// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/crankshaft/mips64/lithium-codegen-mips64.h" #include "src/builtins/builtins-constructor.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/crankshaft/hydrogen-osr.h" #include "src/crankshaft/mips64/lithium-gap-resolver-mips64.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { class SafepointGenerator final : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() {} void BeforeCall(int call_size) const override {} void AfterCall() const override { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope( LCodeGen* codegen) : codegen_(codegen) { DCHECK(codegen_->info()->is_calling()); DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; StoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->push(ra); codegen_->masm_->CallStub(&stub); } LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() { DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); RestoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->push(ra); codegen_->masm_->CallStub(&stub); codegen_->expected_safepoint_kind_ = Safepoint::kSimple; } #define __ masm()-> bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); DCHECK(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // NONE indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::NONE); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle<Code> code) { DCHECK(is_done()); code->set_stack_slots(GetTotalFrameSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); } void LCodeGen::SaveCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Save clobbered callee double registers"); int count = 0; BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); while (!save_iterator.Done()) { __ sdc1(DoubleRegister::from_code(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } void LCodeGen::RestoreCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Restore clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); int count = 0; while (!save_iterator.Done()) { __ ldc1(DoubleRegister::from_code(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } bool LCodeGen::GeneratePrologue() { DCHECK(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); // a1: Callee's JS function. // cp: Callee's context. // fp: Caller's frame pointer. // lr: Caller's pc. } info()->set_prologue_offset(masm_->pc_offset()); if (NeedsEagerFrame()) { if (info()->IsStub()) { __ StubPrologue(StackFrame::STUB); } else { __ Prologue(info()->GeneratePreagedPrologue()); } frame_is_built_ = true; } // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ Dsubu(sp, sp, Operand(slots * kPointerSize)); __ Push(a0, a1); __ Daddu(a0, sp, Operand(slots * kPointerSize)); __ li(a1, Operand(kSlotsZapValue)); Label loop; __ bind(&loop); __ Dsubu(a0, a0, Operand(kPointerSize)); __ sd(a1, MemOperand(a0, 2 * kPointerSize)); __ Branch(&loop, ne, a0, Operand(sp)); __ Pop(a0, a1); } else { __ Dsubu(sp, sp, Operand(slots * kPointerSize)); } } if (info()->saves_caller_doubles()) { SaveCallerDoubles(); } return !is_aborted(); } void LCodeGen::DoPrologue(LPrologue* instr) { Comment(";;; Prologue begin"); // Possibly allocate a local context. if (info()->scope()->NeedsContext()) { Comment(";;; Allocate local context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is in a1. int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; if (info()->scope()->is_script_scope()) { __ push(a1); __ Push(info()->scope()->scope_info()); __ CallRuntime(Runtime::kNewScriptContext); deopt_mode = Safepoint::kLazyDeopt; } else { if (slots <= ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { Callable callable = CodeFactory::FastNewFunctionContext( isolate(), info()->scope()->scope_type()); __ li(FastNewFunctionContextDescriptor::SlotsRegister(), Operand(slots)); __ Call(callable.code(), RelocInfo::CODE_TARGET); // Result of the FastNewFunctionContext builtin is always in new space. need_write_barrier = false; } else { __ push(a1); __ Push(Smi::FromInt(info()->scope()->scope_type())); __ CallRuntime(Runtime::kNewFunctionContext); } } RecordSafepoint(deopt_mode); // Context is returned in both v0. It replaces the context passed to us. // It's saved in the stack and kept live in cp. __ mov(cp, v0); __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info()->scope()->num_parameters(); int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info()->scope()->receiver() : info()->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ ld(a0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ sd(a0, target); // Update the write barrier. This clobbers a3 and a0. if (need_write_barrier) { __ RecordWriteContextSlot( cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, a0, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } Comment(";;; End allocate local context"); } Comment(";;; Prologue end"); } void LCodeGen::GenerateOsrPrologue() { // Generate the OSR entry prologue at the first unknown OSR value, or if there // are none, at the OSR entrypoint instruction. if (osr_pc_offset_ >= 0) return; osr_pc_offset_ = masm()->pc_offset(); // Adjust the frame size, subsuming the unoptimized frame into the // optimized frame. int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); DCHECK(slots >= 0); __ Dsubu(sp, sp, Operand(slots * kPointerSize)); } void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { if (instr->IsCall()) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); } if (!instr->IsLazyBailout() && !instr->IsGap()) { safepoints_.BumpLastLazySafepointIndex(); } } bool LCodeGen::GenerateDeferredCode() { DCHECK(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; HValue* value = instructions_->at(code->instruction_index())->hydrogen_value(); RecordAndWritePosition(value->position()); Comment(";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); DCHECK(!frame_is_built_); DCHECK(info()->IsStub()); frame_is_built_ = true; __ li(scratch0(), Operand(StackFrame::TypeToMarker(StackFrame::STUB))); __ PushCommonFrame(scratch0()); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { Comment(";;; Destroy frame"); DCHECK(frame_is_built_); __ PopCommonFrame(scratch0()); frame_is_built_ = false; } __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateJumpTable() { if (jump_table_.length() > 0) { Comment(";;; -------------------- Jump table --------------------"); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label table_start, call_deopt_entry; __ bind(&table_start); Label needs_frame; Address base = jump_table_[0]->address; for (int i = 0; i < jump_table_.length(); i++) { Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; __ bind(&table_entry->label); Address entry = table_entry->address; DeoptComment(table_entry->deopt_info); // Second-level deopt table entries are contiguous and small, so instead // of loading the full, absolute address of each one, load the base // address and add an immediate offset. if (is_int16(entry - base)) { if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); Comment(";;; call deopt with frame"); __ PushCommonFrame(); __ BranchAndLink(&needs_frame, USE_DELAY_SLOT); __ li(t9, Operand(entry - base)); } else { __ BranchAndLink(&call_deopt_entry, USE_DELAY_SLOT); __ li(t9, Operand(entry - base)); } } else { __ li(t9, Operand(entry - base)); if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); Comment(";;; call deopt with frame"); __ PushCommonFrame(); __ BranchAndLink(&needs_frame); } else { __ BranchAndLink(&call_deopt_entry); } } } if (needs_frame.is_linked()) { __ bind(&needs_frame); // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. __ li(at, Operand(StackFrame::TypeToMarker(StackFrame::STUB))); __ push(at); DCHECK(info()->IsStub()); } Comment(";;; call deopt"); __ bind(&call_deopt_entry); if (info()->saves_caller_doubles()) { DCHECK(info()->IsStub()); RestoreCallerDoubles(); } __ li(at, Operand(reinterpret_cast<int64_t>(base), RelocInfo::RUNTIME_ENTRY)); __ Daddu(t9, t9, Operand(at)); __ Jump(t9); } // The deoptimization jump table is the last part of the instruction // sequence. Mark the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { DCHECK(is_done()); safepoints_.Emit(masm(), GetTotalFrameSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::from_code(index); } DoubleRegister LCodeGen::ToDoubleRegister(int index) const { return DoubleRegister::from_code(index); } Register LCodeGen::ToRegister(LOperand* op) const { DCHECK(op->IsRegister()); return ToRegister(op->index()); } Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { if (op->IsRegister()) { return ToRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle<Object> literal = constant->handle(isolate()); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { AllowDeferredHandleDereference get_number; DCHECK(literal->IsNumber()); __ li(scratch, Operand(static_cast<int32_t>(literal->Number()))); } else if (r.IsSmi()) { DCHECK(constant->HasSmiValue()); __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value()))); } else if (r.IsDouble()) { Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); } else { DCHECK(r.IsSmiOrTagged()); __ li(scratch, literal); } return scratch; } else if (op->IsStackSlot()) { __ ld(scratch, ToMemOperand(op)); return scratch; } UNREACHABLE(); return scratch; } DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { DCHECK(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, FloatRegister flt_scratch, DoubleRegister dbl_scratch) { if (op->IsDoubleRegister()) { return ToDoubleRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle<Object> literal = constant->handle(isolate()); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { DCHECK(literal->IsNumber()); __ li(at, Operand(static_cast<int32_t>(literal->Number()))); __ mtc1(at, flt_scratch); __ cvt_d_w(dbl_scratch, flt_scratch); return dbl_scratch; } else if (r.IsDouble()) { Abort(kUnsupportedDoubleImmediate); } else if (r.IsTagged()) { Abort(kUnsupportedTaggedImmediate); } } else if (op->IsStackSlot()) { MemOperand mem_op = ToMemOperand(op); __ ldc1(dbl_scratch, mem_op); return dbl_scratch; } UNREACHABLE(); return dbl_scratch; } Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(isolate()); } bool LCodeGen::IsInteger32(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } bool LCodeGen::IsSmi(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { // return ToRepresentation(op, Representation::Integer32()); HConstant* constant = chunk_->LookupConstant(op); return constant->Integer32Value(); } int64_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op, const Representation& r) const { HConstant* constant = chunk_->LookupConstant(op); int32_t value = constant->Integer32Value(); if (r.IsInteger32()) return value; DCHECK(r.IsSmiOrTagged()); return reinterpret_cast<int64_t>(Smi::FromInt(value)); } Smi* LCodeGen::ToSmi(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return Smi::FromInt(constant->Integer32Value()); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasDoubleValue()); return constant->DoubleValue(); } Operand LCodeGen::ToOperand(LOperand* op) { if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk()->LookupConstant(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsSmi()) { DCHECK(constant->HasSmiValue()); return Operand(Smi::FromInt(constant->Integer32Value())); } else if (r.IsInteger32()) { DCHECK(constant->HasInteger32Value()); return Operand(constant->Integer32Value()); } else if (r.IsDouble()) { Abort(kToOperandUnsupportedDoubleImmediate); } DCHECK(r.IsTagged()); return Operand(constant->handle(isolate())); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort(kToOperandIsDoubleRegisterUnimplemented); return Operand((int64_t)0); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand((int64_t)0); } static int ArgumentsOffsetWithoutFrame(int index) { DCHECK(index < 0); return -(index + 1) * kPointerSize; } MemOperand LCodeGen::ToMemOperand(LOperand* op) const { DCHECK(!op->IsRegister()); DCHECK(!op->IsDoubleRegister()); DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return MemOperand(fp, FrameSlotToFPOffset(op->index())); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index())); } } MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { DCHECK(op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { // return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize); return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kIntSize); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. // return MemOperand( // sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); return MemOperand( sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); WriteTranslation(environment->outer(), translation); WriteTranslationFrame(environment, translation); int object_index = 0; int dematerialized_index = 0; for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); AddToTranslation( environment, translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); } } void LCodeGen::AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer) { if (op == LEnvironment::materialization_marker()) { int object_index = (*object_index_pointer)++; if (environment->ObjectIsDuplicateAt(object_index)) { int dupe_of = environment->ObjectDuplicateOfAt(object_index); translation->DuplicateObject(dupe_of); return; } int object_length = environment->ObjectLengthAt(object_index); if (environment->ObjectIsArgumentsAt(object_index)) { translation->BeginArgumentsObject(object_length); } else { translation->BeginCapturedObject(object_length); } int dematerialized_index = *dematerialized_index_pointer; int env_offset = environment->translation_size() + dematerialized_index; *dematerialized_index_pointer += object_length; for (int i = 0; i < object_length; ++i) { LOperand* value = environment->values()->at(env_offset + i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(env_offset + i), environment->HasUint32ValueAt(env_offset + i), object_index_pointer, dematerialized_index_pointer); } return; } if (op->IsStackSlot()) { int index = op->index(); if (is_tagged) { translation->StoreStackSlot(index); } else if (is_uint32) { translation->StoreUint32StackSlot(index); } else { translation->StoreInt32StackSlot(index); } } else if (op->IsDoubleStackSlot()) { int index = op->index(); translation->StoreDoubleStackSlot(index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { DCHECK(instr != NULL); __ Call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles) { DCHECK(instr != NULL); __ CallRuntime(function, num_arguments, save_doubles); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::LoadContextFromDeferred(LOperand* context) { if (context->IsRegister()) { __ Move(cp, ToRegister(context)); } else if (context->IsStackSlot()) { __ ld(cp, ToMemOperand(context)); } else if (context->IsConstantOperand()) { HConstant* constant = chunk_->LookupConstant(LConstantOperand::cast(context)); __ li(cp, Handle<Object>::cast(constant->handle(isolate()))); } else { UNREACHABLE(); } } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { LoadContextFromDeferred(context); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { environment->set_has_been_used(); if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, zone()); } } void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr, DeoptimizeReason deopt_reason, Deoptimizer::BailoutType bailout_type, Register src1, const Operand& src2) { LEnvironment* environment = instr->environment(); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); DCHECK(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort(kBailoutWasNotPrepared); return; } if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { Register scratch = scratch0(); ExternalReference count = ExternalReference::stress_deopt_count(isolate()); Label no_deopt; __ Push(a1, scratch); __ li(scratch, Operand(count)); __ lw(a1, MemOperand(scratch)); __ Subu(a1, a1, Operand(1)); __ Branch(&no_deopt, ne, a1, Operand(zero_reg)); __ li(a1, Operand(FLAG_deopt_every_n_times)); __ sw(a1, MemOperand(scratch)); __ Pop(a1, scratch); __ Call(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&no_deopt); __ sw(a1, MemOperand(scratch)); __ Pop(a1, scratch); } if (info()->ShouldTrapOnDeopt()) { Label skip; if (condition != al) { __ Branch(&skip, NegateCondition(condition), src1, src2); } __ stop("trap_on_deopt"); __ bind(&skip); } Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); DCHECK(info()->IsStub() || frame_is_built_); // Go through jump table if we need to handle condition, build frame, or // restore caller doubles. if (condition == al && frame_is_built_ && !info()->saves_caller_doubles()) { DeoptComment(deopt_info); __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2); } else { Deoptimizer::JumpTableEntry* table_entry = new (zone()) Deoptimizer::JumpTableEntry( entry, deopt_info, bailout_type, !frame_is_built_); // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (FLAG_trace_deopt || isolate()->is_profiling() || jump_table_.is_empty() || !table_entry->IsEquivalentTo(*jump_table_.last())) { jump_table_.Add(table_entry, zone()); } __ Branch(&jump_table_.last()->label, condition, src1, src2); } } void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr, DeoptimizeReason deopt_reason, Register src1, const Operand& src2) { Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK(expected_safepoint_kind_ == kind); const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint( pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { GenerateOsrPrologue(); } void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // Theoretically, a variation of the branch-free code for integer division by // a power of 2 (calculating the remainder via an additional multiplication // (which gets simplified to an 'and') and subtraction) should be faster, and // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to // indicate that positive dividends are heavily favored, so the branching // version performs better. HMod* hmod = instr->hydrogen(); int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); Label dividend_is_not_negative, done; if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { __ Branch(÷nd_is_not_negative, ge, dividend, Operand(zero_reg)); // Note: The code below even works when right contains kMinInt. __ dsubu(dividend, zero_reg, dividend); __ And(dividend, dividend, Operand(mask)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend, Operand(zero_reg)); } __ Branch(USE_DELAY_SLOT, &done); __ dsubu(dividend, zero_reg, dividend); } __ bind(÷nd_is_not_negative); __ And(dividend, dividend, Operand(mask)); __ bind(&done); } void LCodeGen::DoModByConstI(LModByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); return; } __ TruncatingDiv(result, dividend, Abs(divisor)); __ Dmul(result, result, Operand(Abs(divisor))); __ Dsubu(result, dividend, Operand(result)); // Check for negative zero. HMod* hmod = instr->hydrogen(); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label remainder_not_zero; __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg)); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, dividend, Operand(zero_reg)); __ bind(&remainder_not_zero); } } void LCodeGen::DoModI(LModI* instr) { HMod* hmod = instr->hydrogen(); const Register left_reg = ToRegister(instr->left()); const Register right_reg = ToRegister(instr->right()); const Register result_reg = ToRegister(instr->result()); // div runs in the background while we check for special cases. __ Dmod(result_reg, left_reg, right_reg); Label done; // Check for x % 0, we have to deopt in this case because we can't return a // NaN. if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, right_reg, Operand(zero_reg)); } // Check for kMinInt % -1, div will return kMinInt, which is not what we // want. We have to deopt if we care about -0, because we can't return that. if (hmod->CheckFlag(HValue::kCanOverflow)) { Label no_overflow_possible; __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, right_reg, Operand(-1)); } else { __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1)); __ Branch(USE_DELAY_SLOT, &done); __ mov(result_reg, zero_reg); } __ bind(&no_overflow_possible); } // If we care about -0, test if the dividend is <0 and the result is 0. __ Branch(&done, ge, left_reg, Operand(zero_reg)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result_reg, Operand(zero_reg)); } __ bind(&done); } void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); DCHECK(!result.is(dividend)); // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend, Operand(zero_reg)); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, dividend, Operand(kMinInt)); } // Deoptimize if remainder will not be 0. if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && divisor != 1 && divisor != -1) { int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); __ And(at, dividend, Operand(mask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, at, Operand(zero_reg)); } if (divisor == -1) { // Nice shortcut, not needed for correctness. __ Dsubu(result, zero_reg, dividend); return; } uint16_t shift = WhichPowerOf2Abs(divisor); if (shift == 0) { __ Move(result, dividend); } else if (shift == 1) { __ dsrl32(result, dividend, 31); __ Daddu(result, dividend, Operand(result)); } else { __ dsra32(result, dividend, 31); __ dsrl32(result, result, 32 - shift); __ Daddu(result, dividend, Operand(result)); } if (shift > 0) __ dsra(result, result, shift); if (divisor < 0) __ Dsubu(result, zero_reg, result); } void LCodeGen::DoDivByConstI(LDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend, Operand(zero_reg)); } __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Subu(result, zero_reg, result); if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { __ Dmul(scratch0(), result, Operand(divisor)); __ Dsubu(scratch0(), scratch0(), dividend); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, scratch0(), Operand(zero_reg)); } } // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. void LCodeGen::DoDivI(LDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); const Register result = ToRegister(instr->result()); // On MIPS div is asynchronous - it will run in the background while we // check for special cases. __ Div(result, dividend, divisor); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor, Operand(zero_reg)); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg)); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor, Operand(zero_reg)); __ bind(&left_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { Label left_not_min_int; __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt)); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1)); __ bind(&left_not_min_int); } if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { // Calculate remainder. Register remainder = ToRegister(instr->temp()); if (kArchVariant != kMips64r6) { __ mfhi(remainder); } else { __ dmod(remainder, dividend, divisor); } DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, remainder, Operand(zero_reg)); } } void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { DoubleRegister addend = ToDoubleRegister(instr->addend()); DoubleRegister multiplier = ToDoubleRegister(instr->multiplier()); DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand()); // This is computed in-place. DCHECK(addend.is(ToDoubleRegister(instr->result()))); __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0()); } void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); Register result = ToRegister(instr->result()); int32_t divisor = instr->divisor(); Register scratch = result.is(dividend) ? scratch0() : dividend; DCHECK(!result.is(dividend) || !scratch.is(dividend)); // If the divisor is 1, return the dividend. if (divisor == 0) { __ Move(result, dividend); return; } // If the divisor is positive, things are easy: There can be no deopts and we // can simply do an arithmetic right shift. uint16_t shift = WhichPowerOf2Abs(divisor); if (divisor > 1) { __ dsra(result, dividend, shift); return; } // If the divisor is negative, we have to negate and handle edge cases. // Dividend can be the same register as result so save the value of it // for checking overflow. __ Move(scratch, dividend); __ Dsubu(result, zero_reg, dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result, Operand(zero_reg)); } __ Xor(scratch, scratch, result); // Dividing by -1 is basically negation, unless we overflow. if (divisor == -1) { if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { DeoptimizeIf(gt, instr, DeoptimizeReason::kOverflow, result, Operand(kMaxInt)); } return; } // If the negation could not overflow, simply shifting is OK. if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { __ dsra(result, result, shift); return; } Label no_overflow, done; __ Branch(&no_overflow, lt, scratch, Operand(zero_reg)); __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE); __ Branch(&done); __ bind(&no_overflow); __ dsra(result, result, shift); __ bind(&done); } void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HMathFloorOfDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, dividend, Operand(zero_reg)); } // Easy case: We need no dynamic check for the dividend and the flooring // division is the same as the truncating division. if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Dsubu(result, zero_reg, result); return; } // In the general case we may need to adjust before and after the truncating // division to get a flooring division. Register temp = ToRegister(instr->temp()); DCHECK(!temp.is(dividend) && !temp.is(result)); Label needs_adjustment, done; __ Branch(&needs_adjustment, divisor > 0 ? lt : gt, dividend, Operand(zero_reg)); __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Dsubu(result, zero_reg, result); __ jmp(&done); __ bind(&needs_adjustment); __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1)); __ TruncatingDiv(result, temp, Abs(divisor)); if (divisor < 0) __ Dsubu(result, zero_reg, result); __ Dsubu(result, result, Operand(1)); __ bind(&done); } // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); const Register result = ToRegister(instr->result()); // On MIPS div is asynchronous - it will run in the background while we // check for special cases. __ Ddiv(result, dividend, divisor); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero, divisor, Operand(zero_reg)); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg)); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, divisor, Operand(zero_reg)); __ bind(&left_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { Label left_not_min_int; __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt)); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow, divisor, Operand(-1)); __ bind(&left_not_min_int); } // We performed a truncating division. Correct the result if necessary. Label done; Register remainder = scratch0(); if (kArchVariant != kMips64r6) { __ mfhi(remainder); } else { __ dmod(remainder, dividend, divisor); } __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT); __ Xor(remainder, remainder, Operand(divisor)); __ Branch(&done, ge, remainder, Operand(zero_reg)); __ Dsubu(result, result, Operand(1)); __ bind(&done); } void LCodeGen::DoMulS(LMulS* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Note that result may alias left. Register left = ToRegister(instr->left()); LOperand* right_op = instr->right(); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right_op->IsConstantOperand()) { int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); if (bailout_on_minus_zero && (constant < 0)) { // The case of a null constant will be handled separately. // If constant is negative and left is null, the result should be -0. DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, left, Operand(zero_reg)); } switch (constant) { case -1: if (overflow) { Label no_overflow; __ DsubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow); DeoptimizeIf(al, instr); __ bind(&no_overflow); } else { __ Dsubu(result, zero_reg, left); } break; case 0: if (bailout_on_minus_zero) { // If left is strictly negative and the constant is null, the // result is -0. Deoptimize if required, otherwise return 0. DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, left, Operand(zero_reg)); } __ mov(result, zero_reg); break; case 1: // Nothing to do. __ Move(result, left); break; default: // Multiplying by powers of two and powers of two plus or minus // one can be done faster with shifted operands. // For other constants we emit standard code. int32_t mask = constant >> 31; uint32_t constant_abs = (constant + mask) ^ mask; if (base::bits::IsPowerOfTwo32(constant_abs)) { int32_t shift = WhichPowerOf2(constant_abs); __ dsll(result, left, shift); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Dsubu(result, zero_reg, result); } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) { int32_t shift = WhichPowerOf2(constant_abs - 1); __ Dlsa(result, left, left, shift); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Dsubu(result, zero_reg, result); } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) { int32_t shift = WhichPowerOf2(constant_abs + 1); __ dsll(scratch, left, shift); __ Dsubu(result, scratch, left); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Dsubu(result, zero_reg, result); } else { // Generate standard code. __ li(at, constant); __ Dmul(result, left, at); } } } else { DCHECK(right_op->IsRegister()); Register right = ToRegister(right_op); if (overflow) { // hi:lo = left * right. __ Dmulh(result, left, right); __ dsra32(scratch, result, 0); __ sra(at, result, 31); __ SmiTag(result); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, scratch, Operand(at)); } else { __ SmiUntag(result, left); __ dmul(result, result, right); } if (bailout_on_minus_zero) { Label done; __ Xor(at, left, right); __ Branch(&done, ge, at, Operand(zero_reg)); // Bail out if the result is minus zero. DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result, Operand(zero_reg)); __ bind(&done); } } } void LCodeGen::DoMulI(LMulI* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Note that result may alias left. Register left = ToRegister(instr->left()); LOperand* right_op = instr->right(); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right_op->IsConstantOperand()) { int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); if (bailout_on_minus_zero && (constant < 0)) { // The case of a null constant will be handled separately. // If constant is negative and left is null, the result should be -0. DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, left, Operand(zero_reg)); } switch (constant) { case -1: if (overflow) { Label no_overflow; __ SubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow); DeoptimizeIf(al, instr); __ bind(&no_overflow); } else { __ Subu(result, zero_reg, left); } break; case 0: if (bailout_on_minus_zero) { // If left is strictly negative and the constant is null, the // result is -0. Deoptimize if required, otherwise return 0. DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, left, Operand(zero_reg)); } __ mov(result, zero_reg); break; case 1: // Nothing to do. __ Move(result, left); break; default: // Multiplying by powers of two and powers of two plus or minus // one can be done faster with shifted operands. // For other constants we emit standard code. int32_t mask = constant >> 31; uint32_t constant_abs = (constant + mask) ^ mask; if (base::bits::IsPowerOfTwo32(constant_abs)) { int32_t shift = WhichPowerOf2(constant_abs); __ sll(result, left, shift); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Subu(result, zero_reg, result); } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) { int32_t shift = WhichPowerOf2(constant_abs - 1); __ Lsa(result, left, left, shift); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Subu(result, zero_reg, result); } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) { int32_t shift = WhichPowerOf2(constant_abs + 1); __ sll(scratch, left, shift); __ Subu(result, scratch, left); // Correct the sign of the result if the constant is negative. if (constant < 0) __ Subu(result, zero_reg, result); } else { // Generate standard code. __ li(at, constant); __ Mul(result, left, at); } } } else { DCHECK(right_op->IsRegister()); Register right = ToRegister(right_op); if (overflow) { // hi:lo = left * right. __ Dmul(result, left, right); __ dsra32(scratch, result, 0); __ sra(at, result, 31); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, scratch, Operand(at)); } else { __ mul(result, left, right); } if (bailout_on_minus_zero) { Label done; __ Xor(at, left, right); __ Branch(&done, ge, at, Operand(zero_reg)); // Bail out if the result is minus zero. DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, result, Operand(zero_reg)); __ bind(&done); } } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left_op = instr->left(); LOperand* right_op = instr->right(); DCHECK(left_op->IsRegister()); Register left = ToRegister(left_op); Register result = ToRegister(instr->result()); Operand right(no_reg); if (right_op->IsStackSlot()) { right = Operand(EmitLoadRegister(right_op, at)); } else { DCHECK(right_op->IsRegister() || right_op->IsConstantOperand()); right = ToOperand(right_op); } switch (instr->op()) { case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_OR: __ Or(result, left, right); break; case Token::BIT_XOR: if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) { __ Nor(result, zero_reg, left); } else { __ Xor(result, left, right); } break; default: UNREACHABLE(); break; } } void LCodeGen::DoShiftI(LShiftI* instr) { // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so // result may alias either of them. LOperand* right_op = instr->right(); Register left = ToRegister(instr->left()); Register result = ToRegister(instr->result()); if (right_op->IsRegister()) { // No need to mask the right operand on MIPS, it is built into the variable // shift instructions. switch (instr->op()) { case Token::ROR: __ Ror(result, left, Operand(ToRegister(right_op))); break; case Token::SAR: __ srav(result, left, ToRegister(right_op)); break; case Token::SHR: __ srlv(result, left, ToRegister(right_op)); if (instr->can_deopt()) { // TODO(yy): (-1) >>> 0. anything else? DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, result, Operand(zero_reg)); DeoptimizeIf(gt, instr, DeoptimizeReason::kNegativeValue, result, Operand(kMaxInt)); } break; case Token::SHL: __ sllv(result, left, ToRegister(right_op)); break; default: UNREACHABLE(); break; } } else { // Mask the right_op operand. int value = ToInteger32(LConstantOperand::cast(right_op)); uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); switch (instr->op()) { case Token::ROR: if (shift_count != 0) { __ Ror(result, left, Operand(shift_count)); } else { __ Move(result, left); } break; case Token::SAR: if (shift_count != 0) { __ sra(result, left, shift_count); } else { __ Move(result, left); } break; case Token::SHR: if (shift_count != 0) { __ srl(result, left, shift_count); } else { if (instr->can_deopt()) { __ And(at, left, Operand(0x80000000)); DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue, at, Operand(zero_reg)); } __ Move(result, left); } break; case Token::SHL: if (shift_count != 0) { if (instr->hydrogen_value()->representation().IsSmi()) { __ dsll(result, left, shift_count); } else { __ sll(result, left, shift_count); } } else { __ Move(result, left); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubS(LSubS* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right)); } else { // can_overflow. Register scratch = scratch0(); Label no_overflow_label; DCHECK(right->IsRegister() || right->IsConstantOperand()); __ DsubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right), &no_overflow_label, scratch); DeoptimizeIf(al, instr); __ bind(&no_overflow_label); } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Subu(ToRegister(result), ToRegister(left), ToOperand(right)); } else { // can_overflow. Register scratch = scratch0(); Label no_overflow_label; DCHECK(right->IsRegister() || right->IsConstantOperand()); __ SubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right), &no_overflow_label, scratch); DeoptimizeIf(al, instr); __ bind(&no_overflow_label); } } void LCodeGen::DoConstantI(LConstantI* instr) { __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantS(LConstantS* instr) { __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { DCHECK(instr->result()->IsDoubleRegister()); DoubleRegister result = ToDoubleRegister(instr->result()); double v = instr->value(); __ Move(result, v); } void LCodeGen::DoConstantE(LConstantE* instr) { __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle<Object> object = instr->value(isolate()); AllowDeferredHandleDereference smi_check; __ li(ToRegister(instr->result()), object); } MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index, String::Encoding encoding) { if (index->IsConstantOperand()) { int offset = ToInteger32(LConstantOperand::cast(index)); if (encoding == String::TWO_BYTE_ENCODING) { offset *= kUC16Size; } STATIC_ASSERT(kCharSize == 1); return FieldMemOperand(string, SeqString::kHeaderSize + offset); } Register scratch = scratch0(); DCHECK(!scratch.is(string)); DCHECK(!scratch.is(ToRegister(index))); if (encoding == String::ONE_BYTE_ENCODING) { __ Daddu(scratch, string, ToRegister(index)); } else { STATIC_ASSERT(kUC16Size == 2); __ dsll(scratch, ToRegister(index), 1); __ Daddu(scratch, string, scratch); } return FieldMemOperand(scratch, SeqString::kHeaderSize); } void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { Register scratch = scratch0(); __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ And(scratch, scratch, Operand(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg)); } MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ lbu(result, operand); } else { __ lhu(result, operand); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register value = ToRegister(instr->value()); if (FLAG_debug_code) { Register scratch = scratch0(); Register index = ToRegister(instr->index()); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; int encoding_mask = instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type; __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask); } MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ sb(value, operand); } else { __ sh(value, operand); } } void LCodeGen::DoAddE(LAddE* instr) { LOperand* result = instr->result(); LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right)); } void LCodeGen::DoAddS(LAddS* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right)); } else { // can_overflow. Label no_overflow_label; Register scratch = scratch1(); DCHECK(right->IsRegister() || right->IsConstantOperand()); __ DaddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right), &no_overflow_label, scratch); DeoptimizeIf(al, instr); __ bind(&no_overflow_label); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { DCHECK(right->IsRegister() || right->IsConstantOperand()); __ Addu(ToRegister(result), ToRegister(left), ToOperand(right)); } else { // can_overflow. Label no_overflow_label; Register scratch = scratch1(); DCHECK(right->IsRegister() || right->IsConstantOperand()); __ AddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right), &no_overflow_label, scratch); DeoptimizeIf(al, instr); __ bind(&no_overflow_label); } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); HMathMinMax::Operation operation = instr->hydrogen()->operation(); Register scratch = scratch1(); if (instr->hydrogen()->representation().IsSmiOrInteger32()) { Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge; Register left_reg = ToRegister(left); Register right_reg = EmitLoadRegister(right, scratch0()); Register result_reg = ToRegister(instr->result()); Label return_right, done; __ Slt(scratch, left_reg, Operand(right_reg)); if (condition == ge) { __ Movz(result_reg, left_reg, scratch); __ Movn(result_reg, right_reg, scratch); } else { DCHECK(condition == le); __ Movn(result_reg, left_reg, scratch); __ Movz(result_reg, right_reg, scratch); } } else { DCHECK(instr->hydrogen()->representation().IsDouble()); FPURegister left_reg = ToDoubleRegister(left); FPURegister right_reg = ToDoubleRegister(right); FPURegister result_reg = ToDoubleRegister(instr->result()); Label nan, done; if (operation == HMathMinMax::kMathMax) { __ Float64Max(result_reg, left_reg, right_reg, &nan); } else { DCHECK(operation == HMathMinMax::kMathMin); __ Float64Min(result_reg, left_reg, right_reg, &nan); } __ Branch(&done); __ bind(&nan); __ add_d(result_reg, left_reg, right_reg); __ bind(&done); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DoubleRegister left = ToDoubleRegister(instr->left()); DoubleRegister right = ToDoubleRegister(instr->right()); DoubleRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: __ add_d(result, left, right); break; case Token::SUB: __ sub_d(result, left, right); break; case Token::MUL: __ mul_d(result, left, right); break; case Token::DIV: __ div_d(result, left, right); break; case Token::MOD: { // Save a0-a3 on the stack. RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit(); __ MultiPush(saved_regs); __ PrepareCallCFunction(0, 2, scratch0()); __ MovToFloatParameters(left, right); __ CallCFunction( ExternalReference::mod_two_doubles_operation(isolate()), 0, 2); // Move the result in the double result register. __ MovFromFloatResult(result); // Restore saved register. __ MultiPop(saved_regs); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(a1)); DCHECK(ToRegister(instr->right()).is(a0)); DCHECK(ToRegister(instr->result()).is(v0)); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); // Other arch use a nop here, to signal that there is no inlined // patchable code. Mips does not need the nop, since our marker // instruction (andi zero_reg) will never be used in normal code. } template<class InstrType> void LCodeGen::EmitBranch(InstrType instr, Condition condition, Register src1, const Operand& src2) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block || condition == al) { EmitGoto(left_block); } else if (left_block == next_block) { __ Branch(chunk_->GetAssemblyLabel(right_block), NegateCondition(condition), src1, src2); } else if (right_block == next_block) { __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2); } else { __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2); __ Branch(chunk_->GetAssemblyLabel(right_block)); } } template<class InstrType> void LCodeGen::EmitBranchF(InstrType instr, Condition condition, FPURegister src1, FPURegister src2) { int right_block = instr->FalseDestination(chunk_); int left_block = instr->TrueDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL, NegateFpuCondition(condition), src1, src2); } else if (right_block == next_block) { __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, condition, src1, src2); } else { __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, condition, src1, src2); __ Branch(chunk_->GetAssemblyLabel(right_block)); } } template <class InstrType> void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition, Register src1, const Operand& src2) { int true_block = instr->TrueDestination(chunk_); __ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2); } template <class InstrType> void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition, Register src1, const Operand& src2) { int false_block = instr->FalseDestination(chunk_); __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2); } template<class InstrType> void LCodeGen::EmitFalseBranchF(InstrType instr, Condition condition, FPURegister src1, FPURegister src2) { int false_block = instr->FalseDestination(chunk_); __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL, condition, src1, src2); } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LDebugBreak"); } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32() || r.IsSmi()) { DCHECK(!info()->IsStub()); Register reg = ToRegister(instr->value()); EmitBranch(instr, ne, reg, Operand(zero_reg)); } else if (r.IsDouble()) { DCHECK(!info()->IsStub()); DoubleRegister reg = ToDoubleRegister(instr->value()); // Test the double value. Zero and NaN are false. EmitBranchF(instr, ogl, reg, kDoubleRegZero); } else { DCHECK(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { DCHECK(!info()->IsStub()); __ LoadRoot(at, Heap::kTrueValueRootIndex); EmitBranch(instr, eq, reg, Operand(at)); } else if (type.IsSmi()) { DCHECK(!info()->IsStub()); EmitBranch(instr, ne, reg, Operand(zero_reg)); } else if (type.IsJSArray()) { DCHECK(!info()->IsStub()); EmitBranch(instr, al, zero_reg, Operand(zero_reg)); } else if (type.IsHeapNumber()) { DCHECK(!info()->IsStub()); DoubleRegister dbl_scratch = double_scratch0(); __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); // Test the double value. Zero and NaN are false. EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero); } else if (type.IsString()) { DCHECK(!info()->IsStub()); __ ld(at, FieldMemOperand(reg, String::kLengthOffset)); EmitBranch(instr, ne, at, Operand(zero_reg)); } else { ToBooleanHints expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; if (expected & ToBooleanHint::kUndefined) { // undefined -> false. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at)); } if (expected & ToBooleanHint::kBoolean) { // Boolean -> its value. __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at)); __ LoadRoot(at, Heap::kFalseValueRootIndex); __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at)); } if (expected & ToBooleanHint::kNull) { // 'null' -> false. __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at)); } if (expected & ToBooleanHint::kSmallInteger) { // Smis: 0 -> false, all other -> true. __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg)); __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); } else if (expected & ToBooleanHint::kNeedsMap) { // If we need a map later and have a Smi -> deopt. __ SmiTst(reg, at); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg)); } const Register map = scratch0(); if (expected & ToBooleanHint::kNeedsMap) { __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset)); if (expected & ToBooleanHint::kCanBeUndetectable) { // Undetectable -> false. __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, at, Operand(1 << Map::kIsUndetectable)); __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg)); } } if (expected & ToBooleanHint::kReceiver) { // spec object -> true. __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(instr->TrueLabel(chunk_), ge, at, Operand(FIRST_JS_RECEIVER_TYPE)); } if (expected & ToBooleanHint::kString) { // String value -> false iff empty. Label not_string; __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE)); __ ld(at, FieldMemOperand(reg, String::kLengthOffset)); __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg)); __ Branch(instr->FalseLabel(chunk_)); __ bind(¬_string); } if (expected & ToBooleanHint::kSymbol) { // Symbol value -> true. const Register scratch = scratch1(); __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE)); } if (expected & ToBooleanHint::kHeapNumber) { // heap number -> false iff +0, -0, or NaN. DoubleRegister dbl_scratch = double_scratch0(); Label not_heap_number; __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); __ Branch(¬_heap_number, ne, map, Operand(at)); __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), ne, dbl_scratch, kDoubleRegZero); // Falls through if dbl_scratch == 0. __ Branch(instr->FalseLabel(chunk_)); __ bind(¬_heap_number); } if (expected != ToBooleanHint::kAny) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject, zero_reg, Operand(zero_reg)); } } } } void LCodeGen::EmitGoto(int block) { if (!IsNextEmittedBlock(block)) { __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = kNoCondition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::NE: case Token::NE_STRICT: cond = ne; break; case Token::LT: cond = is_unsigned ? lo : lt; break; case Token::GT: cond = is_unsigned ? hi : gt; break; case Token::LTE: cond = is_unsigned ? ls : le; break; case Token::GTE: cond = is_unsigned ? hs : ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); bool is_unsigned = instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); Condition cond = TokenToCondition(instr->op(), is_unsigned); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = Token::EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { // Compare left and right as doubles and load the // resulting flags into the normal status register. FPURegister left_reg = ToDoubleRegister(left); FPURegister right_reg = ToDoubleRegister(right); // If a NaN is involved, i.e. the result is unordered, // jump to false block label. __ BranchF(NULL, instr->FalseLabel(chunk_), eq, left_reg, right_reg); EmitBranchF(instr, cond, left_reg, right_reg); } else { Register cmp_left; Operand cmp_right = Operand((int64_t)0); if (right->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(right)); if (instr->hydrogen_value()->representation().IsSmi()) { cmp_left = ToRegister(left); cmp_right = Operand(Smi::FromInt(value)); } else { cmp_left = ToRegister(left); cmp_right = Operand(value); } } else if (left->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(left)); if (instr->hydrogen_value()->representation().IsSmi()) { cmp_left = ToRegister(right); cmp_right = Operand(Smi::FromInt(value)); } else { cmp_left = ToRegister(right); cmp_right = Operand(value); } // We commuted the operands, so commute the condition. cond = CommuteCondition(cond); } else { cmp_left = ToRegister(left); cmp_right = Operand(ToRegister(right)); } EmitBranch(instr, cond, cmp_left, cmp_right); } } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); EmitBranch(instr, eq, left, Operand(right)); } void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { if (instr->hydrogen()->representation().IsTagged()) { Register input_reg = ToRegister(instr->object()); __ li(at, Operand(factory()->the_hole_value())); EmitBranch(instr, eq, input_reg, Operand(at)); return; } DoubleRegister input_reg = ToDoubleRegister(instr->object()); EmitFalseBranchF(instr, eq, input_reg, input_reg); Register scratch = scratch0(); __ FmoveHigh(scratch, input_reg); EmitBranch(instr, eq, scratch, Operand(static_cast<int32_t>(kHoleNanUpper32))); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } __ GetObjectType(input, temp1, temp1); return lt; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond, temp1, Operand(FIRST_NONSTRING_TYPE)); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Register input_reg = EmitLoadRegister(instr->value(), at); __ And(at, input_reg, kSmiTagMask); EmitBranch(instr, eq, at, Operand(zero_reg)); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); __ And(at, temp, Operand(1 << Map::kIsUndetectable)); EmitBranch(instr, ne, at, Operand(zero_reg)); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(a1)); DCHECK(ToRegister(instr->right()).is(a0)); Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); __ LoadRoot(at, Heap::kTrueValueRootIndex); EmitBranch(instr, eq, v0, Operand(at)); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; DCHECK(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return hs; if (from == FIRST_TYPE) return ls; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->value()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ GetObjectType(input, scratch, scratch); EmitBranch(instr, BranchCondition(instr->hydrogen()), scratch, Operand(TestType(instr->hydrogen()))); } // Branches to a label or falls through with the answer in flags. Trashes // the temp registers, but not the input. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle<String>class_name, Register input, Register temp, Register temp2) { DCHECK(!input.is(temp)); DCHECK(!input.is(temp2)); DCHECK(!temp.is(temp2)); __ JumpIfSmi(input, is_false); __ GetObjectType(input, temp, temp2); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); if (String::Equals(isolate()->factory()->Function_string(), class_name)) { __ Branch(is_true, hs, temp2, Operand(FIRST_FUNCTION_TYPE)); } else { __ Branch(is_false, hs, temp2, Operand(FIRST_FUNCTION_TYPE)); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. Register instance_type = scratch1(); DCHECK(!instance_type.is(temp)); __ GetMapConstructor(temp, temp, temp2, instance_type); // Objects with a non-function constructor have class 'Object'. if (String::Equals(class_name, isolate()->factory()->Object_string())) { __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE)); } else { __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE)); } // temp now contains the constructor function. Grab the // instance class name from there. __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ ld(temp, FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. // End with the address of this class_name instance in temp register. // On MIPS, the caller must do the comparison with Handle<String>class_name. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = scratch0(); Register temp2 = ToRegister(instr->temp()); Handle<String> class_name = instr->hydrogen()->class_name(); EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), class_name, input, temp, temp2); EmitBranch(instr, eq, temp, Operand(class_name)); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); EmitBranch(instr, eq, temp, Operand(instr->map())); } void LCodeGen::DoHasInPrototypeChainAndBranch( LHasInPrototypeChainAndBranch* instr) { Register const object = ToRegister(instr->object()); Register const object_map = scratch0(); Register const object_instance_type = scratch1(); Register const object_prototype = object_map; Register const prototype = ToRegister(instr->prototype()); // The {object} must be a spec object. It's sufficient to know that {object} // is not a smi, since all other non-spec objects have {null} prototypes and // will be ruled out below. if (instr->hydrogen()->ObjectNeedsSmiCheck()) { __ SmiTst(object, at); EmitFalseBranch(instr, eq, at, Operand(zero_reg)); } // Loop through the {object}s prototype chain looking for the {prototype}. __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); Label loop; __ bind(&loop); // Deoptimize if the object needs to be access checked. __ lbu(object_instance_type, FieldMemOperand(object_map, Map::kBitFieldOffset)); __ And(object_instance_type, object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded)); DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, object_instance_type, Operand(zero_reg)); __ lbu(object_instance_type, FieldMemOperand(object_map, Map::kInstanceTypeOffset)); DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy, object_instance_type, Operand(JS_PROXY_TYPE)); __ ld(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); __ LoadRoot(at, Heap::kNullValueRootIndex); EmitFalseBranch(instr, eq, object_prototype, Operand(at)); EmitTrueBranch(instr, eq, object_prototype, Operand(prototype)); __ Branch(&loop, USE_DELAY_SLOT); __ ld(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); // In delay slot. } void LCodeGen::DoCmpT(LCmpT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Token::Value op = instr->op(); Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); // On MIPS there is no need for a "no inlined smi code" marker (nop). Condition condition = ComputeCompareCondition(op); // A minor optimization that relies on LoadRoot always emitting one // instruction. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); Label done, check; __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg)); __ bind(&check); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check)); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in v0. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ push(v0); __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit); } if (info()->saves_caller_doubles()) { RestoreCallerDoubles(); } if (NeedsEagerFrame()) { __ mov(sp, fp); __ Pop(ra, fp); } if (instr->has_constant_parameter_count()) { int parameter_count = ToInteger32(instr->constant_parameter_count()); int32_t sp_delta = (parameter_count + 1) * kPointerSize; if (sp_delta != 0) { __ Daddu(sp, sp, Operand(sp_delta)); } } else { DCHECK(info()->IsStub()); // Functions would need to drop one more value. Register reg = ToRegister(instr->parameter_count()); // The argument count parameter is a smi __ SmiUntag(reg); __ Dlsa(sp, sp, reg, kPointerSizeLog2); } __ Jump(ra); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ ld(result, ContextMemOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at)); } else { Label is_not_hole; __ Branch(&is_not_hole, ne, result, Operand(at)); __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); MemOperand target = ContextMemOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ ld(scratch, target); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, scratch, Operand(at)); } else { __ Branch(&skip_assignment, ne, scratch, Operand(at)); } } __ sd(value, target); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; __ RecordWriteContextSlot(context, target.offset(), value, scratch0(), GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); Register object = ToRegister(instr->object()); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); MemOperand operand = MemOperand(object, offset); __ Load(result, operand, access.representation()); return; } if (instr->hydrogen()->representation().IsDouble()) { DoubleRegister result = ToDoubleRegister(instr->result()); __ ldc1(result, FieldMemOperand(object, offset)); return; } Register result = ToRegister(instr->result()); if (!access.IsInobject()) { __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); object = result; } Representation representation = access.representation(); if (representation.IsSmi() && SmiValuesAre32Bits() && instr->hydrogen()->representation().IsInteger32()) { if (FLAG_debug_code) { // Verify this is really an Smi. Register scratch = scratch0(); __ Load(scratch, FieldMemOperand(object, offset), representation); __ AssertSmi(scratch); } // Read int value directly from upper half of the smi. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32); offset = SmiWordOffset(offset); representation = Representation::Integer32(); } __ Load(result, FieldMemOperand(object, offset), representation); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register scratch = scratch0(); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Get the prototype or initial map from the function. __ ld(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(at)); // If the function does not have an initial map, we're done. Label done; __ GetObjectType(result, scratch, scratch); __ Branch(&done, ne, scratch, Operand(MAP_TYPE)); // Get the prototype from the initial map. __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadRoot(LLoadRoot* instr) { Register result = ToRegister(instr->result()); __ LoadRoot(result, instr->index()); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. if (instr->length()->IsConstantOperand()) { int const_length = ToInteger32(LConstantOperand::cast(instr->length())); if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int index = (const_length - const_index) + 1; __ ld(result, MemOperand(arguments, index * kPointerSize)); } else { Register index = ToRegister(instr->index()); __ li(at, Operand(const_length + 1)); __ Dsubu(result, at, index); __ Dlsa(at, arguments, result, kPointerSizeLog2); __ ld(result, MemOperand(at)); } } else if (instr->index()->IsConstantOperand()) { Register length = ToRegister(instr->length()); int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int loc = const_index - 1; if (loc != 0) { __ Dsubu(result, length, Operand(loc)); __ Dlsa(at, arguments, result, kPointerSizeLog2); __ ld(result, MemOperand(at)); } else { __ Dlsa(at, arguments, length, kPointerSizeLog2); __ ld(result, MemOperand(at)); } } else { Register length = ToRegister(instr->length()); Register index = ToRegister(instr->index()); __ Dsubu(result, length, index); __ Daddu(result, result, 1); __ Dlsa(at, arguments, result, kPointerSizeLog2); __ ld(result, MemOperand(at)); } } void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - (kSmiTagSize + kSmiShiftSize)) : element_size_shift; int base_offset = instr->base_offset(); if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { FPURegister result = ToDoubleRegister(instr->result()); if (key_is_constant) { __ Daddu(scratch0(), external_pointer, constant_key << element_size_shift); } else { if (shift_size < 0) { if (shift_size == -32) { __ dsra32(scratch0(), key, 0); } else { __ dsra(scratch0(), key, -shift_size); } } else { __ dsll(scratch0(), key, shift_size); } __ Daddu(scratch0(), scratch0(), external_pointer); } if (elements_kind == FLOAT32_ELEMENTS) { __ lwc1(result, MemOperand(scratch0(), base_offset)); __ cvt_d_s(result, result); } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS __ ldc1(result, MemOperand(scratch0(), base_offset)); } } else { Register result = ToRegister(instr->result()); MemOperand mem_operand = PrepareKeyedOperand( key, external_pointer, key_is_constant, constant_key, element_size_shift, shift_size, base_offset); switch (elements_kind) { case INT8_ELEMENTS: __ lb(result, mem_operand); break; case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ lbu(result, mem_operand); break; case INT16_ELEMENTS: __ lh(result, mem_operand); break; case UINT16_ELEMENTS: __ lhu(result, mem_operand); break; case INT32_ELEMENTS: __ lw(result, mem_operand); break; case UINT32_ELEMENTS: __ lw(result, mem_operand); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { DeoptimizeIf(Ugreater_equal, instr, DeoptimizeReason::kNegativeValue, result, Operand(0x80000000)); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { Register elements = ToRegister(instr->elements()); bool key_is_constant = instr->key()->IsConstantOperand(); Register key = no_reg; DoubleRegister result = ToDoubleRegister(instr->result()); Register scratch = scratch0(); int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); int base_offset = instr->base_offset(); if (key_is_constant) { int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } base_offset += constant_key * kDoubleSize; } __ Daddu(scratch, elements, Operand(base_offset)); if (!key_is_constant) { key = ToRegister(instr->key()); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - (kSmiTagSize + kSmiShiftSize)) : element_size_shift; if (shift_size > 0) { __ dsll(at, key, shift_size); } else if (shift_size == -32) { __ dsra32(at, key, 0); } else { __ dsra(at, key, -shift_size); } __ Daddu(scratch, scratch, at); } __ ldc1(result, MemOperand(scratch)); if (instr->hydrogen()->RequiresHoleCheck()) { __ FmoveHigh(scratch, result); DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, scratch, Operand(static_cast<int32_t>(kHoleNanUpper32))); } } void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { HLoadKeyed* hinstr = instr->hydrogen(); Register elements = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Register store_base = scratch; int offset = instr->base_offset(); if (instr->key()->IsConstantOperand()) { LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset += ToInteger32(const_operand) * kPointerSize; store_base = elements; } else { Register key = ToRegister(instr->key()); // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsSmi()) { __ SmiScale(scratch, key, kPointerSizeLog2); __ daddu(scratch, elements, scratch); } else { __ Dlsa(scratch, elements, key, kPointerSizeLog2); } } Representation representation = hinstr->representation(); if (representation.IsInteger32() && SmiValuesAre32Bits() && hinstr->elements_kind() == FAST_SMI_ELEMENTS) { DCHECK(!hinstr->RequiresHoleCheck()); if (FLAG_debug_code) { Register temp = scratch1(); __ Load(temp, MemOperand(store_base, offset), Representation::Smi()); __ AssertSmi(temp); } // Read int value directly from upper half of the smi. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32); offset = SmiWordOffset(offset); } __ Load(result, MemOperand(store_base, offset), representation); // Check for the hole value. if (hinstr->RequiresHoleCheck()) { if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { __ SmiTst(result, scratch); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, scratch, Operand(zero_reg)); } else { __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, DeoptimizeReason::kHole, result, Operand(scratch)); } } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); Label done; __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ Branch(&done, ne, result, Operand(scratch)); if (info()->IsStub()) { // A stub can safely convert the hole to undefined only if the array // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise // it needs to bail out. __ LoadRoot(result, Heap::kArrayProtectorRootIndex); // The comparison only needs LS bits of value, which is a smi. __ ld(result, FieldMemOperand(result, PropertyCell::kValueOffset)); DeoptimizeIf(ne, instr, DeoptimizeReason::kHole, result, Operand(Smi::FromInt(Isolate::kProtectorValid))); } __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&done); } } void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { if (instr->is_fixed_typed_array()) { DoLoadKeyedExternalArray(instr); } else if (instr->hydrogen()->representation().IsDouble()) { DoLoadKeyedFixedDoubleArray(instr); } else { DoLoadKeyedFixedArray(instr); } } MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base, bool key_is_constant, int constant_key, int element_size, int shift_size, int base_offset) { if (key_is_constant) { return MemOperand(base, (constant_key << element_size) + base_offset); } if (base_offset == 0) { if (shift_size >= 0) { __ dsll(scratch0(), key, shift_size); __ Daddu(scratch0(), base, scratch0()); return MemOperand(scratch0()); } else { if (shift_size == -32) { __ dsra32(scratch0(), key, 0); } else { __ dsra(scratch0(), key, -shift_size); } __ Daddu(scratch0(), base, scratch0()); return MemOperand(scratch0()); } } if (shift_size >= 0) { __ dsll(scratch0(), key, shift_size); __ Daddu(scratch0(), base, scratch0()); return MemOperand(scratch0(), base_offset); } else { if (shift_size == -32) { __ dsra32(scratch0(), key, 0); } else { __ dsra(scratch0(), key, -shift_size); } __ Daddu(scratch0(), base, scratch0()); return MemOperand(scratch0(), base_offset); } } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register scratch = scratch0(); Register temp = scratch1(); Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ Dsubu(result, sp, 2 * kPointerSize); } else if (instr->hydrogen()->arguments_adaptor()) { // Check if the calling frame is an arguments adaptor frame. Label done, adapted; __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(result, MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Xor(temp, result, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne). __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq). } else { __ mov(result, fp); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elem = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ Daddu(result, zero_reg, Operand(scope()->num_parameters())); __ Branch(&done, eq, fp, Operand(elem)); // Arguments adaptor frame present. Get argument length from there. __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(result, MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, result_in_receiver; if (!instr->hydrogen()->known_function()) { // Do not transform the receiver to object for strict mode functions. __ ld(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); // Do not transform the receiver to object for builtins. int32_t strict_mode_function_mask = 1 << SharedFunctionInfo::kStrictModeBitWithinByte; int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte; __ lbu(at, FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset)); __ And(at, at, Operand(strict_mode_function_mask)); __ Branch(&result_in_receiver, ne, at, Operand(zero_reg)); __ lbu(at, FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset)); __ And(at, at, Operand(native_mask)); __ Branch(&result_in_receiver, ne, at, Operand(zero_reg)); } // Normal function. Replace undefined or null with global receiver. __ LoadRoot(scratch, Heap::kNullValueRootIndex); __ Branch(&global_object, eq, receiver, Operand(scratch)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Branch(&global_object, eq, receiver, Operand(scratch)); // Deoptimize if the receiver is not a JS object. __ SmiTst(receiver, scratch); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, scratch, Operand(zero_reg)); __ GetObjectType(receiver, scratch, scratch); DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject, scratch, Operand(FIRST_JS_RECEIVER_TYPE)); __ Branch(&result_in_receiver); __ bind(&global_object); __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset)); __ ld(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX)); __ ld(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX)); if (result.is(receiver)) { __ bind(&result_in_receiver); } else { Label result_ok; __ Branch(&result_ok); __ bind(&result_in_receiver); __ mov(result, receiver); __ bind(&result_ok); } } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); DCHECK(receiver.is(a0)); // Used for parameter count. DCHECK(function.is(a1)); // Required by InvokeFunction. DCHECK(ToRegister(instr->result()).is(v0)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments, length, Operand(kArgumentsLimit)); // Push the receiver and use the register to keep the original // number of arguments. __ push(receiver); __ Move(receiver, length); // The arguments are at a one pointer size offset from elements. __ Daddu(elements, elements, Operand(1 * kPointerSize)); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg)); __ dsll(scratch, length, kPointerSizeLog2); __ bind(&loop); __ Daddu(scratch, elements, scratch); __ ld(scratch, MemOperand(scratch)); __ push(scratch); __ Dsubu(length, length, Operand(1)); __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg)); __ dsll(scratch, length, kPointerSizeLog2); __ bind(&invoke); InvokeFlag flag = CALL_FUNCTION; if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { DCHECK(!info()->saves_caller_doubles()); // TODO(ishell): drop current frame before pushing arguments to the stack. flag = JUMP_FUNCTION; ParameterCount actual(a0); // It is safe to use t0, t1 and t2 as scratch registers here given that // we are not going to return to caller function anyway. PrepareForTailCall(actual, t0, t1, t2); } DCHECK(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); // The number of arguments is stored in receiver which is a0, as expected // by InvokeFunction. ParameterCount actual(receiver); __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { Abort(kDoPushArgumentNotImplementedForDoubleType); } else { Register argument_reg = EmitLoadRegister(argument, at); __ push(argument_reg); } } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { // If there is a non-return use, the context must be moved to a register. Register result = ToRegister(instr->result()); if (info()->IsOptimizing()) { __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // If there is no frame, the context must be in cp. DCHECK(result.is(cp)); } } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { DCHECK(ToRegister(instr->context()).is(cp)); __ li(scratch0(), instr->hydrogen()->declarations()); __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); __ Push(scratch0(), scratch1()); __ li(scratch0(), instr->hydrogen()->feedback_vector()); __ Push(scratch0()); CallRuntime(Runtime::kDeclareGlobals, instr); } void LCodeGen::CallKnownFunction(Handle<JSFunction> function, int formal_parameter_count, int arity, bool is_tail_call, LInstruction* instr) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; Register function_reg = a1; LPointerMap* pointers = instr->pointer_map(); if (can_invoke_directly) { // Change context. __ ld(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); // Always initialize new target and number of actual arguments. __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); __ li(a0, Operand(arity)); bool is_self_call = function.is_identical_to(info()->closure()); // Invoke function. if (is_self_call) { Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location())); if (is_tail_call) { __ Jump(self, RelocInfo::CODE_TARGET); } else { __ Call(self, RelocInfo::CODE_TARGET); } } else { __ ld(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); if (is_tail_call) { __ Jump(at); } else { __ Call(at); } } if (!is_tail_call) { // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } } else { SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(arity); ParameterCount expected(formal_parameter_count); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(function_reg, expected, actual, flag, generator); } } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { DCHECK(instr->context() != NULL); DCHECK(ToRegister(instr->context()).is(cp)); Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // Deoptimize if not a heap number. __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch, Operand(at)); Label done; Register exponent = scratch0(); scratch = no_reg; __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. __ Move(result, input); __ And(at, exponent, Operand(HeapNumber::kSignMask)); __ Branch(&done, eq, at, Operand(zero_reg)); // Input is negative. Reverse its sign. // Preserve the value of all registers. { PushSafepointRegistersScope scope(this); // Registers were saved at the safepoint, so we can use // many scratch registers. Register tmp1 = input.is(a1) ? a0 : a1; Register tmp2 = input.is(a2) ? a0 : a2; Register tmp3 = input.is(a3) ? a0 : a3; Register tmp4 = input.is(a4) ? a0 : a4; // exponent: floating point exponent value. Label allocated, slow; __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); __ Branch(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, instr->context()); // Set the pointer to the new heap number in tmp. if (!tmp1.is(v0)) __ mov(tmp1, v0); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input, input); __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); __ bind(&allocated); // exponent: floating point exponent value. // tmp1: allocated heap number. __ And(exponent, exponent, Operand(~HeapNumber::kSignMask)); __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); __ StoreToSafepointRegisterSlot(tmp1, result); } __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label done; __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); __ mov(result, input); __ subu(result, zero_reg, input); // Overflow if result is still negative, i.e. 0x80000000. DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, result, Operand(zero_reg)); __ bind(&done); } void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label done; __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); __ mov(result, input); __ dsubu(result, zero_reg, input); // Overflow if result is still negative, i.e. 0x80000000 00000000. DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, result, Operand(zero_reg)); __ bind(&done); } void LCodeGen::DoMathAbs(LMathAbs* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } LInstruction* instr() override { return instr_; } private: LMathAbs* instr_; }; Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { FPURegister input = ToDoubleRegister(instr->value()); FPURegister result = ToDoubleRegister(instr->result()); __ abs_d(result, input); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else if (r.IsSmi()) { EmitSmiMathAbs(instr); } else { // Representation is tagged. DeferredMathAbsTaggedHeapNumber* deferred = new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input, deferred->entry()); // If smi, handle it directly. EmitSmiMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LMathFloor* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); Register scratch1 = scratch0(); Register except_flag = ToRegister(instr->temp()); __ EmitFPUTruncate(kRoundToMinusInf, result, input, scratch1, double_scratch0(), except_flag); // Deopt if the operation did not succeed. DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. Label done; __ Branch(&done, ne, result, Operand(zero_reg)); __ mfhc1(scratch1, input); // Get exponent/sign bits. __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1, Operand(zero_reg)); __ bind(&done); } } void LCodeGen::DoMathRound(LMathRound* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp()); Register scratch = scratch0(); Label done, check_sign_on_zero; // Extract exponent bits. __ mfhc1(result, input); __ Ext(scratch, result, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // If the number is in ]-0.5, +0.5[, the result is +/- 0. Label skip1; __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2)); __ mov(result, zero_reg); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Branch(&check_sign_on_zero); } else { __ Branch(&done); } __ bind(&skip1); // The following conversion will not work with numbers // outside of ]-2^32, 2^32[. DeoptimizeIf(ge, instr, DeoptimizeReason::kOverflow, scratch, Operand(HeapNumber::kExponentBias + 32)); // Save the original sign for later comparison. __ And(scratch, result, Operand(HeapNumber::kSignMask)); __ Move(double_scratch0(), 0.5); __ add_d(double_scratch0(), input, double_scratch0()); // Check sign of the result: if the sign changed, the input // value was in ]0.5, 0[ and the result should be -0. __ mfhc1(result, double_scratch0()); // mfhc1 sign-extends, clear the upper bits. __ dsll32(result, result, 0); __ dsrl32(result, result, 0); __ Xor(result, result, Operand(scratch)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // ARM uses 'mi' here, which is 'lt' DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero, result, Operand(zero_reg)); } else { Label skip2; // ARM uses 'mi' here, which is 'lt' // Negating it results in 'ge' __ Branch(&skip2, ge, result, Operand(zero_reg)); __ mov(result, zero_reg); __ Branch(&done); __ bind(&skip2); } Register except_flag = scratch; __ EmitFPUTruncate(kRoundToMinusInf, result, double_scratch0(), at, double_scratch1, except_flag); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. __ Branch(&done, ne, result, Operand(zero_reg)); __ bind(&check_sign_on_zero); __ mfhc1(scratch, input); // Get exponent/sign bits. __ And(scratch, scratch, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch, Operand(zero_reg)); } __ bind(&done); } void LCodeGen::DoMathFround(LMathFround* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ cvt_s_d(result, input); __ cvt_d_s(result, result); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ sqrt_d(result, input); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister temp = ToDoubleRegister(instr->temp()); DCHECK(!input.is(result)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done; __ Move(temp, static_cast<double>(-V8_INFINITY)); // Set up Infinity. __ Neg_d(result, temp); // result is overwritten if the branch is not taken. __ BranchF(&done, NULL, eq, temp, input); // Add +0 to convert -0 to +0. __ add_d(result, input, kDoubleRegZero); __ sqrt_d(result, result); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. Register tagged_exponent = MathPowTaggedDescriptor::exponent(); DCHECK(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(f4)); DCHECK(!instr->right()->IsRegister() || ToRegister(instr->right()).is(tagged_exponent)); DCHECK(ToDoubleRegister(instr->left()).is(f2)); DCHECK(ToDoubleRegister(instr->result()).is(f0)); if (exponent_type.IsSmi()) { MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(tagged_exponent, &no_deopt); DCHECK(!a7.is(tagged_exponent)); __ lw(a7, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, a7, Operand(at)); __ bind(&no_deopt); MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(isolate(), MathPowStub::INTEGER); __ CallStub(&stub); } else { DCHECK(exponent_type.IsDouble()); MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathCos(LMathCos* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathSin(LMathSin* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathExp(LMathExp* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathLog(LMathLog* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathClz32(LMathClz32* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ Clz(result, input); } void LCodeGen::PrepareForTailCall(const ParameterCount& actual, Register scratch1, Register scratch2, Register scratch3) { #if DEBUG if (actual.is_reg()) { DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3)); } else { DCHECK(!AreAliased(scratch1, scratch2, scratch3)); } #endif if (FLAG_code_comments) { if (actual.is_reg()) { Comment(";;; PrepareForTailCall, actual: %s {", RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( actual.reg().code())); } else { Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate()); } } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ ld(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(scratch3, MemOperand(scratch2, StandardFrameConstants::kContextOffset)); __ Branch(&no_arguments_adaptor, ne, scratch3, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Drop current frame and load arguments count from arguments adaptor frame. __ mov(fp, scratch2); __ ld(caller_args_count_reg, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ Branch(&formal_parameter_count_loaded); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ li(caller_args_count_reg, Operand(info()->literal()->parameter_count())); __ bind(&formal_parameter_count_loaded); __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3); Comment(";;; }"); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { HInvokeFunction* hinstr = instr->hydrogen(); DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->function()).is(a1)); DCHECK(instr->HasPointerMap()); bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow; if (is_tail_call) { DCHECK(!info()->saves_caller_doubles()); ParameterCount actual(instr->arity()); // It is safe to use t0, t1 and t2 as scratch registers here given that // we are not going to return to caller function anyway. PrepareForTailCall(actual, t0, t1, t2); } Handle<JSFunction> known_function = hinstr->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(instr->arity()); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(a1, no_reg, actual, flag, generator); } else { CallKnownFunction(known_function, hinstr->formal_parameter_count(), instr->arity(), is_tail_call, instr); } } void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { DCHECK(ToRegister(instr->result()).is(v0)); if (instr->hydrogen()->IsTailCall()) { if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); __ Jump(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(target); } } else { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); __ Call(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); generator.BeforeCall(__ CallSize(target)); __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(target); } generator.AfterCall(); } } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->constructor()).is(a1)); DCHECK(ToRegister(instr->result()).is(v0)); __ li(a0, Operand(instr->arity())); __ li(a2, instr->hydrogen()->site()); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need a change here, // look at the first argument. __ ld(a5, MemOperand(sp, 0)); __ Branch(&packed_case, eq, a5, Operand(zero_reg)); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(isolate(), holey_kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ jmp(&done); __ bind(&packed_case); } ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { ArrayNArgumentsConstructorStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { Register function = ToRegister(instr->function()); Register code_object = ToRegister(instr->code_object()); __ Daddu(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); __ sd(code_object, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); if (instr->offset()->IsConstantOperand()) { LConstantOperand* offset = LConstantOperand::cast(instr->offset()); __ Daddu(result, base, Operand(ToInteger32(offset))); } else { Register offset = ToRegister(instr->offset()); __ Daddu(result, base, offset); } } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Representation representation = instr->representation(); Register object = ToRegister(instr->object()); Register scratch2 = scratch1(); Register scratch1 = scratch0(); HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { Register value = ToRegister(instr->value()); MemOperand operand = MemOperand(object, offset); __ Store(value, operand, representation); return; } __ AssertNotSmi(object); DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsSmi(LConstantOperand::cast(instr->value()))); if (!FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); DCHECK(!instr->hydrogen()->has_transition()); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); DoubleRegister value = ToDoubleRegister(instr->value()); __ sdc1(value, FieldMemOperand(object, offset)); return; } if (instr->hydrogen()->has_transition()) { Handle<Map> transition = instr->hydrogen()->transition_map(); AddDeprecationDependency(transition); __ li(scratch1, Operand(transition)); __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); if (instr->hydrogen()->NeedsWriteBarrierForMap()) { Register temp = ToRegister(instr->temp()); // Update the write barrier for the map field. __ RecordWriteForMap(object, scratch1, temp, GetRAState(), kSaveFPRegs); } } // Do the store. Register destination = object; if (!access.IsInobject()) { destination = scratch1; __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); } if (representation.IsSmi() && SmiValuesAre32Bits() && instr->hydrogen()->value()->representation().IsInteger32()) { DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); if (FLAG_debug_code) { __ Load(scratch2, FieldMemOperand(destination, offset), representation); __ AssertSmi(scratch2); } // Store int value directly to upper half of the smi. offset = SmiWordOffset(offset); representation = Representation::Integer32(); } MemOperand operand = FieldMemOperand(destination, offset); if (FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); DoubleRegister value = ToDoubleRegister(instr->value()); __ sdc1(value, operand); } else { DCHECK(instr->value()->IsRegister()); Register value = ToRegister(instr->value()); __ Store(value, operand, representation); } if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the object for in-object properties. Register value = ToRegister(instr->value()); __ RecordWriteField(destination, offset, value, scratch2, GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, instr->hydrogen()->SmiCheckForWriteBarrier(), instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { Condition cc = instr->hydrogen()->allow_equality() ? hi : hs; Operand operand((int64_t)0); Register reg; if (instr->index()->IsConstantOperand()) { operand = ToOperand(instr->index()); reg = ToRegister(instr->length()); cc = CommuteCondition(cc); } else { reg = ToRegister(instr->index()); operand = ToOperand(instr->length()); } if (FLAG_debug_code && instr->hydrogen()->skip_check()) { Label done; __ Branch(&done, NegateCondition(cc), reg, operand); __ stop("eliminated bounds check failed"); __ bind(&done); } else { DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds, reg, operand); } } void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - (kSmiTagSize + kSmiShiftSize)) : element_size_shift; int base_offset = instr->base_offset(); if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { Register address = scratch0(); FPURegister value(ToDoubleRegister(instr->value())); if (key_is_constant) { if (constant_key != 0) { __ Daddu(address, external_pointer, Operand(constant_key << element_size_shift)); } else { address = external_pointer; } } else { if (shift_size < 0) { if (shift_size == -32) { __ dsra32(address, key, 0); } else { __ dsra(address, key, -shift_size); } } else { __ dsll(address, key, shift_size); } __ Daddu(address, external_pointer, address); } if (elements_kind == FLOAT32_ELEMENTS) { __ cvt_s_d(double_scratch0(), value); __ swc1(double_scratch0(), MemOperand(address, base_offset)); } else { // Storing doubles, not floats. __ sdc1(value, MemOperand(address, base_offset)); } } else { Register value(ToRegister(instr->value())); MemOperand mem_operand = PrepareKeyedOperand( key, external_pointer, key_is_constant, constant_key, element_size_shift, shift_size, base_offset); switch (elements_kind) { case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: case INT8_ELEMENTS: __ sb(value, mem_operand); break; case INT16_ELEMENTS: case UINT16_ELEMENTS: __ sh(value, mem_operand); break; case INT32_ELEMENTS: case UINT32_ELEMENTS: __ sw(value, mem_operand); break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { DoubleRegister value = ToDoubleRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); DoubleRegister double_scratch = double_scratch0(); bool key_is_constant = instr->key()->IsConstantOperand(); int base_offset = instr->base_offset(); Label not_nan, done; // Calculate the effective address of the slot in the array to store the // double value. int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); if (key_is_constant) { int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } __ Daddu(scratch, elements, Operand((constant_key << element_size_shift) + base_offset)); } else { int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) ? (element_size_shift - (kSmiTagSize + kSmiShiftSize)) : element_size_shift; __ Daddu(scratch, elements, Operand(base_offset)); DCHECK((shift_size == 3) || (shift_size == -29)); if (shift_size == 3) { __ dsll(at, ToRegister(instr->key()), 3); } else if (shift_size == -29) { __ dsra(at, ToRegister(instr->key()), 29); } __ Daddu(scratch, scratch, at); } if (instr->NeedsCanonicalization()) { __ FPUCanonicalizeNaN(double_scratch, value); __ sdc1(double_scratch, MemOperand(scratch, 0)); } else { __ sdc1(value, MemOperand(scratch, 0)); } } void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Register scratch = scratch0(); Register store_base = scratch; int offset = instr->base_offset(); // Do the store. if (instr->key()->IsConstantOperand()) { DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset += ToInteger32(const_operand) * kPointerSize; store_base = elements; } else { // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (instr->hydrogen()->key()->representation().IsSmi()) { __ SmiScale(scratch, key, kPointerSizeLog2); __ daddu(store_base, elements, scratch); } else { __ Dlsa(store_base, elements, key, kPointerSizeLog2); } } Representation representation = instr->hydrogen()->value()->representation(); if (representation.IsInteger32() && SmiValuesAre32Bits()) { DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); if (FLAG_debug_code) { Register temp = scratch1(); __ Load(temp, MemOperand(store_base, offset), Representation::Smi()); __ AssertSmi(temp); } // Store int value directly to upper half of the smi. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32); offset = SmiWordOffset(offset); representation = Representation::Integer32(); } __ Store(value, MemOperand(store_base, offset), representation); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ Daddu(key, store_base, Operand(offset)); __ RecordWrite(elements, key, value, GetRAState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { // By cases: external, fast double if (instr->is_fixed_typed_array()) { DoStoreKeyedExternalArray(instr); } else if (instr->hydrogen()->value()->representation().IsDouble()) { DoStoreKeyedFixedDoubleArray(instr); } else { DoStoreKeyedFixedArray(instr); } } void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { class DeferredMaybeGrowElements final : public LDeferredCode { public: DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } LInstruction* instr() override { return instr_; } private: LMaybeGrowElements* instr_; }; Register result = v0; DeferredMaybeGrowElements* deferred = new (zone()) DeferredMaybeGrowElements(this, instr); LOperand* key = instr->key(); LOperand* current_capacity = instr->current_capacity(); DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); DCHECK(key->IsConstantOperand() || key->IsRegister()); DCHECK(current_capacity->IsConstantOperand() || current_capacity->IsRegister()); if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); if (constant_key >= constant_capacity) { // Deferred case. __ jmp(deferred->entry()); } } else if (key->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); __ Branch(deferred->entry(), le, ToRegister(current_capacity), Operand(constant_key)); } else if (current_capacity->IsConstantOperand()) { int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); __ Branch(deferred->entry(), ge, ToRegister(key), Operand(constant_capacity)); } else { __ Branch(deferred->entry(), ge, ToRegister(key), Operand(ToRegister(current_capacity))); } if (instr->elements()->IsRegister()) { __ mov(result, ToRegister(instr->elements())); } else { __ ld(result, ToMemOperand(instr->elements())); } __ bind(deferred->exit()); } void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register result = v0; __ mov(result, zero_reg); // We have to call a stub. { PushSafepointRegistersScope scope(this); if (instr->object()->IsRegister()) { __ mov(result, ToRegister(instr->object())); } else { __ ld(result, ToMemOperand(instr->object())); } LOperand* key = instr->key(); if (key->IsConstantOperand()) { __ li(a3, Operand(ToSmi(LConstantOperand::cast(key)))); } else { __ mov(a3, ToRegister(key)); __ SmiTag(a3); } GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind()); __ mov(a0, result); __ CallStub(&stub); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); __ StoreToSafepointRegisterSlot(result, result); } // Deopt on smi, which means the elements array changed to dictionary mode. __ SmiTst(result, at); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg)); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register scratch = scratch0(); Handle<Map> from_map = instr->original_map(); Handle<Map> to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); __ Branch(¬_applicable, ne, scratch, Operand(from_map)); if (IsSimpleMapChangeTransition(from_kind, to_kind)) { Register new_map_reg = ToRegister(instr->new_map_temp()); __ li(new_map_reg, Operand(to_map)); __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); // Write barrier. __ RecordWriteForMap(object_reg, new_map_reg, scratch, GetRAState(), kDontSaveFPRegs); } else { DCHECK(object_reg.is(a0)); DCHECK(ToRegister(instr->context()).is(cp)); PushSafepointRegistersScope scope(this); __ li(a1, Operand(to_map)); TransitionElementsKindStub stub(isolate(), from_kind, to_kind); __ CallStub(&stub); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } __ bind(¬_applicable); } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp = ToRegister(instr->temp()); Label no_memento_found; __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); DeoptimizeIf(al, instr, DeoptimizeReason::kMementoFound); __ bind(&no_memento_found); } void LCodeGen::DoStringAdd(LStringAdd* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(a1)); DCHECK(ToRegister(instr->right()).is(a0)); StringAddStub stub(isolate(), instr->hydrogen()->flags(), instr->hydrogen()->pretenure_flag()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt final : public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index))); __ push(scratch); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); __ AssertSmi(v0); __ SmiUntag(v0); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode final : public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStringCharFromCode(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); DCHECK(!char_code.is(result)); __ Branch(deferred->entry(), hi, char_code, Operand(String::kMaxOneByteCharCode)); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ Dlsa(result, result, char_code, kPointerSizeLog2); __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Branch(deferred->entry(), eq, result, Operand(scratch)); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); DCHECK(output->IsDoubleRegister()); FPURegister single_scratch = double_scratch0().low(); if (input->IsStackSlot()) { Register scratch = scratch0(); __ ld(scratch, ToMemOperand(input)); __ mtc1(scratch, single_scratch); } else { __ mtc1(ToRegister(input), single_scratch); } __ cvt_d_w(ToDoubleRegister(output), single_scratch); } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); FPURegister dbl_scratch = double_scratch0(); __ mtc1(ToRegister(input), dbl_scratch); __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU final : public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), UNSIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagU* instr_; }; Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue)); __ SmiTag(result, input); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2, IntegerSignedness signedness) { Label done, slow; Register src = ToRegister(value); Register dst = ToRegister(instr->result()); Register tmp1 = scratch0(); Register tmp2 = ToRegister(temp1); Register tmp3 = ToRegister(temp2); DoubleRegister dbl_scratch = double_scratch0(); if (signedness == SIGNED_INT32) { // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. if (dst.is(src)) { __ SmiUntag(src, dst); __ Xor(src, src, Operand(0x80000000)); } __ mtc1(src, dbl_scratch); __ cvt_d_w(dbl_scratch, dbl_scratch); } else { __ mtc1(src, dbl_scratch); __ Cvt_d_uw(dbl_scratch, dbl_scratch); } if (FLAG_inline_new) { __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow); __ Branch(&done); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); { // TODO(3095996): Put a valid pointer value in the stack slot where the // result register is stored, as this register is in the pointer map, but // contains an integer value. __ mov(dst, zero_reg); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // Reset the context register. if (!dst.is(cp)) { __ mov(cp, zero_reg); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(v0, dst); } // Done. Put the value in dbl_scratch into the value of the allocated heap // number. __ bind(&done); __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD final : public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } LInstruction* instr() override { return instr_; } private: LNumberTagD* instr_; }; DoubleRegister input_reg = ToDoubleRegister(instr->value()); Register scratch = scratch0(); Register reg = ToRegister(instr->result()); Register temp1 = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); // We want the untagged address first for performance __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); } else { __ Branch(deferred->entry()); } __ bind(deferred->exit()); __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset)); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ mov(reg, zero_reg); PushSafepointRegistersScope scope(this); // Reset the context register. if (!reg.is(cp)) { __ mov(cp, zero_reg); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(v0, reg); } void LCodeGen::DoSmiTag(LSmiTag* instr) { HChange* hchange = instr->hydrogen(); Register input = ToRegister(instr->value()); Register output = ToRegister(instr->result()); if (hchange->CheckFlag(HValue::kCanOverflow) && hchange->value()->CheckFlag(HValue::kUint32)) { __ And(at, input, Operand(0x80000000)); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, at, Operand(zero_reg)); } if (hchange->CheckFlag(HValue::kCanOverflow) && !hchange->value()->CheckFlag(HValue::kUint32)) { __ SmiTagCheckOverflow(output, input, at); DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, at, Operand(zero_reg)); } else { __ SmiTag(output, input); } } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); if (instr->needs_check()) { STATIC_ASSERT(kHeapObjectTag == 1); // If the input is a HeapObject, value of scratch won't be zero. __ And(scratch, input, Operand(kHeapObjectTag)); __ SmiUntag(result, input); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, scratch, Operand(zero_reg)); } else { __ SmiUntag(result, input); } } void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, DoubleRegister result_reg, NumberUntagDMode mode) { bool can_convert_undefined_to_nan = instr->truncating(); bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); Register scratch = scratch0(); Label convert, load_smi, done; if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { // Smi check. __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); // Heap number map check. __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); if (can_convert_undefined_to_nan) { __ Branch(&convert, ne, scratch, Operand(at)); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch, Operand(at)); } // Load heap number. __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); if (deoptimize_on_minus_zero) { __ mfc1(at, result_reg); __ Branch(&done, ne, at, Operand(zero_reg)); __ mfhc1(scratch, result_reg); // Get exponent/sign bits. DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, scratch, Operand(HeapNumber::kSignMask)); } __ Branch(&done); if (can_convert_undefined_to_nan) { __ bind(&convert); // Convert undefined (and hole) to NaN. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined, input_reg, Operand(at)); __ LoadRoot(scratch, Heap::kNanValueRootIndex); __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset)); __ Branch(&done); } } else { __ SmiUntag(scratch, input_reg); DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); } // Smi to double register conversion __ bind(&load_smi); // scratch: untagged value of input_reg __ mtc1(scratch, result_reg); __ cvt_d_w(result_reg, result_reg); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Register input_reg = ToRegister(instr->value()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->temp()); DoubleRegister double_scratch = double_scratch0(); DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2()); DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2)); DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1)); Label done; // The input is a tagged HeapObject. // Heap number map check. __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); // This 'at' value and scratch1 map value are used for tests in both clauses // of the if. if (instr->truncating()) { Label truncate; __ Branch(USE_DELAY_SLOT, &truncate, eq, scratch1, Operand(at)); __ mov(scratch2, input_reg); // In delay slot. __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball, scratch1, Operand(ODDBALL_TYPE)); __ bind(&truncate); __ TruncateHeapNumberToI(input_reg, scratch2); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber, scratch1, Operand(at)); // Load the double value. __ ldc1(double_scratch, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToZero, input_reg, double_scratch, scratch1, double_scratch2, except_flag, kCheckForInexactConversion); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Branch(&done, ne, input_reg, Operand(zero_reg)); __ mfhc1(scratch1, double_scratch); // Get exponent/sign bits. __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1, Operand(zero_reg)); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI final : public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredTaggedToI(instr_); } LInstruction* instr() override { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister()); DCHECK(input->Equals(instr->result())); Register input_reg = ToRegister(input); if (instr->hydrogen()->value()->representation().IsSmi()) { __ SmiUntag(input_reg); } else { DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); // Let the deferred code handle the HeapObject case. __ JumpIfNotSmi(input_reg, deferred->entry()); // Smi to int32 conversion. __ SmiUntag(input_reg); __ bind(deferred->exit()); } } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister()); LOperand* result = instr->result(); DCHECK(result->IsDoubleRegister()); Register input_reg = ToRegister(input); DoubleRegister result_reg = ToDoubleRegister(result); HValue* value = instr->hydrogen()->value(); NumberUntagDMode mode = value->representation().IsSmi() ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; EmitNumberUntagD(instr, input_reg, result_reg, mode); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); DoubleRegister double_input = ToDoubleRegister(instr->value()); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, double_input); } else { Register except_flag = LCodeGen::scratch1(); __ EmitFPUTruncate(kRoundToMinusInf, result_reg, double_input, scratch1, double_scratch0(), except_flag, kCheckForInexactConversion); // Deopt if the operation did not succeed (except_flag != 0). DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ Branch(&done, ne, result_reg, Operand(zero_reg)); __ mfhc1(scratch1, double_input); // Get exponent/sign bits. __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1, Operand(zero_reg)); __ bind(&done); } } } void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = LCodeGen::scratch0(); DoubleRegister double_input = ToDoubleRegister(instr->value()); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, double_input); } else { Register except_flag = LCodeGen::scratch1(); __ EmitFPUTruncate(kRoundToMinusInf, result_reg, double_input, scratch1, double_scratch0(), except_flag, kCheckForInexactConversion); // Deopt if the operation did not succeed (except_flag != 0). DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN, except_flag, Operand(zero_reg)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ Branch(&done, ne, result_reg, Operand(zero_reg)); __ mfhc1(scratch1, double_input); // Get exponent/sign bits. __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero, scratch1, Operand(zero_reg)); __ bind(&done); } } __ SmiTag(result_reg, result_reg); } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); __ SmiTst(ToRegister(input), at); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, at, Operand(zero_reg)); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->type().IsHeapObject()) { LOperand* input = instr->value(); __ SmiTst(ToRegister(input), at); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, at, Operand(zero_reg)); } } void LCodeGen::DoCheckArrayBufferNotNeutered( LCheckArrayBufferNotNeutered* instr) { Register view = ToRegister(instr->view()); Register scratch = scratch0(); __ ld(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); __ lw(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); __ And(at, scratch, 1 << JSArrayBuffer::WasNeutered::kShift); DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds, at, Operand(zero_reg)); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); Register scratch = scratch0(); __ GetObjectType(input, scratch, scratch); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType, scratch, Operand(first)); } else { DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType, scratch, Operand(first)); // Omit check for the last type. if (last != LAST_TYPE) { DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType, scratch, Operand(last)); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (base::bits::IsPowerOfTwo32(mask)) { DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); __ And(at, scratch, mask); DeoptimizeIf(tag == 0 ? ne : eq, instr, DeoptimizeReason::kWrongInstanceType, at, Operand(zero_reg)); } else { __ And(scratch, scratch, Operand(mask)); DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType, scratch, Operand(tag)); } } } void LCodeGen::DoCheckValue(LCheckValue* instr) { Register reg = ToRegister(instr->value()); Handle<HeapObject> object = instr->hydrogen()->object().handle(); AllowDeferredHandleDereference smi_check; if (isolate()->heap()->InNewSpace(*object)) { Register reg = ToRegister(instr->value()); Handle<Cell> cell = isolate()->factory()->NewCell(object); __ li(at, Operand(cell)); __ ld(at, FieldMemOperand(at, Cell::kValueOffset)); DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch, reg, Operand(at)); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch, reg, Operand(object)); } } void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { Label deopt, done; // If the map is not deprecated the migration attempt does not make sense. __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); __ lwu(scratch0(), FieldMemOperand(scratch0(), Map::kBitField3Offset)); __ And(at, scratch0(), Operand(Map::Deprecated::kMask)); __ Branch(&deopt, eq, at, Operand(zero_reg)); { PushSafepointRegistersScope scope(this); __ push(object); __ mov(cp, zero_reg); __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); RecordSafepointWithRegisters( instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(v0, scratch0()); } __ SmiTst(scratch0(), at); __ Branch(&done, ne, at, Operand(zero_reg)); __ bind(&deopt); // In case of "al" condition the operands are not used so just pass zero_reg // there. DeoptimizeIf(al, instr, DeoptimizeReason::kInstanceMigrationFailed, zero_reg, Operand(zero_reg)); __ bind(&done); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { class DeferredCheckMaps final : public LDeferredCode { public: DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) : LDeferredCode(codegen), instr_(instr), object_(object) { SetExit(check_maps()); } void Generate() override { codegen()->DoDeferredInstanceMigration(instr_, object_); } Label* check_maps() { return &check_maps_; } LInstruction* instr() override { return instr_; } private: LCheckMaps* instr_; Label check_maps_; Register object_; }; if (instr->hydrogen()->IsStabilityCheck()) { const UniqueSet<Map>* maps = instr->hydrogen()->maps(); for (int i = 0; i < maps->size(); ++i) { AddStabilityDependency(maps->at(i).handle()); } return; } Register map_reg = scratch0(); LOperand* input = instr->value(); DCHECK(input->IsRegister()); Register reg = ToRegister(input); __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); DeferredCheckMaps* deferred = NULL; if (instr->hydrogen()->HasMigrationTarget()) { deferred = new(zone()) DeferredCheckMaps(this, instr, reg); __ bind(deferred->check_maps()); } const UniqueSet<Map>* maps = instr->hydrogen()->maps(); Label success; for (int i = 0; i < maps->size() - 1; i++) { Handle<Map> map = maps->at(i).handle(); __ CompareMapAndBranch(map_reg, map, &success, eq, &success); } Handle<Map> map = maps->at(maps->size() - 1).handle(); // Do the CompareMap() directly within the Branch() and DeoptimizeIf(). if (instr->hydrogen()->HasMigrationTarget()) { __ Branch(deferred->entry(), ne, map_reg, Operand(map)); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap, map_reg, Operand(map)); } __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->temp()); __ ClampDoubleToUint8(result_reg, value_reg, temp_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { Register unclamped_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampUint8(result_reg, unclamped_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { Register scratch = scratch0(); Register input_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->temp()); Label is_smi, done, heap_number; // Both smi and heap number cases are handled. __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi); // Check for heap number __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map())); // Check for undefined. Undefined is converted to zero for clamping // conversions. DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined, input_reg, Operand(factory()->undefined_value())); __ mov(result_reg, zero_reg); __ jmp(&done); // Heap number __ bind(&heap_number); __ ldc1(double_scratch0(), FieldMemOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg); __ jmp(&done); __ bind(&is_smi); __ ClampUint8(result_reg, scratch); __ bind(&done); } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate final : public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredAllocate(instr_); } LInstruction* instr() override { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); // Allocate memory for the object. AllocationFlags flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE); } if (instr->hydrogen()->IsAllocationFoldingDominator()) { flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR); } DCHECK(!instr->hydrogen()->IsAllocationFolded()); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } else { Register size = ToRegister(instr->size()); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } __ bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { STATIC_ASSERT(kHeapObjectTag == 1); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ li(scratch, Operand(size - kHeapObjectTag)); } else { __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag)); } __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); Label loop; __ bind(&loop); __ Dsubu(scratch, scratch, Operand(kPointerSize)); __ Daddu(at, result, Operand(scratch)); __ sd(scratch2, MemOperand(at)); __ Branch(&loop, ge, scratch, Operand(zero_reg)); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this); if (instr->size()->IsRegister()) { Register size = ToRegister(instr->size()); DCHECK(!size.is(result)); __ SmiTag(size); __ push(size); } else { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); if (size >= 0 && size <= Smi::kMaxValue) { __ li(v0, Operand(Smi::FromInt(size))); __ Push(v0); } else { // We should never get here at runtime => abort __ stop("invalid allocation size"); return; } } int flags = AllocateDoubleAlignFlag::encode( instr->hydrogen()->MustAllocateDoubleAligned()); if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_SPACE); } else { flags = AllocateTargetSpace::update(flags, NEW_SPACE); } __ li(v0, Operand(Smi::FromInt(flags))); __ Push(v0); CallRuntimeFromDeferred( Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); __ StoreToSafepointRegisterSlot(v0, result); if (instr->hydrogen()->IsAllocationFoldingDominator()) { AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE); } // If the allocation folding dominator allocate triggered a GC, allocation // happend in the runtime. We have to reset the top pointer to virtually // undo the allocation. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); Register top_address = scratch0(); __ Dsubu(v0, v0, Operand(kHeapObjectTag)); __ li(top_address, Operand(allocation_top)); __ sd(v0, MemOperand(top_address)); __ Daddu(v0, v0, Operand(kHeapObjectTag)); } } void LCodeGen::DoFastAllocate(LFastAllocate* instr) { DCHECK(instr->hydrogen()->IsAllocationFolded()); DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); Register result = ToRegister(instr->result()); Register scratch1 = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); AllocationFlags flags = ALLOCATION_FOLDED; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ FastAllocate(size, result, scratch1, scratch2, flags); } else { Register size = ToRegister(instr->size()); __ FastAllocate(size, result, scratch1, scratch2, flags); } } void LCodeGen::DoTypeof(LTypeof* instr) { DCHECK(ToRegister(instr->value()).is(a3)); DCHECK(ToRegister(instr->result()).is(v0)); Label end, do_call; Register value_register = ToRegister(instr->value()); __ JumpIfNotSmi(value_register, &do_call); __ li(v0, Operand(isolate()->factory()->number_string())); __ jmp(&end); __ bind(&do_call); Callable callable = CodeFactory::Typeof(isolate()); CallCode(callable.code(), RelocInfo::CODE_TARGET, instr); __ bind(&end); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); Register cmp1 = no_reg; Operand cmp2 = Operand(no_reg); Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input, instr->type_literal(), &cmp1, &cmp2); DCHECK(cmp1.is_valid()); DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid()); if (final_branch_condition != kNoCondition) { EmitBranch(instr, final_branch_condition, cmp1, cmp2); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle<String> type_name, Register* cmp1, Operand* cmp2) { // This function utilizes the delay slot heavily. This is used to load // values that are always usable without depending on the type of the input // register. Condition final_branch_condition = kNoCondition; Register scratch = scratch0(); Factory* factory = isolate()->factory(); if (String::Equals(type_name, factory->number_string())) { __ JumpIfSmi(input, true_label); __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); *cmp1 = input; *cmp2 = Operand(at); final_branch_condition = eq; } else if (String::Equals(type_name, factory->string_string())) { __ JumpIfSmi(input, false_label); __ GetObjectType(input, input, scratch); *cmp1 = scratch; *cmp2 = Operand(FIRST_NONSTRING_TYPE); final_branch_condition = lt; } else if (String::Equals(type_name, factory->symbol_string())) { __ JumpIfSmi(input, false_label); __ GetObjectType(input, input, scratch); *cmp1 = scratch; *cmp2 = Operand(SYMBOL_TYPE); final_branch_condition = eq; } else if (String::Equals(type_name, factory->boolean_string())) { __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); __ LoadRoot(at, Heap::kFalseValueRootIndex); *cmp1 = at; *cmp2 = Operand(input); final_branch_condition = eq; } else if (String::Equals(type_name, factory->undefined_string())) { __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(USE_DELAY_SLOT, false_label, eq, at, Operand(input)); // The first instruction of JumpIfSmi is an And - it is safe in the delay // slot. __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); *cmp1 = at; *cmp2 = Operand(zero_reg); final_branch_condition = ne; } else if (String::Equals(type_name, factory->function_string())) { __ JumpIfSmi(input, false_label); __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ And(scratch, scratch, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); *cmp1 = scratch; *cmp2 = Operand(1 << Map::kIsCallable); final_branch_condition = eq; } else if (String::Equals(type_name, factory->object_string())) { __ JumpIfSmi(input, false_label); __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ GetObjectType(input, scratch, scratch1()); __ Branch(false_label, lt, scratch1(), Operand(FIRST_JS_RECEIVER_TYPE)); // Check for callable or undetectable objects => false. __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ And(at, scratch, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); *cmp1 = at; *cmp2 = Operand(zero_reg); final_branch_condition = eq; } else { *cmp1 = at; *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion. __ Branch(false_label); } return final_branch_condition; } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { if (info()->ShouldEnsureSpaceForLazyDeopt()) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; DCHECK_EQ(0, padding_size % Assembler::kInstrSize); while (padding_size > 0) { __ nop(); padding_size -= Assembler::kInstrSize; } } } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { last_lazy_deopt_pc_ = masm()->pc_offset(); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && type == Deoptimizer::EAGER) { type = Deoptimizer::LAZY; } DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg, Operand(zero_reg)); } void LCodeGen::DoDummy(LDummy* instr) { // Nothing to see here, move on! } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); LoadContextFromDeferred(instr->context()); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck final : public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStackCheck(instr_); } LInstruction* instr() override { return instr_; } private: LStackCheck* instr_; }; DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&done, hs, sp, Operand(at)); DCHECK(instr->context()->IsRegister()); DCHECK(ToRegister(instr->context()).is(cp)); CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { DCHECK(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at)); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. DCHECK(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); GenerateOsrPrologue(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { Register result = ToRegister(instr->result()); Register object = ToRegister(instr->object()); Label use_cache, call_runtime; DCHECK(object.is(a0)); __ CheckEnumCache(&call_runtime); __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset)); __ Branch(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(object); CallRuntime(Runtime::kForInEnumerate, instr); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ Branch(&load_cache, ne, result, Operand(Smi::kZero)); __ li(result, Operand(isolate()->factory()->empty_fixed_array())); __ jmp(&done); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ ld(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); __ ld(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache, result, Operand(zero_reg)); __ bind(&done); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); Register map = ToRegister(instr->map()); __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap, map, Operand(scratch0())); } void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register result, Register object, Register index) { PushSafepointRegistersScope scope(this); __ Push(object, index); __ mov(cp, zero_reg); __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); RecordSafepointWithRegisters( instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { class DeferredLoadMutableDouble final : public LDeferredCode { public: DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr, Register result, Register object, Register index) : LDeferredCode(codegen), instr_(instr), result_(result), object_(object), index_(index) { } void Generate() override { codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); } LInstruction* instr() override { return instr_; } private: LLoadFieldByIndex* instr_; Register result_; Register object_; Register index_; }; Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); DeferredLoadMutableDouble* deferred; deferred = new(zone()) DeferredLoadMutableDouble( this, instr, result, object, index); Label out_of_object, done; __ And(scratch, index, Operand(Smi::FromInt(1))); __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg)); __ dsra(index, index, 1); __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg)); __ SmiScale(scratch, index, kPointerSizeLog2); // In delay slot. __ Daddu(scratch, object, scratch); __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); __ Branch(&done); __ bind(&out_of_object); __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); // Index is equal to negated out of object property index plus 1. __ Dsubu(scratch, result, scratch); __ ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize)); __ bind(deferred->exit()); __ bind(&done); } #undef __ } // namespace internal } // namespace v8