: if (retval->IsJSPromise()) { // Caught the result of an inner async/await invocation. // Mark the inner promise as caught in the "synchronous case" so // that Debug::OnException will see. In the synchronous case, // namely in the code in an async function before the first // await, the function which has this exception event has not yet // returned, so the generated Promise has not yet been marked // by AsyncFunctionAwaitCaught with promiseHandledHintSymbol. Handle<JSPromise>::cast(retval)->set_handled_hint(true); } return retval; case HandlerTable::PROMISE: return promise_on_stack ? Handle<Object>::cast(promise_on_stack->promise()) : undefined; case HandlerTable::ASYNC_AWAIT: { // If in the initial portion of async/await, continue the loop to pop up // successive async/await stack frames until an asynchronous one with // dependents is found, or a non-async stack frame is encountered, in // order to handle the synchronous async/await catch prediction case: // assume that async function calls are awaited. if (!promise_on_stack) return retval; retval = promise_on_stack->promise(); if (PromiseHasUserDefinedRejectHandler(retval)) { return retval; } promise_on_stack = promise_on_stack->prev(); continue; } } } return retval; } void Isolate::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { capture_stack_trace_for_uncaught_exceptions_ = capture; stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit; stack_trace_for_uncaught_exceptions_options_ = options; } void Isolate::SetAbortOnUncaughtExceptionCallback( v8::Isolate::AbortOnUncaughtExceptionCallback callback) { abort_on_uncaught_exception_callback_ = callback; } Handle<Context> Isolate::GetCallingNativeContext() { JavaScriptFrameIterator it(this); if (debug_->in_debug_scope()) { while (!it.done()) { JavaScriptFrame* frame = it.frame(); Context* context = Context::cast(frame->context()); if (context->native_context() == *debug_->debug_context()) { it.Advance(); } else { break; } } } if (it.done()) return Handle<Context>::null(); JavaScriptFrame* frame = it.frame(); Context* context = Context::cast(frame->context()); return Handle<Context>(context->native_context(), this); } char* Isolate::ArchiveThread(char* to) { MemCopy(to, reinterpret_cast<char*>(thread_local_top()), sizeof(ThreadLocalTop)); InitializeThreadLocal(); clear_pending_exception(); clear_pending_message(); clear_scheduled_exception(); return to + sizeof(ThreadLocalTop); } char* Isolate::RestoreThread(char* from) { MemCopy(reinterpret_cast<char*>(thread_local_top()), from, sizeof(ThreadLocalTop)); // This might be just paranoia, but it seems to be needed in case a // thread_local_top_ is restored on a separate OS thread. #ifdef USE_SIMULATOR thread_local_top()->simulator_ = Simulator::current(this); #endif DCHECK(context() == NULL || context()->IsContext()); return from + sizeof(ThreadLocalTop); } Isolate::ThreadDataTable::ThreadDataTable() : list_(NULL) { } Isolate::ThreadDataTable::~ThreadDataTable() { // TODO(svenpanne) The assertion below would fire if an embedder does not // cleanly dispose all Isolates before disposing v8, so we are conservative // and leave it out for now. // DCHECK_NULL(list_); } void Isolate::ReleaseManagedObjects() { Isolate::ManagedObjectFinalizer* current = managed_object_finalizers_list_.next_; while (current != nullptr) { Isolate::ManagedObjectFinalizer* next = current->next_; current->Dispose(); delete current; current = next; } } Isolate::ManagedObjectFinalizer* Isolate::RegisterForReleaseAtTeardown( void* value, Isolate::ManagedObjectFinalizer::Deleter deleter) { DCHECK_NOT_NULL(value); DCHECK_NOT_NULL(deleter); Isolate::ManagedObjectFinalizer* ret = new Isolate::ManagedObjectFinalizer(); ret->value_ = value; ret->deleter_ = deleter; // Insert at head. We keep the head alive for the lifetime of the Isolate // because otherwise we can't reset the head, should we delete it before // the isolate expires Isolate::ManagedObjectFinalizer* next = managed_object_finalizers_list_.next_; managed_object_finalizers_list_.next_ = ret; ret->prev_ = &managed_object_finalizers_list_; ret->next_ = next; if (next != nullptr) next->prev_ = ret; return ret; } void Isolate::UnregisterFromReleaseAtTeardown( Isolate::ManagedObjectFinalizer** finalizer_ptr) { DCHECK_NOT_NULL(finalizer_ptr); Isolate::ManagedObjectFinalizer* finalizer = *finalizer_ptr; DCHECK_NOT_NULL(finalizer->prev_); finalizer->prev_->next_ = finalizer->next_; if (finalizer->next_ != nullptr) finalizer->next_->prev_ = finalizer->prev_; delete finalizer; *finalizer_ptr = nullptr; } Isolate::PerIsolateThreadData::~PerIsolateThreadData() { #if defined(USE_SIMULATOR) delete simulator_; #endif } Isolate::PerIsolateThreadData* Isolate::ThreadDataTable::Lookup(Isolate* isolate, ThreadId thread_id) { for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) { if (data->Matches(isolate, thread_id)) return data; } return NULL; } void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) { if (list_ != NULL) list_->prev_ = data; data->next_ = list_; list_ = data; } void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) { if (list_ == data) list_ = data->next_; if (data->next_ != NULL) data->next_->prev_ = data->prev_; if (data->prev_ != NULL) data->prev_->next_ = data->next_; delete data; } void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) { PerIsolateThreadData* data = list_; while (data != NULL) { PerIsolateThreadData* next = data->next_; if (data->isolate() == isolate) Remove(data); data = next; } } #ifdef DEBUG #define TRACE_ISOLATE(tag) \ do { \ if (FLAG_trace_isolates) { \ PrintF("Isolate %p (id %d)" #tag "\n", \ reinterpret_cast<void*>(this), id()); \ } \ } while (false) #else #define TRACE_ISOLATE(tag) #endif class VerboseAccountingAllocator : public AccountingAllocator { public: VerboseAccountingAllocator(Heap* heap, size_t allocation_sample_bytes, size_t pool_sample_bytes) : heap_(heap), last_memory_usage_(0), last_pool_size_(0), nesting_deepth_(0), allocation_sample_bytes_(allocation_sample_bytes), pool_sample_bytes_(pool_sample_bytes) {} v8::internal::Segment* GetSegment(size_t size) override { v8::internal::Segment* memory = AccountingAllocator::GetSegment(size); if (memory) { size_t malloced_current = GetCurrentMemoryUsage(); size_t pooled_current = GetCurrentPoolSize(); if (last_memory_usage_.Value() + allocation_sample_bytes_ < malloced_current || last_pool_size_.Value() + pool_sample_bytes_ < pooled_current) { PrintMemoryJSON(malloced_current, pooled_current); last_memory_usage_.SetValue(malloced_current); last_pool_size_.SetValue(pooled_current); } } return memory; } void ReturnSegment(v8::internal::Segment* memory) override { AccountingAllocator::ReturnSegment(memory); size_t malloced_current = GetCurrentMemoryUsage(); size_t pooled_current = GetCurrentPoolSize(); if (malloced_current + allocation_sample_bytes_ < last_memory_usage_.Value() || pooled_current + pool_sample_bytes_ < last_pool_size_.Value()) { PrintMemoryJSON(malloced_current, pooled_current); last_memory_usage_.SetValue(malloced_current); last_pool_size_.SetValue(pooled_current); } } void ZoneCreation(const Zone* zone) override { double time = heap_->isolate()->time_millis_since_init(); PrintF( "{" "\"type\": \"zonecreation\", " "\"isolate\": \"%p\", " "\"time\": %f, " "\"ptr\": \"%p\", " "\"name\": \"%s\"," "\"nesting\": %" PRIuS "}\n", reinterpret_cast<void*>(heap_->isolate()), time, reinterpret_cast<const void*>(zone), zone->name(), nesting_deepth_.Value()); nesting_deepth_.Increment(1); } void ZoneDestruction(const Zone* zone) override { nesting_deepth_.Decrement(1); double time = heap_->isolate()->time_millis_since_init(); PrintF( "{" "\"type\": \"zonedestruction\", " "\"isolate\": \"%p\", " "\"time\": %f, " "\"ptr\": \"%p\", " "\"name\": \"%s\", " "\"size\": %" PRIuS "," "\"nesting\": %" PRIuS "}\n", reinterpret_cast<void*>(heap_->isolate()), time, reinterpret_cast<const void*>(zone), zone->name(), zone->allocation_size(), nesting_deepth_.Value()); } private: void PrintMemoryJSON(size_t malloced, size_t pooled) { // Note: Neither isolate, nor heap is locked, so be careful with accesses // as the allocator is potentially used on a concurrent thread. double time = heap_->isolate()->time_millis_since_init(); PrintF( "{" "\"type\": \"zone\", " "\"isolate\": \"%p\", " "\"time\": %f, " "\"allocated\": %" PRIuS "," "\"pooled\": %" PRIuS "}\n", reinterpret_cast<void*>(heap_->isolate()), time, malloced, pooled); } Heap* heap_; base::AtomicNumber<size_t> last_memory_usage_; base::AtomicNumber<size_t> last_pool_size_; base::AtomicNumber<size_t> nesting_deepth_; size_t allocation_sample_bytes_, pool_sample_bytes_; }; Isolate::Isolate(bool enable_serializer) : embedder_data_(), entry_stack_(NULL), stack_trace_nesting_level_(0), incomplete_message_(NULL), bootstrapper_(NULL), runtime_profiler_(NULL), compilation_cache_(NULL), counters_(NULL), logger_(NULL), stats_table_(NULL), load_stub_cache_(NULL), store_stub_cache_(NULL), code_aging_helper_(NULL), deoptimizer_data_(NULL), deoptimizer_lazy_throw_(false), materialized_object_store_(NULL), capture_stack_trace_for_uncaught_exceptions_(false), stack_trace_for_uncaught_exceptions_frame_limit_(0), stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview), context_slot_cache_(NULL), descriptor_lookup_cache_(NULL), handle_scope_implementer_(NULL), unicode_cache_(NULL), allocator_(FLAG_trace_gc_object_stats ? new VerboseAccountingAllocator( &heap_, 256 * KB, 128 * KB) : new AccountingAllocator()), inner_pointer_to_code_cache_(NULL), global_handles_(NULL), eternal_handles_(NULL), thread_manager_(NULL), regexp_stack_(NULL), date_cache_(NULL), call_descriptor_data_(NULL), // TODO(bmeurer) Initialized lazily because it depends on flags; can // be fixed once the default isolate cleanup is done. random_number_generator_(NULL), rail_mode_(PERFORMANCE_ANIMATION), promise_hook_or_debug_is_active_(false), promise_hook_(NULL), load_start_time_ms_(0), serializer_enabled_(enable_serializer), has_fatal_error_(false), initialized_from_snapshot_(false), is_tail_call_elimination_enabled_(true), is_isolate_in_background_(false), cpu_profiler_(NULL), heap_profiler_(NULL), code_event_dispatcher_(new CodeEventDispatcher()), function_entry_hook_(NULL), deferred_handles_head_(NULL), optimizing_compile_dispatcher_(NULL), stress_deopt_count_(0), next_optimization_id_(0), #if TRACE_MAPS next_unique_sfi_id_(0), #endif is_running_microtasks_(false), use_counter_callback_(NULL), basic_block_profiler_(NULL), cancelable_task_manager_(new CancelableTaskManager()), abort_on_uncaught_exception_callback_(NULL), total_regexp_code_generated_(0) { { base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer()); CHECK(thread_data_table_); } id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1); TRACE_ISOLATE(constructor); memset(isolate_addresses_, 0, sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1)); heap_.isolate_ = this; stack_guard_.isolate_ = this; // ThreadManager is initialized early to support locking an isolate // before it is entered. thread_manager_ = new ThreadManager(); thread_manager_->isolate_ = this; #ifdef DEBUG // heap_histograms_ initializes itself. memset(&js_spill_information_, 0, sizeof(js_spill_information_)); #endif handle_scope_data_.Initialize(); #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \ name##_ = (initial_value); ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE) #undef ISOLATE_INIT_EXECUTE #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \ memset(name##_, 0, sizeof(type) * length); ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE) #undef ISOLATE_INIT_ARRAY_EXECUTE InitializeLoggingAndCounters(); debug_ = new Debug(this); init_memcopy_functions(this); } void Isolate::TearDown() { TRACE_ISOLATE(tear_down); // Temporarily set this isolate as current so that various parts of // the isolate can access it in their destructors without having a // direct pointer. We don't use Enter/Exit here to avoid // initializing the thread data. PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData(); DCHECK(base::NoBarrier_Load(&isolate_key_created_) == 1); Isolate* saved_isolate = reinterpret_cast<Isolate*>(base::Thread::GetThreadLocal(isolate_key_)); SetIsolateThreadLocals(this, NULL); Deinit(); { base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer()); thread_data_table_->RemoveAllThreads(this); } delete this; // Restore the previous current isolate. SetIsolateThreadLocals(saved_isolate, saved_data); } void Isolate::GlobalTearDown() { delete thread_data_table_; thread_data_table_ = NULL; } void Isolate::ClearSerializerData() { delete external_reference_table_; external_reference_table_ = NULL; delete external_reference_map_; external_reference_map_ = NULL; } void Isolate::Deinit() { TRACE_ISOLATE(deinit); debug()->Unload(); FreeThreadResources(); if (concurrent_recompilation_enabled()) { optimizing_compile_dispatcher_->Stop(); delete optimizing_compile_dispatcher_; optimizing_compile_dispatcher_ = NULL; } heap_.mark_compact_collector()->EnsureSweepingCompleted(); DumpAndResetCompilationStats(); if (FLAG_print_deopt_stress) { PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_); } if (cpu_profiler_) { cpu_profiler_->DeleteAllProfiles(); } // We must stop the logger before we tear down other components. sampler::Sampler* sampler = logger_->sampler(); if (sampler && sampler->IsActive()) sampler->Stop(); delete deoptimizer_data_; deoptimizer_data_ = NULL; builtins_.TearDown(); bootstrapper_->TearDown(); if (runtime_profiler_ != NULL) { delete runtime_profiler_; runtime_profiler_ = NULL; } delete basic_block_profiler_; basic_block_profiler_ = NULL; delete heap_profiler_; heap_profiler_ = NULL; compiler_dispatcher_->AbortAll(CompilerDispatcher::BlockingBehavior::kBlock); delete compiler_dispatcher_; compiler_dispatcher_ = nullptr; cancelable_task_manager()->CancelAndWait(); heap_.TearDown(); logger_->TearDown(); delete interpreter_; interpreter_ = NULL; delete ast_string_constants_; ast_string_constants_ = nullptr; delete cpu_profiler_; cpu_profiler_ = NULL; code_event_dispatcher_.reset(); delete root_index_map_; root_index_map_ = NULL; ClearSerializerData(); ReleaseManagedObjects(); } void Isolate::SetIsolateThreadLocals(Isolate* isolate, PerIsolateThreadData* data) { base::Thread::SetThreadLocal(isolate_key_, isolate); base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data); } Isolate::~Isolate() { TRACE_ISOLATE(destructor); // The entry stack must be empty when we get here. DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL); delete entry_stack_; entry_stack_ = NULL; delete unicode_cache_; unicode_cache_ = NULL; delete date_cache_; date_cache_ = NULL; delete[] call_descriptor_data_; call_descriptor_data_ = NULL; delete access_compiler_data_; access_compiler_data_ = NULL; delete regexp_stack_; regexp_stack_ = NULL; delete descriptor_lookup_cache_; descriptor_lookup_cache_ = NULL; delete context_slot_cache_; context_slot_cache_ = NULL; delete load_stub_cache_; load_stub_cache_ = NULL; delete store_stub_cache_; store_stub_cache_ = NULL; delete code_aging_helper_; code_aging_helper_ = NULL; delete stats_table_; stats_table_ = NULL; delete materialized_object_store_; materialized_object_store_ = NULL; delete logger_; logger_ = NULL; delete counters_; counters_ = NULL; delete handle_scope_implementer_; handle_scope_implementer_ = NULL; delete code_tracer(); set_code_tracer(NULL); delete compilation_cache_; compilation_cache_ = NULL; delete bootstrapper_; bootstrapper_ = NULL; delete inner_pointer_to_code_cache_; inner_pointer_to_code_cache_ = NULL; delete thread_manager_; thread_manager_ = NULL; delete global_handles_; global_handles_ = NULL; delete eternal_handles_; eternal_handles_ = NULL; delete string_stream_debug_object_cache_; string_stream_debug_object_cache_ = NULL; delete random_number_generator_; random_number_generator_ = NULL; delete debug_; debug_ = NULL; delete cancelable_task_manager_; cancelable_task_manager_ = nullptr; delete allocator_; allocator_ = nullptr; #if USE_SIMULATOR Simulator::TearDown(simulator_i_cache_, simulator_redirection_); simulator_i_cache_ = nullptr; simulator_redirection_ = nullptr; #endif } void Isolate::InitializeThreadLocal() { thread_local_top_.isolate_ = this; thread_local_top_.Initialize(); } bool Isolate::PropagatePendingExceptionToExternalTryCatch() { Object* exception = pending_exception(); if (IsJavaScriptHandlerOnTop(exception)) { thread_local_top_.external_caught_exception_ = false; return false; } if (!IsExternalHandlerOnTop(exception)) { thread_local_top_.external_caught_exception_ = false; return true; } thread_local_top_.external_caught_exception_ = true; if (!is_catchable_by_javascript(exception)) { try_catch_handler()->can_continue_ = false; try_catch_handler()->has_terminated_ = true; try_catch_handler()->exception_ = heap()->null_value(); } else { v8::TryCatch* handler = try_catch_handler(); DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() || thread_local_top_.pending_message_obj_->IsTheHole(this)); handler->can_continue_ = true; handler->has_terminated_ = false; handler->exception_ = pending_exception(); // Propagate to the external try-catch only if we got an actual message. if (thread_local_top_.pending_message_obj_->IsTheHole(this)) return true; handler->message_obj_ = thread_local_top_.pending_message_obj_; } return true; } void Isolate::InitializeLoggingAndCounters() { if (logger_ == NULL) { logger_ = new Logger(this); } if (counters_ == NULL) { counters_ = new Counters(this); } } bool Isolate::Init(Deserializer* des) { TRACE_ISOLATE(init); stress_deopt_count_ = FLAG_deopt_every_n_times; has_fatal_error_ = false; if (function_entry_hook() != NULL) { // When function entry hooking is in effect, we have to create the code // stubs from scratch to get entry hooks, rather than loading the previously // generated stubs from disk. // If this assert fires, the initialization path has regressed. DCHECK(des == NULL); } // The initialization process does not handle memory exhaustion. AlwaysAllocateScope always_allocate(this); // Safe after setting Heap::isolate_, and initializing StackGuard heap_.SetStackLimits(); #define ASSIGN_ELEMENT(CamelName, hacker_name) \ isolate_addresses_[Isolate::k##CamelName##Address] = \ reinterpret_cast<Address>(hacker_name##_address()); FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT) #undef ASSIGN_ELEMENT compilation_cache_ = new CompilationCache(this); context_slot_cache_ = new ContextSlotCache(); descriptor_lookup_cache_ = new DescriptorLookupCache(); unicode_cache_ = new UnicodeCache(); inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this); global_handles_ = new GlobalHandles(this); eternal_handles_ = new EternalHandles(); bootstrapper_ = new Bootstrapper(this); handle_scope_implementer_ = new HandleScopeImplementer(this); load_stub_cache_ = new StubCache(this, Code::LOAD_IC); store_stub_cache_ = new StubCache(this, Code::STORE_IC); materialized_object_store_ = new MaterializedObjectStore(this); regexp_stack_ = new RegExpStack(); regexp_stack_->isolate_ = this; date_cache_ = new DateCache(); call_descriptor_data_ = new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS]; access_compiler_data_ = new AccessCompilerData(); cpu_profiler_ = new CpuProfiler(this); heap_profiler_ = new HeapProfiler(heap()); interpreter_ = new interpreter::Interpreter(this); compiler_dispatcher_ = new CompilerDispatcher(this, V8::GetCurrentPlatform(), FLAG_stack_size); // Enable logging before setting up the heap logger_->SetUp(this); // Initialize other runtime facilities #if defined(USE_SIMULATOR) #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \ V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 Simulator::Initialize(this); #endif #endif code_aging_helper_ = new CodeAgingHelper(this); { // NOLINT // Ensure that the thread has a valid stack guard. The v8::Locker object // will ensure this too, but we don't have to use lockers if we are only // using one thread. ExecutionAccess lock(this); stack_guard_.InitThread(lock); } // SetUp the object heap. DCHECK(!heap_.HasBeenSetUp()); if (!heap_.SetUp()) { V8::FatalProcessOutOfMemory("heap setup"); return false; } // Initialize the interface descriptors ahead of time. #define INTERFACE_DESCRIPTOR(V) \ { V##Descriptor(this); } INTERFACE_DESCRIPTOR_LIST(INTERFACE_DESCRIPTOR) #undef INTERFACE_DESCRIPTOR deoptimizer_data_ = new DeoptimizerData(heap()->memory_allocator()); const bool create_heap_objects = (des == NULL); if (create_heap_objects && !heap_.CreateHeapObjects()) { V8::FatalProcessOutOfMemory("heap object creation"); return false; } if (create_heap_objects) { // Terminate the partial snapshot cache so we can iterate. partial_snapshot_cache_.Add(heap_.undefined_value()); } InitializeThreadLocal(); bootstrapper_->Initialize(create_heap_objects); builtins_.SetUp(this, create_heap_objects); if (create_heap_objects) heap_.CreateFixedStubs(); if (FLAG_log_internal_timer_events) { set_event_logger(Logger::DefaultEventLoggerSentinel); } if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs || FLAG_trace_turbo || FLAG_trace_turbo_graph) { PrintF("Concurrent recompilation has been disabled for tracing.\n"); } else if (OptimizingCompileDispatcher::Enabled()) { optimizing_compile_dispatcher_ = new OptimizingCompileDispatcher(this); } // Initialize runtime profiler before deserialization, because collections may // occur, clearing/updating ICs. runtime_profiler_ = new RuntimeProfiler(this); // If we are deserializing, read the state into the now-empty heap. { AlwaysAllocateScope always_allocate(this); if (!create_heap_objects) { des->Deserialize(this); } load_stub_cache_->Initialize(); store_stub_cache_->Initialize(); interpreter_->Initialize(); heap_.NotifyDeserializationComplete(); } // Finish initialization of ThreadLocal after deserialization is done. clear_pending_exception(); clear_pending_message(); clear_scheduled_exception(); // Deserializing may put strange things in the root array's copy of the // stack guard. heap_.SetStackLimits(); // Quiet the heap NaN if needed on target platform. if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value()); if (FLAG_trace_turbo) { // Create an empty file. std::ofstream(GetTurboCfgFileName().c_str(), std::ios_base::trunc); } CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)), Internals::kIsolateEmbedderDataOffset); CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)), Internals::kIsolateRootsOffset); CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.external_memory_)), Internals::kExternalMemoryOffset); CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.external_memory_limit_)), Internals::kExternalMemoryLimitOffset); time_millis_at_init_ = heap_.MonotonicallyIncreasingTimeInMs(); { HandleScope scope(this); ast_string_constants_ = new AstStringConstants(this, heap()->HashSeed()); } if (!create_heap_objects) { // Now that the heap is consistent, it's OK to generate the code for the // deopt entry table that might have been referred to by optimized code in // the snapshot. HandleScope scope(this); Deoptimizer::EnsureCodeForDeoptimizationEntry( this, Deoptimizer::LAZY, ExternalReferenceTable::kDeoptTableSerializeEntryCount - 1); } if (!serializer_enabled()) { // Ensure that all stubs which need to be generated ahead of time, but // cannot be serialized into the snapshot have been generated. HandleScope scope(this); CodeStub::GenerateFPStubs(this); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this); StubFailureTrampolineStub::GenerateAheadOfTime(this); } initialized_from_snapshot_ = (des != NULL); if (!FLAG_inline_new) heap_.DisableInlineAllocation(); return true; } // Initialized lazily to allow early // v8::V8::SetAddHistogramSampleFunction calls. StatsTable* Isolate::stats_table() { if (stats_table_ == NULL) { stats_table_ = new StatsTable; } return stats_table_; } void Isolate::Enter() { Isolate* current_isolate = NULL; PerIsolateThreadData* current_data = CurrentPerIsolateThreadData(); if (current_data != NULL) { current_isolate = current_data->isolate_; DCHECK(current_isolate != NULL); if (current_isolate == this) { DCHECK(Current() == this); DCHECK(entry_stack_ != NULL); DCHECK(entry_stack_->previous_thread_data == NULL || entry_stack_->previous_thread_data->thread_id().Equals( ThreadId::Current())); // Same thread re-enters the isolate, no need to re-init anything. entry_stack_->entry_count++; return; } } PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread(); DCHECK(data != NULL); DCHECK(data->isolate_ == this); EntryStackItem* item = new EntryStackItem(current_data, current_isolate, entry_stack_); entry_stack_ = item; SetIsolateThreadLocals(this, data); // In case it's the first time some thread enters the isolate. set_thread_id(data->thread_id()); } void Isolate::Exit() { DCHECK(entry_stack_ != NULL); DCHECK(entry_stack_->previous_thread_data == NULL || entry_stack_->previous_thread_data->thread_id().Equals( ThreadId::Current())); if (--entry_stack_->entry_count > 0) return; DCHECK(CurrentPerIsolateThreadData() != NULL); DCHECK(CurrentPerIsolateThreadData()->isolate_ == this); // Pop the stack. EntryStackItem* item = entry_stack_; entry_stack_ = item->previous_item; PerIsolateThreadData* previous_thread_data = item->previous_thread_data; Isolate* previous_isolate = item->previous_isolate; delete item; // Reinit the current thread for the isolate it was running before this one. SetIsolateThreadLocals(previous_isolate, previous_thread_data); } void Isolate::LinkDeferredHandles(DeferredHandles* deferred) { deferred->next_ = deferred_handles_head_; if (deferred_handles_head_ != NULL) { deferred_handles_head_->previous_ = deferred; } deferred_handles_head_ = deferred; } void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) { #ifdef DEBUG // In debug mode assert that the linked list is well-formed. DeferredHandles* deferred_iterator = deferred; while (deferred_iterator->previous_ != NULL) { deferred_iterator = deferred_iterator->previous_; } DCHECK(deferred_handles_head_ == deferred_iterator); #endif if (deferred_handles_head_ == deferred) { deferred_handles_head_ = deferred_handles_head_->next_; } if (deferred->next_ != NULL) { deferred->next_->previous_ = deferred->previous_; } if (deferred->previous_ != NULL) { deferred->previous_->next_ = deferred->next_; } } void Isolate::DumpAndResetCompilationStats() { if (turbo_statistics() != nullptr) { DCHECK(FLAG_turbo_stats || FLAG_turbo_stats_nvp); OFStream os(stdout); if (FLAG_turbo_stats) { AsPrintableStatistics ps = {*turbo_statistics(), false}; os << ps << std::endl; } if (FLAG_turbo_stats_nvp) { AsPrintableStatistics ps = {*turbo_statistics(), true}; os << ps << std::endl; } } if (hstatistics() != nullptr) hstatistics()->Print(); delete turbo_statistics_; turbo_statistics_ = nullptr; delete hstatistics_; hstatistics_ = nullptr; if (V8_UNLIKELY(FLAG_runtime_stats == v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) { OFStream os(stdout); counters()->runtime_call_stats()->Print(os); counters()->runtime_call_stats()->Reset(); } } HStatistics* Isolate::GetHStatistics() { if (hstatistics() == NULL) set_hstatistics(new HStatistics()); return hstatistics(); } CompilationStatistics* Isolate::GetTurboStatistics() { if (turbo_statistics() == NULL) set_turbo_statistics(new CompilationStatistics()); return turbo_statistics(); } HTracer* Isolate::GetHTracer() { if (htracer() == NULL) set_htracer(new HTracer(id())); return htracer(); } CodeTracer* Isolate::GetCodeTracer() { if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id())); return code_tracer(); } Map* Isolate::get_initial_js_array_map(ElementsKind kind) { if (IsFastElementsKind(kind)) { DisallowHeapAllocation no_gc; Object* const initial_js_array_map = context()->native_context()->get(Context::ArrayMapIndex(kind)); if (!initial_js_array_map->IsUndefined(this)) { return Map::cast(initial_js_array_map); } } return nullptr; } bool Isolate::use_crankshaft() { return FLAG_opt && FLAG_crankshaft && !serializer_enabled_ && CpuFeatures::SupportsCrankshaft() && !IsCodeCoverageEnabled(); } bool Isolate::NeedsSourcePositionsForProfiling() const { return FLAG_trace_deopt || FLAG_trace_turbo || FLAG_trace_turbo_graph || FLAG_turbo_profiling || FLAG_perf_prof || is_profiling() || debug_->is_active() || logger_->is_logging(); } bool Isolate::IsCodeCoverageEnabled() { return heap()->code_coverage_list()->IsArrayList(); } void Isolate::SetCodeCoverageList(Object* value) { DCHECK(value->IsUndefined(this) || value->IsArrayList()); heap()->set_code_coverage_list(value); } bool Isolate::IsArrayOrObjectPrototype(Object* object) { Object* context = heap()->native_contexts_list(); while (!context->IsUndefined(this)) { Context* current_context = Context::cast(context); if (current_context->initial_object_prototype() == object || current_context->initial_array_prototype() == object) { return true; } context = current_context->next_context_link(); } return false; } void Isolate::ClearOSROptimizedCode() { DisallowHeapAllocation no_gc; Object* context = heap()->native_contexts_list(); while (!context->IsUndefined(this)) { Context* current_context = Context::cast(context); current_context->ClearOptimizedCodeMap(); context = current_context->next_context_link(); } } void Isolate::EvictOSROptimizedCode(Code* code, const char* reason) { DisallowHeapAllocation no_gc; Object* context = heap()->native_contexts_list(); while (!context->IsUndefined(this)) { Context* current_context = Context::cast(context); current_context->EvictFromOptimizedCodeMap(code, reason); context = current_context->next_context_link(); } } bool Isolate::IsInAnyContext(Object* object, uint32_t index) { DisallowHeapAllocation no_gc; Object* context = heap()->native_contexts_list(); while (!context->IsUndefined(this)) { Context* current_context = Context::cast(context); if (current_context->get(index) == object) { return true; } context = current_context->next_context_link(); } return false; } bool Isolate::IsFastArrayConstructorPrototypeChainIntact() { PropertyCell* no_elements_cell = heap()->array_protector(); bool cell_reports_intact = no_elements_cell->value()->IsSmi() && Smi::cast(no_elements_cell->value())->value() == kProtectorValid; #ifdef DEBUG Map* root_array_map = get_initial_js_array_map(GetInitialFastElementsKind()); Context* native_context = context()->native_context(); JSObject* initial_array_proto = JSObject::cast( native_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); JSObject* initial_object_proto = JSObject::cast( native_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX)); if (root_array_map == NULL || initial_array_proto == initial_object_proto) { // We are in the bootstrapping process, and the entire check sequence // shouldn't be performed. return cell_reports_intact; } // Check that the array prototype hasn't been altered WRT empty elements. if (root_array_map->prototype() != initial_array_proto) { DCHECK_EQ(false, cell_reports_intact); return cell_reports_intact; } FixedArrayBase* elements = initial_array_proto->elements(); if (elements != heap()->empty_fixed_array() && elements != heap()->empty_slow_element_dictionary()) { DCHECK_EQ(false, cell_reports_intact); return cell_reports_intact; } // Check that the object prototype hasn't been altered WRT empty elements. PrototypeIterator iter(this, initial_array_proto); if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) { DCHECK_EQ(false, cell_reports_intact); return cell_reports_intact; } elements = initial_object_proto->elements(); if (elements != heap()->empty_fixed_array() && elements != heap()->empty_slow_element_dictionary()) { DCHECK_EQ(false, cell_reports_intact); return cell_reports_intact; } iter.Advance(); if (!iter.IsAtEnd()) { DCHECK_EQ(false, cell_reports_intact); return cell_reports_intact; } #endif return cell_reports_intact; } bool Isolate::IsIsConcatSpreadableLookupChainIntact() { Cell* is_concat_spreadable_cell = heap()->is_concat_spreadable_protector(); bool is_is_concat_spreadable_set = Smi::cast(is_concat_spreadable_cell->value())->value() == kProtectorInvalid; #ifdef DEBUG Map* root_array_map = get_initial_js_array_map(GetInitialFastElementsKind()); if (root_array_map == NULL) { // Ignore the value of is_concat_spreadable during bootstrap. return !is_is_concat_spreadable_set; } Handle<Object> array_prototype(array_function()->prototype(), this); Handle<Symbol> key = factory()->is_concat_spreadable_symbol(); Handle<Object> value; LookupIterator it(array_prototype, key); if (it.IsFound() && !JSReceiver::GetDataProperty(&it)->IsUndefined(this)) { // TODO(cbruni): Currently we do not revert if we unset the // @@isConcatSpreadable property on Array.prototype or Object.prototype // hence the reverse implication doesn't hold. DCHECK(is_is_concat_spreadable_set); return false; } #endif // DEBUG return !is_is_concat_spreadable_set; } bool Isolate::IsIsConcatSpreadableLookupChainIntact(JSReceiver* receiver) { if (!IsIsConcatSpreadableLookupChainIntact()) return false; return !receiver->HasProxyInPrototype(this); } void Isolate::UpdateArrayProtectorOnSetElement(Handle<JSObject> object) { DisallowHeapAllocation no_gc; if (!object->map()->is_prototype_map()) return; if (!IsFastArrayConstructorPrototypeChainIntact()) return; if (!IsArrayOrObjectPrototype(*object)) return; PropertyCell::SetValueWithInvalidation( factory()->array_protector(), handle(Smi::FromInt(kProtectorInvalid), this)); } void Isolate::InvalidateIsConcatSpreadableProtector() { DCHECK(factory()->is_concat_spreadable_protector()->value()->IsSmi()); DCHECK(IsIsConcatSpreadableLookupChainIntact()); factory()->is_concat_spreadable_protector()->set_value( Smi::FromInt(kProtectorInvalid)); DCHECK(!IsIsConcatSpreadableLookupChainIntact()); } void Isolate::InvalidateArraySpeciesProtector() { DCHECK(factory()->species_protector()->value()->IsSmi()); DCHECK(IsArraySpeciesLookupChainIntact()); factory()->species_protector()->set_value(Smi::FromInt(kProtectorInvalid)); DCHECK(!IsArraySpeciesLookupChainIntact()); } void Isolate::InvalidateStringLengthOverflowProtector() { DCHECK(factory()->string_length_protector()->value()->IsSmi()); DCHECK(IsStringLengthOverflowIntact()); PropertyCell::SetValueWithInvalidation( factory()->string_length_protector(), handle(Smi::FromInt(kProtectorInvalid), this)); DCHECK(!IsStringLengthOverflowIntact()); } void Isolate::InvalidateArrayIteratorProtector() { DCHECK(factory()->array_iterator_protector()->value()->IsSmi()); DCHECK(IsArrayIteratorLookupChainIntact()); PropertyCell::SetValueWithInvalidation( factory()->array_iterator_protector(), handle(Smi::FromInt(kProtectorInvalid), this)); DCHECK(!IsArrayIteratorLookupChainIntact()); } void Isolate::InvalidateArrayBufferNeuteringProtector() { DCHECK(factory()->array_buffer_neutering_protector()->value()->IsSmi()); DCHECK(IsArrayBufferNeuteringIntact()); PropertyCell::SetValueWithInvalidation( factory()->array_buffer_neutering_protector(), handle(Smi::FromInt(kProtectorInvalid), this)); DCHECK(!IsArrayBufferNeuteringIntact()); } bool Isolate::IsAnyInitialArrayPrototype(Handle<JSArray> array) { DisallowHeapAllocation no_gc; return IsInAnyContext(*array, Context::INITIAL_ARRAY_PROTOTYPE_INDEX); } CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) { DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS); return &call_descriptor_data_[index]; } base::RandomNumberGenerator* Isolate::random_number_generator() { if (random_number_generator_ == NULL) { if (FLAG_random_seed != 0) { random_number_generator_ = new base::RandomNumberGenerator(FLAG_random_seed); } else { random_number_generator_ = new base::RandomNumberGenerator(); } } return random_number_generator_; } int Isolate::GenerateIdentityHash(uint32_t mask) { int hash; int attempts = 0; do { hash = random_number_generator()->NextInt() & mask; } while (hash == 0 && attempts++ < 30); return hash != 0 ? hash : 1; } Code* Isolate::FindCodeObject(Address a) { return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a); } #ifdef DEBUG #define ISOLATE_FIELD_OFFSET(type, name, ignored) \ const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_); ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET) ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET) #undef ISOLATE_FIELD_OFFSET #endif Handle<Symbol> Isolate::SymbolFor(Heap::RootListIndex dictionary_index, Handle<String> name, bool private_symbol) { Handle<String> key = factory()->InternalizeString(name); Handle<NameDictionary> dictionary = Handle<NameDictionary>::cast(heap()->root_handle(dictionary_index)); int entry = dictionary->FindEntry(key); Handle<Symbol> symbol; if (entry == NameDictionary::kNotFound) { symbol = private_symbol ? factory()->NewPrivateSymbol() : factory()->NewSymbol(); symbol->set_name(*key); dictionary = NameDictionary::Add(dictionary, key, symbol, PropertyDetails::Empty(), &entry); switch (dictionary_index) { case Heap::kPublicSymbolTableRootIndex: symbol->set_is_public(true); heap()->set_public_symbol_table(*dictionary); break; case Heap::kApiSymbolTableRootIndex: heap()->set_api_symbol_table(*dictionary); break; case Heap::kApiPrivateSymbolTableRootIndex: heap()->set_api_private_symbol_table(*dictionary); break; default: UNREACHABLE(); } } else { symbol = Handle<Symbol>(Symbol::cast(dictionary->ValueAt(entry))); } return symbol; } void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) { for (int i = 0; i < before_call_entered_callbacks_.length(); i++) { if (callback == before_call_entered_callbacks_.at(i)) return; } before_call_entered_callbacks_.Add(callback); } void Isolate::RemoveBeforeCallEnteredCallback( BeforeCallEnteredCallback callback) { for (int i = 0; i < before_call_entered_callbacks_.length(); i++) { if (callback == before_call_entered_callbacks_.at(i)) { before_call_entered_callbacks_.Remove(i); } } } void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) { for (int i = 0; i < call_completed_callbacks_.length(); i++) { if (callback == call_completed_callbacks_.at(i)) return; } call_completed_callbacks_.Add(callback); } void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) { for (int i = 0; i < call_completed_callbacks_.length(); i++) { if (callback == call_completed_callbacks_.at(i)) { call_completed_callbacks_.Remove(i); } } } void Isolate::FireCallCompletedCallback() { if (!handle_scope_implementer()->CallDepthIsZero()) return; bool run_microtasks = pending_microtask_count() && !handle_scope_implementer()->HasMicrotasksSuppressions() && handle_scope_implementer()->microtasks_policy() == v8::MicrotasksPolicy::kAuto; if (run_microtasks) RunMicrotasks(); // Prevent stepping from spilling into the next call made by the embedder. if (debug()->is_active()) debug()->ClearStepping(); if (call_completed_callbacks_.is_empty()) return; // Fire callbacks. Increase call depth to prevent recursive callbacks. v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this); v8::Isolate::SuppressMicrotaskExecutionScope suppress(isolate); for (int i = 0; i < call_completed_callbacks_.length(); i++) { call_completed_callbacks_.at(i)(isolate); } } void Isolate::DebugStateUpdated() { promise_hook_or_debug_is_active_ = promise_hook_ || debug()->is_active(); } void Isolate::SetPromiseHook(PromiseHook hook) { promise_hook_ = hook; DebugStateUpdated(); } void Isolate::RunPromiseHook(PromiseHookType type, Handle<JSPromise> promise, Handle<Object> parent) { if (debug()->is_active()) debug()->RunPromiseHook(type, promise, parent); if (promise_hook_ == nullptr) return; promise_hook_(type, v8::Utils::PromiseToLocal(promise), v8::Utils::ToLocal(parent)); } void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) { promise_reject_callback_ = callback; } void Isolate::ReportPromiseReject(Handle<JSObject> promise, Handle<Object> value, v8::PromiseRejectEvent event) { if (promise_reject_callback_ == NULL) return; Handle<JSArray> stack_trace; if (event == v8::kPromiseRejectWithNoHandler && value->IsJSObject()) { stack_trace = GetDetailedStackTrace(Handle<JSObject>::cast(value)); } promise_reject_callback_(v8::PromiseRejectMessage( v8::Utils::PromiseToLocal(promise), event, v8::Utils::ToLocal(value), v8::Utils::StackTraceToLocal(stack_trace))); } void Isolate::PromiseReactionJob(Handle<PromiseReactionJobInfo> info, MaybeHandle<Object>* result, MaybeHandle<Object>* maybe_exception) { Handle<Object> value(info->value(), this); Handle<Object> tasks(info->tasks(), this); Handle<JSFunction> promise_handle_fn = promise_handle(); Handle<Object> undefined = factory()->undefined_value(); Handle<Object> deferred_promise(info->deferred_promise(), this); if (deferred_promise->IsFixedArray()) { DCHECK(tasks->IsFixedArray()); Handle<FixedArray> deferred_promise_arr = Handle<FixedArray>::cast(deferred_promise); Handle<FixedArray> deferred_on_resolve_arr( FixedArray::cast(info->deferred_on_resolve()), this); Handle<FixedArray> deferred_on_reject_arr( FixedArray::cast(info->deferred_on_reject()), this); Handle<FixedArray> tasks_arr = Handle<FixedArray>::cast(tasks); for (int i = 0; i < deferred_promise_arr->length(); i++) { Handle<Object> argv[] = {value, handle(tasks_arr->get(i), this), handle(deferred_promise_arr->get(i), this), handle(deferred_on_resolve_arr->get(i), this), handle(deferred_on_reject_arr->get(i), this)}; *result = Execution::TryCall( this, promise_handle_fn, undefined, arraysize(argv), argv, Execution::MessageHandling::kReport, maybe_exception); // If execution is terminating, just bail out. if (result->is_null() && maybe_exception->is_null()) { return; } } } else { Handle<Object> argv[] = {value, tasks, deferred_promise, handle(info->deferred_on_resolve(), this), handle(info->deferred_on_reject(), this)}; *result = Execution::TryCall( this, promise_handle_fn, undefined, arraysize(argv), argv, Execution::MessageHandling::kReport, maybe_exception); } } void Isolate::PromiseResolveThenableJob( Handle<PromiseResolveThenableJobInfo> info, MaybeHandle<Object>* result, MaybeHandle<Object>* maybe_exception) { Handle<JSReceiver> thenable(info->thenable(), this); Handle<JSFunction> resolve(info->resolve(), this); Handle<JSFunction> reject(info->reject(), this); Handle<JSReceiver> then(info->then(), this); Handle<Object> argv[] = {resolve, reject}; *result = Execution::TryCall(this, then, thenable, arraysize(argv), argv, Execution::MessageHandling::kReport, maybe_exception); Handle<Object> reason; if (maybe_exception->ToHandle(&reason)) { DCHECK(result->is_null()); Handle<Object> reason_arg[] = {reason}; *result = Execution::TryCall( this, reject, factory()->undefined_value(), arraysize(reason_arg), reason_arg, Execution::MessageHandling::kReport, maybe_exception); } } void Isolate::EnqueueMicrotask(Handle<Object> microtask) { DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo() || microtask->IsPromiseResolveThenableJobInfo() || microtask->IsPromiseReactionJobInfo()); Handle<FixedArray> queue(heap()->microtask_queue(), this); int num_tasks = pending_microtask_count(); DCHECK(num_tasks <= queue->length()); if (num_tasks == 0) { queue = factory()->NewFixedArray(8); heap()->set_microtask_queue(*queue); } else if (num_tasks == queue->length()) { queue = factory()->CopyFixedArrayAndGrow(queue, num_tasks); heap()->set_microtask_queue(*queue); } DCHECK(queue->get(num_tasks)->IsUndefined(this)); queue->set(num_tasks, *microtask); set_pending_microtask_count(num_tasks + 1); } void Isolate::RunMicrotasks() { // Increase call depth to prevent recursive callbacks. v8::Isolate::SuppressMicrotaskExecutionScope suppress( reinterpret_cast<v8::Isolate*>(this)); is_running_microtasks_ = true; RunMicrotasksInternal(); is_running_microtasks_ = false; FireMicrotasksCompletedCallback(); } void Isolate::RunMicrotasksInternal() { if (!pending_microtask_count()) return; TRACE_EVENT0("v8.execute", "RunMicrotasks"); TRACE_EVENT_CALL_STATS_SCOPED(this, "v8", "V8.RunMicrotasks"); while (pending_microtask_count() > 0) { HandleScope scope(this); int num_tasks = pending_microtask_count(); Handle<FixedArray> queue(heap()->microtask_queue(), this); DCHECK(num_tasks <= queue->length()); set_pending_microtask_count(0); heap()->set_microtask_queue(heap()->empty_fixed_array()); Isolate* isolate = this; FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < num_tasks, i++, { Handle<Object> microtask(queue->get(i), this); if (microtask->IsCallHandlerInfo()) { Handle<CallHandlerInfo> callback_info = Handle<CallHandlerInfo>::cast(microtask); v8::MicrotaskCallback callback = v8::ToCData<v8::MicrotaskCallback>(callback_info->callback()); void* data = v8::ToCData<void*>(callback_info->data()); callback(data); } else { SaveContext save(this); Context* context; if (microtask->IsJSFunction()) { context = Handle<JSFunction>::cast(microtask)->context(); } else if (microtask->IsPromiseResolveThenableJobInfo()) { context = Handle<PromiseResolveThenableJobInfo>::cast(microtask)->context(); } else { context = Handle<PromiseReactionJobInfo>::cast(microtask)->context(); } set_context(context->native_context()); handle_scope_implementer_->EnterMicrotaskContext( Handle<Context>(context, this)); MaybeHandle<Object> result; MaybeHandle<Object> maybe_exception; if (microtask->IsJSFunction()) { Handle<JSFunction> microtask_function = Handle<JSFunction>::cast(microtask); result = Execution::TryCall( this, microtask_function, factory()->undefined_value(), 0, nullptr, Execution::MessageHandling::kReport, &maybe_exception); } else if (microtask->IsPromiseResolveThenableJobInfo()) { PromiseResolveThenableJob( Handle<PromiseResolveThenableJobInfo>::cast(microtask), &result, &maybe_exception); } else { PromiseReactionJob(Handle<PromiseReactionJobInfo>::cast(microtask), &result, &maybe_exception); } handle_scope_implementer_->LeaveMicrotaskContext(); // If execution is terminating, just bail out. if (result.is_null() && maybe_exception.is_null()) { // Clear out any remaining callbacks in the queue. heap()->set_microtask_queue(heap()->empty_fixed_array()); set_pending_microtask_count(0); return; } } }); } } void Isolate::AddMicrotasksCompletedCallback( MicrotasksCompletedCallback callback) { for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) { if (callback == microtasks_completed_callbacks_.at(i)) return; } microtasks_completed_callbacks_.Add(callback); } void Isolate::RemoveMicrotasksCompletedCallback( MicrotasksCompletedCallback callback) { for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) { if (callback == microtasks_completed_callbacks_.at(i)) { microtasks_completed_callbacks_.Remove(i); } } } void Isolate::FireMicrotasksCompletedCallback() { for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) { microtasks_completed_callbacks_.at(i)(reinterpret_cast<v8::Isolate*>(this)); } } void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) { DCHECK(!use_counter_callback_); use_counter_callback_ = callback; } void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) { // The counter callback may cause the embedder to call into V8, which is not // generally possible during GC. if (heap_.gc_state() == Heap::NOT_IN_GC) { if (use_counter_callback_) { HandleScope handle_scope(this); use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature); } } else { heap_.IncrementDeferredCount(feature); } } BasicBlockProfiler* Isolate::GetOrCreateBasicBlockProfiler() { if (basic_block_profiler_ == NULL) { basic_block_profiler_ = new BasicBlockProfiler(); } return basic_block_profiler_; } std::string Isolate::GetTurboCfgFileName() { if (FLAG_trace_turbo_cfg_file == NULL) { std::ostringstream os; os << "turbo-" << base::OS::GetCurrentProcessId() << "-" << id() << ".cfg"; return os.str(); } else { return FLAG_trace_turbo_cfg_file; } } void Isolate::SetTailCallEliminationEnabled(bool enabled) { if (is_tail_call_elimination_enabled_ == enabled) return; is_tail_call_elimination_enabled_ = enabled; // TODO(ishell): Introduce DependencyGroup::kTailCallChangedGroup to // deoptimize only those functions that are affected by the change of this // flag. internal::Deoptimizer::DeoptimizeAll(this); } // Heap::detached_contexts tracks detached contexts as pairs // (number of GC since the context was detached, the context). void Isolate::AddDetachedContext(Handle<Context> context) { HandleScope scope(this); Handle<WeakCell> cell = factory()->NewWeakCell(context); Handle<FixedArray> detached_contexts = factory()->detached_contexts(); int length = detached_contexts->length(); detached_contexts = factory()->CopyFixedArrayAndGrow(detached_contexts, 2); detached_contexts->set(length, Smi::kZero); detached_contexts->set(length + 1, *cell); heap()->set_detached_contexts(*detached_contexts); } void Isolate::CheckDetachedContextsAfterGC() { HandleScope scope(this); Handle<FixedArray> detached_contexts = factory()->detached_contexts(); int length = detached_contexts->length(); if (length == 0) return; int new_length = 0; for (int i = 0; i < length; i += 2) { int mark_sweeps = Smi::cast(detached_contexts->get(i))->value(); DCHECK(detached_contexts->get(i + 1)->IsWeakCell()); WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1)); if (!cell->cleared()) { detached_contexts->set(new_length, Smi::FromInt(mark_sweeps + 1)); detached_contexts->set(new_length + 1, cell); new_length += 2; } counters()->detached_context_age_in_gc()->AddSample(mark_sweeps + 1); } if (FLAG_trace_detached_contexts) { PrintF("%d detached contexts are collected out of %d\n", length - new_length, length); for (int i = 0; i < new_length; i += 2) { int mark_sweeps = Smi::cast(detached_contexts->get(i))->value(); DCHECK(detached_contexts->get(i + 1)->IsWeakCell()); WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1)); if (mark_sweeps > 3) { PrintF("detached context %p\n survived %d GCs (leak?)\n", static_cast<void*>(cell->value()), mark_sweeps); } } } if (new_length == 0) { heap()->set_detached_contexts(heap()->empty_fixed_array()); } else if (new_length < length) { heap()->RightTrimFixedArray(*detached_contexts, length - new_length); } } double Isolate::LoadStartTimeMs() { base::LockGuard<base::Mutex> guard(&rail_mutex_); return load_start_time_ms_; } void Isolate::SetRAILMode(RAILMode rail_mode) { RAILMode old_rail_mode = rail_mode_.Value(); if (old_rail_mode != PERFORMANCE_LOAD && rail_mode == PERFORMANCE_LOAD) { base::LockGuard<base::Mutex> guard(&rail_mutex_); load_start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs(); } rail_mode_.SetValue(rail_mode); if (old_rail_mode == PERFORMANCE_LOAD && rail_mode != PERFORMANCE_LOAD) { heap()->incremental_marking()->incremental_marking_job()->ScheduleTask( heap()); } if (FLAG_trace_rail) { PrintIsolate(this, "RAIL mode: %s\n", RAILModeName(rail_mode)); } } void Isolate::IsolateInBackgroundNotification() { is_isolate_in_background_ = true; heap()->ActivateMemoryReducerIfNeeded(); } void Isolate::IsolateInForegroundNotification() { is_isolate_in_background_ = false; } void Isolate::PrintWithTimestamp(const char* format, ...) { base::OS::Print("[%d:%p] %8.0f ms: ", base::OS::GetCurrentProcessId(), static_cast<void*>(this), time_millis_since_init()); va_list arguments; va_start(arguments, format); base::OS::VPrint(format, arguments); va_end(arguments); } bool StackLimitCheck::JsHasOverflowed(uintptr_t gap) const { StackGuard* stack_guard = isolate_->stack_guard(); #ifdef USE_SIMULATOR // The simulator uses a separate JS stack. Address jssp_address = Simulator::current(isolate_)->get_sp(); uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address); if (jssp - gap < stack_guard->real_jslimit()) return true; #endif // USE_SIMULATOR return GetCurrentStackPosition() - gap < stack_guard->real_climit(); } SaveContext::SaveContext(Isolate* isolate) : isolate_(isolate), prev_(isolate->save_context()) { if (isolate->context() != NULL) { context_ = Handle<Context>(isolate->context()); } isolate->set_save_context(this); c_entry_fp_ = isolate->c_entry_fp(isolate->thread_local_top()); } SaveContext::~SaveContext() { isolate_->set_context(context_.is_null() ? NULL : *context_); isolate_->set_save_context(prev_); } #ifdef DEBUG AssertNoContextChange::AssertNoContextChange(Isolate* isolate) : isolate_(isolate), context_(isolate->context(), isolate) {} #endif // DEBUG bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) { // First check whether the previous scope intercepts. if (prev_ && prev_->Intercept(flag)) return true; // Then check whether this scope intercepts. if ((flag & intercept_mask_)) { intercepted_flags_ |= flag; return true; } return false; } } // namespace internal } // namespace v8