// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/crankshaft/ia32/lithium-codegen-ia32.h" #include "src/base/bits.h" #include "src/builtins/builtins-constructor.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/crankshaft/hydrogen-osr.h" #include "src/deoptimizer.h" #include "src/ia32/frames-ia32.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { // When invoking builtins, we need to record the safepoint in the middle of // the invoke instruction sequence generated by the macro assembler. class SafepointGenerator final : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {} virtual ~SafepointGenerator() {} void BeforeCall(int call_size) const override {} void AfterCall() const override { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); DCHECK(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::MANUAL); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle<Code> code) { DCHECK(is_done()); code->set_stack_slots(GetTotalFrameSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); if (info()->ShouldEnsureSpaceForLazyDeopt()) { Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); } } #ifdef _MSC_VER void LCodeGen::MakeSureStackPagesMapped(int offset) { const int kPageSize = 4 * KB; for (offset -= kPageSize; offset > 0; offset -= kPageSize) { __ mov(Operand(esp, offset), eax); } } #endif void LCodeGen::SaveCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Save clobbered callee double registers"); int count = 0; BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); while (!save_iterator.Done()) { __ movsd(MemOperand(esp, count * kDoubleSize), XMMRegister::from_code(save_iterator.Current())); save_iterator.Advance(); count++; } } void LCodeGen::RestoreCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Restore clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); int count = 0; while (!save_iterator.Done()) { __ movsd(XMMRegister::from_code(save_iterator.Current()), MemOperand(esp, count * kDoubleSize)); save_iterator.Advance(); count++; } } bool LCodeGen::GeneratePrologue() { DCHECK(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); } info()->set_prologue_offset(masm_->pc_offset()); if (NeedsEagerFrame()) { DCHECK(!frame_is_built_); frame_is_built_ = true; if (info()->IsStub()) { __ StubPrologue(StackFrame::STUB); } else { __ Prologue(info()->GeneratePreagedPrologue()); } } // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); DCHECK(slots != 0 || !info()->IsOptimizing()); if (slots > 0) { __ sub(Operand(esp), Immediate(slots * kPointerSize)); #ifdef _MSC_VER MakeSureStackPagesMapped(slots * kPointerSize); #endif if (FLAG_debug_code) { __ push(eax); __ mov(Operand(eax), Immediate(slots)); Label loop; __ bind(&loop); __ mov(MemOperand(esp, eax, times_4, 0), Immediate(kSlotsZapValue)); __ dec(eax); __ j(not_zero, &loop); __ pop(eax); } if (info()->saves_caller_doubles()) SaveCallerDoubles(); } return !is_aborted(); } void LCodeGen::DoPrologue(LPrologue* instr) { Comment(";;; Prologue begin"); // Possibly allocate a local context. if (info_->scope()->NeedsContext()) { Comment(";;; Allocate local context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is still in edi. int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; if (info()->scope()->is_script_scope()) { __ push(edi); __ Push(info()->scope()->scope_info()); __ CallRuntime(Runtime::kNewScriptContext); deopt_mode = Safepoint::kLazyDeopt; } else { if (slots <= ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { Callable callable = CodeFactory::FastNewFunctionContext( isolate(), info()->scope()->scope_type()); __ mov(FastNewFunctionContextDescriptor::SlotsRegister(), Immediate(slots)); __ Call(callable.code(), RelocInfo::CODE_TARGET); // Result of the FastNewFunctionContext builtin is always in new space. need_write_barrier = false; } else { __ Push(edi); __ Push(Smi::FromInt(info()->scope()->scope_type())); __ CallRuntime(Runtime::kNewFunctionContext); } } RecordSafepoint(deopt_mode); // Context is returned in eax. It replaces the context passed to us. // It's saved in the stack and kept live in esi. __ mov(esi, eax); __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax); // Copy parameters into context if necessary. int num_parameters = info()->scope()->num_parameters(); int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info()->scope()->receiver() : info()->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ mov(eax, Operand(ebp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ mov(Operand(esi, context_offset), eax); // Update the write barrier. This clobbers eax and ebx. if (need_write_barrier) { __ RecordWriteContextSlot(esi, context_offset, eax, ebx, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(esi, eax, &done, Label::kNear); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } Comment(";;; End allocate local context"); } Comment(";;; Prologue end"); } void LCodeGen::GenerateOsrPrologue() { // Generate the OSR entry prologue at the first unknown OSR value, or if there // are none, at the OSR entrypoint instruction. if (osr_pc_offset_ >= 0) return; osr_pc_offset_ = masm()->pc_offset(); // Adjust the frame size, subsuming the unoptimized frame into the // optimized frame. int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); DCHECK(slots >= 0); __ sub(esp, Immediate(slots * kPointerSize)); } void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { if (instr->IsCall()) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); } if (!instr->IsLazyBailout() && !instr->IsGap()) { safepoints_.BumpLastLazySafepointIndex(); } } void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { } bool LCodeGen::GenerateJumpTable() { if (!jump_table_.length()) return !is_aborted(); Label needs_frame; Comment(";;; -------------------- Jump table --------------------"); for (int i = 0; i < jump_table_.length(); i++) { Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; __ bind(&table_entry->label); Address entry = table_entry->address; DeoptComment(table_entry->deopt_info); if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); __ push(Immediate(ExternalReference::ForDeoptEntry(entry))); __ call(&needs_frame); } else { if (info()->saves_caller_doubles()) RestoreCallerDoubles(); __ call(entry, RelocInfo::RUNTIME_ENTRY); } } if (needs_frame.is_linked()) { __ bind(&needs_frame); /* stack layout 3: entry address 2: return address <-- esp 1: garbage 0: garbage */ __ push(MemOperand(esp, 0)); // Copy return address. __ push(MemOperand(esp, 2 * kPointerSize)); // Copy entry address. /* stack layout 4: entry address 3: return address 1: return address 0: entry address <-- esp */ __ mov(MemOperand(esp, 3 * kPointerSize), ebp); // Save ebp. // Fill ebp with the right stack frame address. __ lea(ebp, MemOperand(esp, 3 * kPointerSize)); // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. DCHECK(info()->IsStub()); __ mov(MemOperand(esp, 2 * kPointerSize), Immediate(StackFrame::TypeToMarker(StackFrame::STUB))); /* stack layout 3: old ebp 2: stub marker 1: return address 0: entry address <-- esp */ __ ret(0); // Call the continuation without clobbering registers. } return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { DCHECK(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; HValue* value = instructions_->at(code->instruction_index())->hydrogen_value(); RecordAndWritePosition(value->position()); Comment(";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); DCHECK(!frame_is_built_); DCHECK(info()->IsStub()); frame_is_built_ = true; // Build the frame in such a way that esi isn't trashed. __ push(ebp); // Caller's frame pointer. __ push(Immediate(StackFrame::TypeToMarker(StackFrame::STUB))); __ lea(ebp, Operand(esp, TypedFrameConstants::kFixedFrameSizeFromFp)); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { __ bind(code->done()); Comment(";;; Destroy frame"); DCHECK(frame_is_built_); frame_is_built_ = false; __ mov(esp, ebp); __ pop(ebp); } __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { DCHECK(is_done()); if (info()->ShouldEnsureSpaceForLazyDeopt()) { // For lazy deoptimization we need space to patch a call after every call. // Ensure there is always space for such patching, even if the code ends // in a call. int target_offset = masm()->pc_offset() + Deoptimizer::patch_size(); while (masm()->pc_offset() < target_offset) { masm()->nop(); } } safepoints_.Emit(masm(), GetTotalFrameSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int code) const { return Register::from_code(code); } XMMRegister LCodeGen::ToDoubleRegister(int code) const { return XMMRegister::from_code(code); } Register LCodeGen::ToRegister(LOperand* op) const { DCHECK(op->IsRegister()); return ToRegister(op->index()); } XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { DCHECK(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { return ToRepresentation(op, Representation::Integer32()); } int32_t LCodeGen::ToRepresentation(LConstantOperand* op, const Representation& r) const { HConstant* constant = chunk_->LookupConstant(op); if (r.IsExternal()) { return reinterpret_cast<int32_t>( constant->ExternalReferenceValue().address()); } int32_t value = constant->Integer32Value(); if (r.IsInteger32()) return value; DCHECK(r.IsSmiOrTagged()); return reinterpret_cast<int32_t>(Smi::FromInt(value)); } Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(isolate()); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasDoubleValue()); return constant->DoubleValue(); } ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasExternalReferenceValue()); return constant->ExternalReferenceValue(); } bool LCodeGen::IsInteger32(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } bool LCodeGen::IsSmi(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } static int ArgumentsOffsetWithoutFrame(int index) { DCHECK(index < 0); return -(index + 1) * kPointerSize + kPCOnStackSize; } Operand LCodeGen::ToOperand(LOperand* op) const { if (op->IsRegister()) return Operand(ToRegister(op)); if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op)); DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return Operand(ebp, FrameSlotToFPOffset(op->index())); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return Operand(esp, ArgumentsOffsetWithoutFrame(op->index())); } } Operand LCodeGen::HighOperand(LOperand* op) { DCHECK(op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return Operand(ebp, FrameSlotToFPOffset(op->index()) + kPointerSize); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return Operand( esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); WriteTranslation(environment->outer(), translation); WriteTranslationFrame(environment, translation); int object_index = 0; int dematerialized_index = 0; for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); AddToTranslation( environment, translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); } } void LCodeGen::AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer) { if (op == LEnvironment::materialization_marker()) { int object_index = (*object_index_pointer)++; if (environment->ObjectIsDuplicateAt(object_index)) { int dupe_of = environment->ObjectDuplicateOfAt(object_index); translation->DuplicateObject(dupe_of); return; } int object_length = environment->ObjectLengthAt(object_index); if (environment->ObjectIsArgumentsAt(object_index)) { translation->BeginArgumentsObject(object_length); } else { translation->BeginCapturedObject(object_length); } int dematerialized_index = *dematerialized_index_pointer; int env_offset = environment->translation_size() + dematerialized_index; *dematerialized_index_pointer += object_length; for (int i = 0; i < object_length; ++i) { LOperand* value = environment->values()->at(env_offset + i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(env_offset + i), environment->HasUint32ValueAt(env_offset + i), object_index_pointer, dematerialized_index_pointer); } return; } if (op->IsStackSlot()) { int index = op->index(); if (is_tagged) { translation->StoreStackSlot(index); } else if (is_uint32) { translation->StoreUint32StackSlot(index); } else { translation->StoreInt32StackSlot(index); } } else if (op->IsDoubleStackSlot()) { int index = op->index(); translation->StoreDoubleStackSlot(index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { XMMRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { DCHECK(instr != NULL); __ call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc, LInstruction* instr, SaveFPRegsMode save_doubles) { DCHECK(instr != NULL); DCHECK(instr->HasPointerMap()); __ CallRuntime(fun, argc, save_doubles); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); DCHECK(info()->is_calling()); } void LCodeGen::LoadContextFromDeferred(LOperand* context) { if (context->IsRegister()) { if (!ToRegister(context).is(esi)) { __ mov(esi, ToRegister(context)); } } else if (context->IsStackSlot()) { __ mov(esi, ToOperand(context)); } else if (context->IsConstantOperand()) { HConstant* constant = chunk_->LookupConstant(LConstantOperand::cast(context)); __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate()))); } else { UNREACHABLE(); } } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { LoadContextFromDeferred(context); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); DCHECK(info()->is_calling()); } void LCodeGen::RegisterEnvironmentForDeoptimization( LEnvironment* environment, Safepoint::DeoptMode mode) { environment->set_has_been_used(); if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, zone()); } } void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, DeoptimizeReason deopt_reason, Deoptimizer::BailoutType bailout_type) { LEnvironment* environment = instr->environment(); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); DCHECK(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort(kBailoutWasNotPrepared); return; } if (DeoptEveryNTimes()) { ExternalReference count = ExternalReference::stress_deopt_count(isolate()); Label no_deopt; __ pushfd(); __ push(eax); __ mov(eax, Operand::StaticVariable(count)); __ sub(eax, Immediate(1)); __ j(not_zero, &no_deopt, Label::kNear); if (FLAG_trap_on_deopt) __ int3(); __ mov(eax, Immediate(FLAG_deopt_every_n_times)); __ mov(Operand::StaticVariable(count), eax); __ pop(eax); __ popfd(); DCHECK(frame_is_built_); __ call(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&no_deopt); __ mov(Operand::StaticVariable(count), eax); __ pop(eax); __ popfd(); } if (info()->ShouldTrapOnDeopt()) { Label done; if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear); __ int3(); __ bind(&done); } Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); DCHECK(info()->IsStub() || frame_is_built_); if (cc == no_condition && frame_is_built_) { DeoptComment(deopt_info); __ call(entry, RelocInfo::RUNTIME_ENTRY); } else { Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, !frame_is_built_); // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (FLAG_trace_deopt || isolate()->is_profiling() || jump_table_.is_empty() || !table_entry.IsEquivalentTo(jump_table_.last())) { jump_table_.Add(table_entry, zone()); } if (cc == no_condition) { __ jmp(&jump_table_.last().label); } else { __ j(cc, &jump_table_.last().label); } } } void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, DeoptimizeReason deopt_reason) { Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; DeoptimizeIf(cc, instr, deopt_reason, bailout_type); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK(kind == expected_safepoint_kind_); const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) { LPointerMap empty_pointers(zone()); RecordSafepoint(&empty_pointers, mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode mode) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { GenerateOsrPrologue(); } void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // Theoretically, a variation of the branch-free code for integer division by // a power of 2 (calculating the remainder via an additional multiplication // (which gets simplified to an 'and') and subtraction) should be faster, and // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to // indicate that positive dividends are heavily favored, so the branching // version performs better. HMod* hmod = instr->hydrogen(); int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); Label dividend_is_not_negative, done; if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { __ test(dividend, dividend); __ j(not_sign, ÷nd_is_not_negative, Label::kNear); // Note that this is correct even for kMinInt operands. __ neg(dividend); __ and_(dividend, mask); __ neg(dividend); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } __ jmp(&done, Label::kNear); } __ bind(÷nd_is_not_negative); __ and_(dividend, mask); __ bind(&done); } void LCodeGen::DoModByConstI(LModByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(ToRegister(instr->result()).is(eax)); if (divisor == 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); return; } __ TruncatingDiv(dividend, Abs(divisor)); __ imul(edx, edx, Abs(divisor)); __ mov(eax, dividend); __ sub(eax, edx); // Check for negative zero. HMod* hmod = instr->hydrogen(); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label remainder_not_zero; __ j(not_zero, &remainder_not_zero, Label::kNear); __ cmp(dividend, Immediate(0)); DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero); __ bind(&remainder_not_zero); } } void LCodeGen::DoModI(LModI* instr) { HMod* hmod = instr->hydrogen(); Register left_reg = ToRegister(instr->left()); DCHECK(left_reg.is(eax)); Register right_reg = ToRegister(instr->right()); DCHECK(!right_reg.is(eax)); DCHECK(!right_reg.is(edx)); Register result_reg = ToRegister(instr->result()); DCHECK(result_reg.is(edx)); Label done; // Check for x % 0, idiv would signal a divide error. We have to // deopt in this case because we can't return a NaN. if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { __ test(right_reg, Operand(right_reg)); DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); } // Check for kMinInt % -1, idiv would signal a divide error. We // have to deopt if we care about -0, because we can't return that. if (hmod->CheckFlag(HValue::kCanOverflow)) { Label no_overflow_possible; __ cmp(left_reg, kMinInt); __ j(not_equal, &no_overflow_possible, Label::kNear); __ cmp(right_reg, -1); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero); } else { __ j(not_equal, &no_overflow_possible, Label::kNear); __ Move(result_reg, Immediate(0)); __ jmp(&done, Label::kNear); } __ bind(&no_overflow_possible); } // Sign extend dividend in eax into edx:eax. __ cdq(); // If we care about -0, test if the dividend is <0 and the result is 0. if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label positive_left; __ test(left_reg, Operand(left_reg)); __ j(not_sign, &positive_left, Label::kNear); __ idiv(right_reg); __ test(result_reg, Operand(result_reg)); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); __ jmp(&done, Label::kNear); __ bind(&positive_left); } __ idiv(right_reg); __ bind(&done); } void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); DCHECK(!result.is(dividend)); // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ test(dividend, dividend); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { __ cmp(dividend, kMinInt); DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); } // Deoptimize if remainder will not be 0. if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && divisor != 1 && divisor != -1) { int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); __ test(dividend, Immediate(mask)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision); } __ Move(result, dividend); int32_t shift = WhichPowerOf2Abs(divisor); if (shift > 0) { // The arithmetic shift is always OK, the 'if' is an optimization only. if (shift > 1) __ sar(result, 31); __ shr(result, 32 - shift); __ add(result, dividend); __ sar(result, shift); } if (divisor < 0) __ neg(result); } void LCodeGen::DoDivByConstI(LDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(ToRegister(instr->result()).is(edx)); if (divisor == 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ test(dividend, dividend); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } __ TruncatingDiv(dividend, Abs(divisor)); if (divisor < 0) __ neg(edx); if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { __ mov(eax, edx); __ imul(eax, eax, divisor); __ sub(eax, dividend); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision); } } // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. void LCodeGen::DoDivI(LDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); Register remainder = ToRegister(instr->temp()); DCHECK(dividend.is(eax)); DCHECK(remainder.is(edx)); DCHECK(ToRegister(instr->result()).is(eax)); DCHECK(!divisor.is(eax)); DCHECK(!divisor.is(edx)); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { __ test(divisor, divisor); DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label dividend_not_zero; __ test(dividend, dividend); __ j(not_zero, ÷nd_not_zero, Label::kNear); __ test(divisor, divisor); DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); __ bind(÷nd_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { Label dividend_not_min_int; __ cmp(dividend, kMinInt); __ j(not_zero, ÷nd_not_min_int, Label::kNear); __ cmp(divisor, -1); DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); __ bind(÷nd_not_min_int); } // Sign extend to edx (= remainder). __ cdq(); __ idiv(divisor); if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { // Deoptimize if remainder is not 0. __ test(remainder, remainder); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision); } } void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // If the divisor is positive, things are easy: There can be no deopts and we // can simply do an arithmetic right shift. if (divisor == 1) return; int32_t shift = WhichPowerOf2Abs(divisor); if (divisor > 1) { __ sar(dividend, shift); return; } // If the divisor is negative, we have to negate and handle edge cases. __ neg(dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } // Dividing by -1 is basically negation, unless we overflow. if (divisor == -1) { if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } return; } // If the negation could not overflow, simply shifting is OK. if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { __ sar(dividend, shift); return; } Label not_kmin_int, done; __ j(no_overflow, ¬_kmin_int, Label::kNear); __ mov(dividend, Immediate(kMinInt / divisor)); __ jmp(&done, Label::kNear); __ bind(¬_kmin_int); __ sar(dividend, shift); __ bind(&done); } void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(ToRegister(instr->result()).is(edx)); if (divisor == 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HMathFloorOfDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ test(dividend, dividend); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } // Easy case: We need no dynamic check for the dividend and the flooring // division is the same as the truncating division. if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { __ TruncatingDiv(dividend, Abs(divisor)); if (divisor < 0) __ neg(edx); return; } // In the general case we may need to adjust before and after the truncating // division to get a flooring division. Register temp = ToRegister(instr->temp3()); DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx)); Label needs_adjustment, done; __ cmp(dividend, Immediate(0)); __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear); __ TruncatingDiv(dividend, Abs(divisor)); if (divisor < 0) __ neg(edx); __ jmp(&done, Label::kNear); __ bind(&needs_adjustment); __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1)); __ TruncatingDiv(temp, Abs(divisor)); if (divisor < 0) __ neg(edx); __ dec(edx); __ bind(&done); } // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); Register remainder = ToRegister(instr->temp()); Register result = ToRegister(instr->result()); DCHECK(dividend.is(eax)); DCHECK(remainder.is(edx)); DCHECK(result.is(eax)); DCHECK(!divisor.is(eax)); DCHECK(!divisor.is(edx)); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { __ test(divisor, divisor); DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label dividend_not_zero; __ test(dividend, dividend); __ j(not_zero, ÷nd_not_zero, Label::kNear); __ test(divisor, divisor); DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); __ bind(÷nd_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { Label dividend_not_min_int; __ cmp(dividend, kMinInt); __ j(not_zero, ÷nd_not_min_int, Label::kNear); __ cmp(divisor, -1); DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); __ bind(÷nd_not_min_int); } // Sign extend to edx (= remainder). __ cdq(); __ idiv(divisor); Label done; __ test(remainder, remainder); __ j(zero, &done, Label::kNear); __ xor_(remainder, divisor); __ sar(remainder, 31); __ add(result, remainder); __ bind(&done); } void LCodeGen::DoMulI(LMulI* instr) { Register left = ToRegister(instr->left()); LOperand* right = instr->right(); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ mov(ToRegister(instr->temp()), left); } if (right->IsConstantOperand()) { // Try strength reductions on the multiplication. // All replacement instructions are at most as long as the imul // and have better latency. int constant = ToInteger32(LConstantOperand::cast(right)); if (constant == -1) { __ neg(left); } else if (constant == 0) { __ xor_(left, Operand(left)); } else if (constant == 2) { __ add(left, Operand(left)); } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { // If we know that the multiplication can't overflow, it's safe to // use instructions that don't set the overflow flag for the // multiplication. switch (constant) { case 1: // Do nothing. break; case 3: __ lea(left, Operand(left, left, times_2, 0)); break; case 4: __ shl(left, 2); break; case 5: __ lea(left, Operand(left, left, times_4, 0)); break; case 8: __ shl(left, 3); break; case 9: __ lea(left, Operand(left, left, times_8, 0)); break; case 16: __ shl(left, 4); break; default: __ imul(left, left, constant); break; } } else { __ imul(left, left, constant); } } else { if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(left); } __ imul(left, ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bail out if the result is supposed to be negative zero. Label done; __ test(left, Operand(left)); __ j(not_zero, &done, Label::kNear); if (right->IsConstantOperand()) { if (ToInteger32(LConstantOperand::cast(right)) < 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); } else if (ToInteger32(LConstantOperand::cast(right)) == 0) { __ cmp(ToRegister(instr->temp()), Immediate(0)); DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero); } } else { // Test the non-zero operand for negative sign. __ or_(ToRegister(instr->temp()), ToOperand(right)); DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); } __ bind(&done); } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); DCHECK(left->IsRegister()); if (right->IsConstantOperand()) { int32_t right_operand = ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->representation()); switch (instr->op()) { case Token::BIT_AND: __ and_(ToRegister(left), right_operand); break; case Token::BIT_OR: __ or_(ToRegister(left), right_operand); break; case Token::BIT_XOR: if (right_operand == int32_t(~0)) { __ not_(ToRegister(left)); } else { __ xor_(ToRegister(left), right_operand); } break; default: UNREACHABLE(); break; } } else { switch (instr->op()) { case Token::BIT_AND: __ and_(ToRegister(left), ToOperand(right)); break; case Token::BIT_OR: __ or_(ToRegister(left), ToOperand(right)); break; case Token::BIT_XOR: __ xor_(ToRegister(left), ToOperand(right)); break; default: UNREACHABLE(); break; } } } void LCodeGen::DoShiftI(LShiftI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); DCHECK(left->IsRegister()); if (right->IsRegister()) { DCHECK(ToRegister(right).is(ecx)); switch (instr->op()) { case Token::ROR: __ ror_cl(ToRegister(left)); break; case Token::SAR: __ sar_cl(ToRegister(left)); break; case Token::SHR: __ shr_cl(ToRegister(left)); if (instr->can_deopt()) { __ test(ToRegister(left), ToRegister(left)); DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue); } break; case Token::SHL: __ shl_cl(ToRegister(left)); break; default: UNREACHABLE(); break; } } else { int value = ToInteger32(LConstantOperand::cast(right)); uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); switch (instr->op()) { case Token::ROR: if (shift_count == 0 && instr->can_deopt()) { __ test(ToRegister(left), ToRegister(left)); DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue); } else { __ ror(ToRegister(left), shift_count); } break; case Token::SAR: if (shift_count != 0) { __ sar(ToRegister(left), shift_count); } break; case Token::SHR: if (shift_count != 0) { __ shr(ToRegister(left), shift_count); } else if (instr->can_deopt()) { __ test(ToRegister(left), ToRegister(left)); DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue); } break; case Token::SHL: if (shift_count != 0) { if (instr->hydrogen_value()->representation().IsSmi() && instr->can_deopt()) { if (shift_count != 1) { __ shl(ToRegister(left), shift_count - 1); } __ SmiTag(ToRegister(left)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } else { __ shl(ToRegister(left), shift_count); } } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); if (right->IsConstantOperand()) { __ sub(ToOperand(left), ToImmediate(right, instr->hydrogen()->representation())); } else { __ sub(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoConstantI(LConstantI* instr) { __ Move(ToRegister(instr->result()), Immediate(instr->value())); } void LCodeGen::DoConstantS(LConstantS* instr) { __ Move(ToRegister(instr->result()), Immediate(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { uint64_t const bits = instr->bits(); uint32_t const lower = static_cast<uint32_t>(bits); uint32_t const upper = static_cast<uint32_t>(bits >> 32); DCHECK(instr->result()->IsDoubleRegister()); XMMRegister result = ToDoubleRegister(instr->result()); if (bits == 0u) { __ xorps(result, result); } else { Register temp = ToRegister(instr->temp()); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope scope2(masm(), SSE4_1); if (lower != 0) { __ Move(temp, Immediate(lower)); __ movd(result, Operand(temp)); __ Move(temp, Immediate(upper)); __ pinsrd(result, Operand(temp), 1); } else { __ xorps(result, result); __ Move(temp, Immediate(upper)); __ pinsrd(result, Operand(temp), 1); } } else { __ Move(temp, Immediate(upper)); __ movd(result, Operand(temp)); __ psllq(result, 32); if (lower != 0u) { XMMRegister xmm_scratch = double_scratch0(); __ Move(temp, Immediate(lower)); __ movd(xmm_scratch, Operand(temp)); __ orps(result, xmm_scratch); } } } } void LCodeGen::DoConstantE(LConstantE* instr) { __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value())); } void LCodeGen::DoConstantT(LConstantT* instr) { Register reg = ToRegister(instr->result()); Handle<Object> object = instr->value(isolate()); AllowDeferredHandleDereference smi_check; __ LoadObject(reg, object); } Operand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index, String::Encoding encoding) { if (index->IsConstantOperand()) { int offset = ToRepresentation(LConstantOperand::cast(index), Representation::Integer32()); if (encoding == String::TWO_BYTE_ENCODING) { offset *= kUC16Size; } STATIC_ASSERT(kCharSize == 1); return FieldOperand(string, SeqString::kHeaderSize + offset); } return FieldOperand( string, ToRegister(index), encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2, SeqString::kHeaderSize); } void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register result = ToRegister(instr->result()); Register string = ToRegister(instr->string()); if (FLAG_debug_code) { __ push(string); __ mov(string, FieldOperand(string, HeapObject::kMapOffset)); __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset)); __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(equal, kUnexpectedStringType); __ pop(string); } Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ movzx_b(result, operand); } else { __ movzx_w(result, operand); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); if (FLAG_debug_code) { Register value = ToRegister(instr->value()); Register index = ToRegister(instr->index()); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; int encoding_mask = instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type; __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); } Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (instr->value()->IsConstantOperand()) { int value = ToRepresentation(LConstantOperand::cast(instr->value()), Representation::Integer32()); DCHECK_LE(0, value); if (encoding == String::ONE_BYTE_ENCODING) { DCHECK_LE(value, String::kMaxOneByteCharCode); __ mov_b(operand, static_cast<int8_t>(value)); } else { DCHECK_LE(value, String::kMaxUtf16CodeUnit); __ mov_w(operand, static_cast<int16_t>(value)); } } else { Register value = ToRegister(instr->value()); if (encoding == String::ONE_BYTE_ENCODING) { __ mov_b(operand, value); } else { __ mov_w(operand, value); } } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) { if (right->IsConstantOperand()) { int32_t offset = ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->representation()); __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset)); } else { Operand address(ToRegister(left), ToRegister(right), times_1, 0); __ lea(ToRegister(instr->result()), address); } } else { if (right->IsConstantOperand()) { __ add(ToOperand(left), ToImmediate(right, instr->hydrogen()->representation())); } else { __ add(ToRegister(left), ToOperand(right)); } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); HMathMinMax::Operation operation = instr->hydrogen()->operation(); if (instr->hydrogen()->representation().IsSmiOrInteger32()) { Label return_left; Condition condition = (operation == HMathMinMax::kMathMin) ? less_equal : greater_equal; if (right->IsConstantOperand()) { Operand left_op = ToOperand(left); Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()), instr->hydrogen()->representation()); __ cmp(left_op, immediate); __ j(condition, &return_left, Label::kNear); __ mov(left_op, immediate); } else { Register left_reg = ToRegister(left); Operand right_op = ToOperand(right); __ cmp(left_reg, right_op); __ j(condition, &return_left, Label::kNear); __ mov(left_reg, right_op); } __ bind(&return_left); } else { DCHECK(instr->hydrogen()->representation().IsDouble()); Label check_nan_left, check_zero, return_left, return_right; Condition condition = (operation == HMathMinMax::kMathMin) ? below : above; XMMRegister left_reg = ToDoubleRegister(left); XMMRegister right_reg = ToDoubleRegister(right); __ ucomisd(left_reg, right_reg); __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN. __ j(equal, &check_zero, Label::kNear); // left == right. __ j(condition, &return_left, Label::kNear); __ jmp(&return_right, Label::kNear); __ bind(&check_zero); XMMRegister xmm_scratch = double_scratch0(); __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(left_reg, xmm_scratch); __ j(not_equal, &return_left, Label::kNear); // left == right != 0. // At this point, both left and right are either 0 or -0. if (operation == HMathMinMax::kMathMin) { __ orpd(left_reg, right_reg); } else { // Since we operate on +0 and/or -0, addsd and andsd have the same effect. __ addsd(left_reg, right_reg); } __ jmp(&return_left, Label::kNear); __ bind(&check_nan_left); __ ucomisd(left_reg, left_reg); // NaN check. __ j(parity_even, &return_left, Label::kNear); // left == NaN. __ bind(&return_right); __ movaps(left_reg, right_reg); __ bind(&return_left); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { XMMRegister left = ToDoubleRegister(instr->left()); XMMRegister right = ToDoubleRegister(instr->right()); XMMRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vaddsd(result, left, right); } else { DCHECK(result.is(left)); __ addsd(left, right); } break; case Token::SUB: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vsubsd(result, left, right); } else { DCHECK(result.is(left)); __ subsd(left, right); } break; case Token::MUL: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vmulsd(result, left, right); } else { DCHECK(result.is(left)); __ mulsd(left, right); } break; case Token::DIV: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vdivsd(result, left, right); } else { DCHECK(result.is(left)); __ divsd(left, right); } // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result __ movaps(result, result); break; case Token::MOD: { // Pass two doubles as arguments on the stack. __ PrepareCallCFunction(4, eax); __ movsd(Operand(esp, 0 * kDoubleSize), left); __ movsd(Operand(esp, 1 * kDoubleSize), right); __ CallCFunction( ExternalReference::mod_two_doubles_operation(isolate()), 4); // Return value is in st(0) on ia32. // Store it into the result register. __ sub(Operand(esp), Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(result, Operand(esp, 0)); __ add(Operand(esp), Immediate(kDoubleSize)); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(ToRegister(instr->left()).is(edx)); DCHECK(ToRegister(instr->right()).is(eax)); DCHECK(ToRegister(instr->result()).is(eax)); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); } template<class InstrType> void LCodeGen::EmitBranch(InstrType instr, Condition cc) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block || cc == no_condition) { EmitGoto(left_block); } else if (left_block == next_block) { __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ j(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(left_block)); __ jmp(chunk_->GetAssemblyLabel(right_block)); } } template <class InstrType> void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) { int true_block = instr->TrueDestination(chunk_); if (cc == no_condition) { __ jmp(chunk_->GetAssemblyLabel(true_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(true_block)); } } template<class InstrType> void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) { int false_block = instr->FalseDestination(chunk_); if (cc == no_condition) { __ jmp(chunk_->GetAssemblyLabel(false_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(false_block)); } } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsSmiOrInteger32()) { Register reg = ToRegister(instr->value()); __ test(reg, Operand(reg)); EmitBranch(instr, not_zero); } else if (r.IsDouble()) { DCHECK(!info()->IsStub()); XMMRegister reg = ToDoubleRegister(instr->value()); XMMRegister xmm_scratch = double_scratch0(); __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(reg, xmm_scratch); EmitBranch(instr, not_equal); } else { DCHECK(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { DCHECK(!info()->IsStub()); __ cmp(reg, factory()->true_value()); EmitBranch(instr, equal); } else if (type.IsSmi()) { DCHECK(!info()->IsStub()); __ test(reg, Operand(reg)); EmitBranch(instr, not_equal); } else if (type.IsJSArray()) { DCHECK(!info()->IsStub()); EmitBranch(instr, no_condition); } else if (type.IsHeapNumber()) { DCHECK(!info()->IsStub()); XMMRegister xmm_scratch = double_scratch0(); __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); EmitBranch(instr, not_equal); } else if (type.IsString()) { DCHECK(!info()->IsStub()); __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); EmitBranch(instr, not_equal); } else { ToBooleanHints expected = instr->hydrogen()->expected_input_types(); if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; if (expected & ToBooleanHint::kUndefined) { // undefined -> false. __ cmp(reg, factory()->undefined_value()); __ j(equal, instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kBoolean) { // true -> true. __ cmp(reg, factory()->true_value()); __ j(equal, instr->TrueLabel(chunk_)); // false -> false. __ cmp(reg, factory()->false_value()); __ j(equal, instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kNull) { // 'null' -> false. __ cmp(reg, factory()->null_value()); __ j(equal, instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kSmallInteger) { // Smis: 0 -> false, all other -> true. __ test(reg, Operand(reg)); __ j(equal, instr->FalseLabel(chunk_)); __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); } else if (expected & ToBooleanHint::kNeedsMap) { // If we need a map later and have a Smi -> deopt. __ test(reg, Immediate(kSmiTagMask)); DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi); } Register map = no_reg; // Keep the compiler happy. if (expected & ToBooleanHint::kNeedsMap) { map = ToRegister(instr->temp()); DCHECK(!map.is(reg)); __ mov(map, FieldOperand(reg, HeapObject::kMapOffset)); if (expected & ToBooleanHint::kCanBeUndetectable) { // Undetectable -> false. __ test_b(FieldOperand(map, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, instr->FalseLabel(chunk_)); } } if (expected & ToBooleanHint::kReceiver) { // spec object -> true. __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); __ j(above_equal, instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kString) { // String value -> false iff empty. Label not_string; __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string, Label::kNear); __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); __ j(not_zero, instr->TrueLabel(chunk_)); __ jmp(instr->FalseLabel(chunk_)); __ bind(¬_string); } if (expected & ToBooleanHint::kSymbol) { // Symbol value -> true. __ CmpInstanceType(map, SYMBOL_TYPE); __ j(equal, instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kHeapNumber) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ cmp(FieldOperand(reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(not_equal, ¬_heap_number, Label::kNear); XMMRegister xmm_scratch = double_scratch0(); __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); __ j(zero, instr->FalseLabel(chunk_)); __ jmp(instr->TrueLabel(chunk_)); __ bind(¬_heap_number); } if (expected != ToBooleanHint::kAny) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject); } } } } void LCodeGen::EmitGoto(int block) { if (!IsNextEmittedBlock(block)) { __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = no_condition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = equal; break; case Token::NE: case Token::NE_STRICT: cond = not_equal; break; case Token::LT: cond = is_unsigned ? below : less; break; case Token::GT: cond = is_unsigned ? above : greater; break; case Token::LTE: cond = is_unsigned ? below_equal : less_equal; break; case Token::GTE: cond = is_unsigned ? above_equal : greater_equal; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); bool is_unsigned = instr->is_double() || instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); Condition cc = TokenToCondition(instr->op(), is_unsigned); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = Token::EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); // Don't base result on EFLAGS when a NaN is involved. Instead // jump to the false block. __ j(parity_even, instr->FalseLabel(chunk_)); } else { if (right->IsConstantOperand()) { __ cmp(ToOperand(left), ToImmediate(right, instr->hydrogen()->representation())); } else if (left->IsConstantOperand()) { __ cmp(ToOperand(right), ToImmediate(left, instr->hydrogen()->representation())); // We commuted the operands, so commute the condition. cc = CommuteCondition(cc); } else { __ cmp(ToRegister(left), ToOperand(right)); } } EmitBranch(instr, cc); } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); if (instr->right()->IsConstantOperand()) { Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right())); __ CmpObject(left, right); } else { Operand right = ToOperand(instr->right()); __ cmp(left, right); } EmitBranch(instr, equal); } void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { if (instr->hydrogen()->representation().IsTagged()) { Register input_reg = ToRegister(instr->object()); __ cmp(input_reg, factory()->the_hole_value()); EmitBranch(instr, equal); return; } XMMRegister input_reg = ToDoubleRegister(instr->object()); __ ucomisd(input_reg, input_reg); EmitFalseBranch(instr, parity_odd); __ sub(esp, Immediate(kDoubleSize)); __ movsd(MemOperand(esp, 0), input_reg); __ add(esp, Immediate(kDoubleSize)); int offset = sizeof(kHoleNanUpper32); __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32)); EmitBranch(instr, equal); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } Condition cond = masm_->IsObjectStringType(input, temp1, temp1); return cond; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString( reg, temp, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Operand input = ToOperand(instr->value()); __ test(input, Immediate(kSmiTagMask)); EmitBranch(instr, zero); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); __ test_b(FieldOperand(temp, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); EmitBranch(instr, not_zero); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return equal; case Token::LT: return less; case Token::GT: return greater; case Token::LTE: return less_equal; case Token::GTE: return greater_equal; default: UNREACHABLE(); return no_condition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(ToRegister(instr->left()).is(edx)); DCHECK(ToRegister(instr->right()).is(eax)); Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); __ CompareRoot(eax, Heap::kTrueValueRootIndex); EmitBranch(instr, equal); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; DCHECK(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return equal; if (to == LAST_TYPE) return above_equal; if (from == FIRST_TYPE) return below_equal; UNREACHABLE(); return equal; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ CmpObjectType(input, TestType(instr->hydrogen()), temp); EmitBranch(instr, BranchCondition(instr->hydrogen())); } // Branches to a label or falls through with the answer in the z flag. Trashes // the temp registers, but not the input. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle<String>class_name, Register input, Register temp, Register temp2) { DCHECK(!input.is(temp)); DCHECK(!input.is(temp2)); DCHECK(!temp.is(temp2)); __ JumpIfSmi(input, is_false); __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); if (String::Equals(isolate()->factory()->Function_string(), class_name)) { __ j(above_equal, is_true); } else { __ j(above_equal, is_false); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. __ GetMapConstructor(temp, temp, temp2); // Objects with a non-function constructor have class 'Object'. __ CmpInstanceType(temp2, JS_FUNCTION_TYPE); if (String::Equals(class_name, isolate()->factory()->Object_string())) { __ j(not_equal, is_true); } else { __ j(not_equal, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ mov(temp, FieldOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. __ cmp(temp, class_name); // End with the answer in the z flag. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); Handle<String> class_name = instr->hydrogen()->class_name(); EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), class_name, input, temp, temp2); EmitBranch(instr, equal); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); EmitBranch(instr, equal); } void LCodeGen::DoHasInPrototypeChainAndBranch( LHasInPrototypeChainAndBranch* instr) { Register const object = ToRegister(instr->object()); Register const object_map = ToRegister(instr->scratch()); Register const object_prototype = object_map; Register const prototype = ToRegister(instr->prototype()); // The {object} must be a spec object. It's sufficient to know that {object} // is not a smi, since all other non-spec objects have {null} prototypes and // will be ruled out below. if (instr->hydrogen()->ObjectNeedsSmiCheck()) { __ test(object, Immediate(kSmiTagMask)); EmitFalseBranch(instr, zero); } // Loop through the {object}s prototype chain looking for the {prototype}. __ mov(object_map, FieldOperand(object, HeapObject::kMapOffset)); Label loop; __ bind(&loop); // Deoptimize if the object needs to be access checked. __ test_b(FieldOperand(object_map, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck); // Deoptimize for proxies. __ CmpInstanceType(object_map, JS_PROXY_TYPE); DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy); __ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset)); __ cmp(object_prototype, factory()->null_value()); EmitFalseBranch(instr, equal); __ cmp(object_prototype, prototype); EmitTrueBranch(instr, equal); __ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset)); __ jmp(&loop); } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = ComputeCompareCondition(op); Label true_value, done; __ test(eax, Operand(eax)); __ j(condition, &true_value, Label::kNear); __ mov(ToRegister(instr->result()), factory()->false_value()); __ jmp(&done, Label::kNear); __ bind(&true_value); __ mov(ToRegister(instr->result()), factory()->true_value()); __ bind(&done); } void LCodeGen::EmitReturn(LReturn* instr) { int extra_value_count = 1; if (instr->has_constant_parameter_count()) { int parameter_count = ToInteger32(instr->constant_parameter_count()); __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx); } else { DCHECK(info()->IsStub()); // Functions would need to drop one more value. Register reg = ToRegister(instr->parameter_count()); // The argument count parameter is a smi __ SmiUntag(reg); Register return_addr_reg = reg.is(ecx) ? ebx : ecx; // emit code to restore stack based on instr->parameter_count() __ pop(return_addr_reg); // save return address __ shl(reg, kPointerSizeLog2); __ add(esp, reg); __ jmp(return_addr_reg); } } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Preserve the return value on the stack and rely on the runtime call // to return the value in the same register. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ push(eax); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit); } if (info()->saves_caller_doubles()) RestoreCallerDoubles(); if (NeedsEagerFrame()) { __ mov(esp, ebp); __ pop(ebp); } EmitReturn(instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ mov(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(result, factory()->the_hole_value()); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } else { Label is_not_hole; __ j(not_equal, &is_not_hole, Label::kNear); __ mov(result, factory()->undefined_value()); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Label skip_assignment; Operand target = ContextOperand(context, instr->slot_index()); if (instr->hydrogen()->RequiresHoleCheck()) { __ cmp(target, factory()->the_hole_value()); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } else { __ j(not_equal, &skip_assignment, Label::kNear); } } __ mov(target, value); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Register temp = ToRegister(instr->temp()); int offset = Context::SlotOffset(instr->slot_index()); __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); MemOperand operand = instr->object()->IsConstantOperand() ? MemOperand::StaticVariable(ToExternalReference( LConstantOperand::cast(instr->object()))) : MemOperand(ToRegister(instr->object()), offset); __ Load(result, operand, access.representation()); return; } Register object = ToRegister(instr->object()); if (instr->hydrogen()->representation().IsDouble()) { XMMRegister result = ToDoubleRegister(instr->result()); __ movsd(result, FieldOperand(object, offset)); return; } Register result = ToRegister(instr->result()); if (!access.IsInobject()) { __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset)); object = result; } __ Load(result, FieldOperand(object, offset), access.representation()); } void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { DCHECK(!operand->IsDoubleRegister()); if (operand->IsConstantOperand()) { Handle<Object> object = ToHandle(LConstantOperand::cast(operand)); AllowDeferredHandleDereference smi_check; if (object->IsSmi()) { __ Push(Handle<Smi>::cast(object)); } else { __ PushHeapObject(Handle<HeapObject>::cast(object)); } } else if (operand->IsRegister()) { __ push(ToRegister(operand)); } else { __ push(ToOperand(operand)); } } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register function = ToRegister(instr->function()); Register temp = ToRegister(instr->temp()); Register result = ToRegister(instr->result()); // Get the prototype or initial map from the function. __ mov(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ cmp(Operand(result), Immediate(factory()->the_hole_value())); DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); // If the function does not have an initial map, we're done. Label done; __ CmpObjectType(result, MAP_TYPE, temp); __ j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. __ mov(result, FieldOperand(result, Map::kPrototypeOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadRoot(LLoadRoot* instr) { Register result = ToRegister(instr->result()); __ LoadRoot(result, instr->index()); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); if (instr->length()->IsConstantOperand() && instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int const_length = ToInteger32(LConstantOperand::cast(instr->length())); int index = (const_length - const_index) + 1; __ mov(result, Operand(arguments, index * kPointerSize)); } else { Register length = ToRegister(instr->length()); Operand index = ToOperand(instr->index()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. __ sub(length, index); __ mov(result, Operand(arguments, length, times_4, kPointerSize)); } } void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { ElementsKind elements_kind = instr->elements_kind(); LOperand* key = instr->key(); if (!key->IsConstantOperand() && ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(), elements_kind)) { __ SmiUntag(ToRegister(key)); } Operand operand(BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), elements_kind, instr->base_offset())); if (elements_kind == FLOAT32_ELEMENTS) { XMMRegister result(ToDoubleRegister(instr->result())); __ movss(result, operand); __ cvtss2sd(result, result); } else if (elements_kind == FLOAT64_ELEMENTS) { __ movsd(ToDoubleRegister(instr->result()), operand); } else { Register result(ToRegister(instr->result())); switch (elements_kind) { case INT8_ELEMENTS: __ movsx_b(result, operand); break; case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ movzx_b(result, operand); break; case INT16_ELEMENTS: __ movsx_w(result, operand); break; case UINT16_ELEMENTS: __ movzx_w(result, operand); break; case INT32_ELEMENTS: __ mov(result, operand); break; case UINT32_ELEMENTS: __ mov(result, operand); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { __ test(result, Operand(result)); DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { if (instr->hydrogen()->RequiresHoleCheck()) { Operand hole_check_operand = BuildFastArrayOperand( instr->elements(), instr->key(), instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, instr->base_offset() + sizeof(kHoleNanLower32)); __ cmp(hole_check_operand, Immediate(kHoleNanUpper32)); DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } Operand double_load_operand = BuildFastArrayOperand( instr->elements(), instr->key(), instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, instr->base_offset()); XMMRegister result = ToDoubleRegister(instr->result()); __ movsd(result, double_load_operand); } void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { Register result = ToRegister(instr->result()); // Load the result. __ mov(result, BuildFastArrayOperand(instr->elements(), instr->key(), instr->hydrogen()->key()->representation(), FAST_ELEMENTS, instr->base_offset())); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { __ test(result, Immediate(kSmiTagMask)); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotASmi); } else { __ cmp(result, factory()->the_hole_value()); DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); Label done; __ cmp(result, factory()->the_hole_value()); __ j(not_equal, &done); if (info()->IsStub()) { // A stub can safely convert the hole to undefined only if the array // protector cell contains (Smi) Isolate::kProtectorValid. // Otherwise it needs to bail out. __ LoadRoot(result, Heap::kArrayProtectorRootIndex); __ cmp(FieldOperand(result, PropertyCell::kValueOffset), Immediate(Smi::FromInt(Isolate::kProtectorValid))); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kHole); } __ mov(result, isolate()->factory()->undefined_value()); __ bind(&done); } } void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { if (instr->is_fixed_typed_array()) { DoLoadKeyedExternalArray(instr); } else if (instr->hydrogen()->representation().IsDouble()) { DoLoadKeyedFixedDoubleArray(instr); } else { DoLoadKeyedFixedArray(instr); } } Operand LCodeGen::BuildFastArrayOperand( LOperand* elements_pointer, LOperand* key, Representation key_representation, ElementsKind elements_kind, uint32_t base_offset) { Register elements_pointer_reg = ToRegister(elements_pointer); int element_shift_size = ElementsKindToShiftSize(elements_kind); int shift_size = element_shift_size; if (key->IsConstantOperand()) { int constant_value = ToInteger32(LConstantOperand::cast(key)); if (constant_value & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } return Operand(elements_pointer_reg, ((constant_value) << shift_size) + base_offset); } else { // Take the tag bit into account while computing the shift size. if (key_representation.IsSmi() && (shift_size >= 1)) { shift_size -= kSmiTagSize; } ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size); return Operand(elements_pointer_reg, ToRegister(key), scale_factor, base_offset); } } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ lea(result, Operand(esp, -2 * kPointerSize)); } else if (instr->hydrogen()->arguments_adaptor()) { // Check for arguments adapter frame. Label done, adapted; __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(result, Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmp(Operand(result), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adapted, Label::kNear); // No arguments adaptor frame. __ mov(result, Operand(ebp)); __ jmp(&done, Label::kNear); // Arguments adaptor frame present. __ bind(&adapted); __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ bind(&done); } else { __ mov(result, Operand(ebp)); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Operand elem = ToOperand(instr->elements()); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ cmp(ebp, elem); __ mov(result, Immediate(scope()->num_parameters())); __ j(equal, &done, Label::kNear); // Arguments adaptor frame present. Get argument length from there. __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(result, Operand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label receiver_ok, global_object; Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; Register scratch = ToRegister(instr->temp()); if (!instr->hydrogen()->known_function()) { // Do not transform the receiver to object for strict mode // functions. __ mov(scratch, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_equal, &receiver_ok, dist); // Do not transform the receiver to object for builtins. __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset), Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ j(not_equal, &receiver_ok, dist); } // Normal function. Replace undefined or null with global receiver. __ cmp(receiver, factory()->null_value()); __ j(equal, &global_object, dist); __ cmp(receiver, factory()->undefined_value()); __ j(equal, &global_object, dist); // The receiver should be a JS object. __ test(receiver, Immediate(kSmiTagMask)); DeoptimizeIf(equal, instr, DeoptimizeReason::kSmi); __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, scratch); DeoptimizeIf(below, instr, DeoptimizeReason::kNotAJavaScriptObject); __ jmp(&receiver_ok, dist); __ bind(&global_object); __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset)); __ mov(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX)); __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX)); __ bind(&receiver_ok); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); DCHECK(receiver.is(eax)); // Used for parameter count. DCHECK(function.is(edi)); // Required by InvokeFunction. DCHECK(ToRegister(instr->result()).is(eax)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmp(length, kArgumentsLimit); DeoptimizeIf(above, instr, DeoptimizeReason::kTooManyArguments); __ push(receiver); __ mov(receiver, length); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ test(length, Operand(length)); __ j(zero, &invoke, Label::kNear); __ bind(&loop); __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize)); __ dec(length); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); InvokeFlag flag = CALL_FUNCTION; if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { DCHECK(!info()->saves_caller_doubles()); // TODO(ishell): drop current frame before pushing arguments to the stack. flag = JUMP_FUNCTION; ParameterCount actual(eax); // It is safe to use ebx, ecx and edx as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) ebx (expected arguments count) and edx (new.target) will be // initialized below. PrepareForTailCall(actual, ebx, ecx, edx); } DCHECK(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(eax); __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ int3(); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); EmitPushTaggedOperand(argument); } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); if (info()->IsOptimizing()) { __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset)); } else { // If there is no frame, the context must be in esi. DCHECK(result.is(esi)); } } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { DCHECK(ToRegister(instr->context()).is(esi)); __ push(Immediate(instr->hydrogen()->declarations())); __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags()))); __ push(Immediate(instr->hydrogen()->feedback_vector())); CallRuntime(Runtime::kDeclareGlobals, instr); } void LCodeGen::CallKnownFunction(Handle<JSFunction> function, int formal_parameter_count, int arity, bool is_tail_call, LInstruction* instr) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; Register function_reg = edi; if (can_invoke_directly) { // Change context. __ mov(esi, FieldOperand(function_reg, JSFunction::kContextOffset)); // Always initialize new target and number of actual arguments. __ mov(edx, factory()->undefined_value()); __ mov(eax, arity); bool is_self_call = function.is_identical_to(info()->closure()); // Invoke function directly. if (is_self_call) { Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location())); if (is_tail_call) { __ Jump(self, RelocInfo::CODE_TARGET); } else { __ Call(self, RelocInfo::CODE_TARGET); } } else { Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset); if (is_tail_call) { __ jmp(target); } else { __ call(target); } } if (!is_tail_call) { // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } } else { // We need to adapt arguments. LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator( this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(arity); ParameterCount expected(formal_parameter_count); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(function_reg, expected, actual, flag, generator); } } void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { DCHECK(ToRegister(instr->result()).is(eax)); if (instr->hydrogen()->IsTailCall()) { if (NeedsEagerFrame()) __ leave(); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); __ jmp(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(target); } } else { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); __ call(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); generator.BeforeCall(__ CallSize(Operand(target))); __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(target); } generator.AfterCall(); } } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { Register input_reg = ToRegister(instr->value()); __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); Label slow, allocated, done; uint32_t available_regs = eax.bit() | ecx.bit() | edx.bit() | ebx.bit(); available_regs &= ~input_reg.bit(); if (instr->context()->IsRegister()) { // Make sure that the context isn't overwritten in the AllocateHeapNumber // macro below. available_regs &= ~ToRegister(instr->context()).bit(); } Register tmp = Register::from_code(base::bits::CountTrailingZeros32(available_regs)); available_regs &= ~tmp.bit(); Register tmp2 = Register::from_code(base::bits::CountTrailingZeros32(available_regs)); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. We do not need to patch the stack since |input| and // |result| are the same register and |input| will be restored // unchanged by popping safepoint registers. __ test(tmp, Immediate(HeapNumber::kSignMask)); __ j(zero, &done, Label::kNear); __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow); __ jmp(&allocated, Label::kNear); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, instr->context()); // Set the pointer to the new heap number in tmp. if (!tmp.is(eax)) __ mov(tmp, eax); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input_reg, input_reg); __ bind(&allocated); __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset)); __ and_(tmp2, ~HeapNumber::kSignMask); __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2); __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset)); __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2); __ StoreToSafepointRegisterSlot(input_reg, tmp); __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { Register input_reg = ToRegister(instr->value()); __ test(input_reg, Operand(input_reg)); Label is_positive; __ j(not_sign, &is_positive, Label::kNear); __ neg(input_reg); // Sets flags. DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow); __ bind(&is_positive); } void LCodeGen::DoMathAbs(LMathAbs* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } LInstruction* instr() override { return instr_; } private: LMathAbs* instr_; }; DCHECK(instr->value()->Equals(instr->result())); Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { XMMRegister scratch = double_scratch0(); XMMRegister input_reg = ToDoubleRegister(instr->value()); __ xorps(scratch, scratch); __ subsd(scratch, input_reg); __ andps(input_reg, scratch); } else if (r.IsSmiOrInteger32()) { EmitIntegerMathAbs(instr); } else { // Tagged case. DeferredMathAbsTaggedHeapNumber* deferred = new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input_reg = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input_reg, deferred->entry()); EmitIntegerMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloorD(LMathFloorD* instr) { XMMRegister output_reg = ToDoubleRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); CpuFeatureScope scope(masm(), SSE4_1); __ roundsd(output_reg, input_reg, kRoundDown); } void LCodeGen::DoMathFloorI(LMathFloorI* instr) { XMMRegister xmm_scratch = double_scratch0(); Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope scope(masm(), SSE4_1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Deoptimize on negative zero. Label non_zero; __ xorps(xmm_scratch, xmm_scratch); // Zero the register. __ ucomisd(input_reg, xmm_scratch); __ j(not_equal, &non_zero, Label::kNear); __ movmskpd(output_reg, input_reg); __ test(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); __ bind(&non_zero); } __ roundsd(xmm_scratch, input_reg, kRoundDown); __ cvttsd2si(output_reg, Operand(xmm_scratch)); // Overflow is signalled with minint. __ cmp(output_reg, 0x1); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } else { Label negative_sign, done; // Deoptimize on unordered. __ xorps(xmm_scratch, xmm_scratch); // Zero the register. __ ucomisd(input_reg, xmm_scratch); DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN); __ j(below, &negative_sign, Label::kNear); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Check for negative zero. Label positive_sign; __ j(above, &positive_sign, Label::kNear); __ movmskpd(output_reg, input_reg); __ test(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); __ Move(output_reg, Immediate(0)); __ jmp(&done, Label::kNear); __ bind(&positive_sign); } // Use truncating instruction (OK because input is positive). __ cvttsd2si(output_reg, Operand(input_reg)); // Overflow is signalled with minint. __ cmp(output_reg, 0x1); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ jmp(&done, Label::kNear); // Non-zero negative reaches here. __ bind(&negative_sign); // Truncate, then compare and compensate. __ cvttsd2si(output_reg, Operand(input_reg)); __ Cvtsi2sd(xmm_scratch, output_reg); __ ucomisd(input_reg, xmm_scratch); __ j(equal, &done, Label::kNear); __ sub(output_reg, Immediate(1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ bind(&done); } } void LCodeGen::DoMathRoundD(LMathRoundD* instr) { XMMRegister xmm_scratch = double_scratch0(); XMMRegister output_reg = ToDoubleRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); CpuFeatureScope scope(masm(), SSE4_1); Label done; __ roundsd(output_reg, input_reg, kRoundUp); __ Move(xmm_scratch, -0.5); __ addsd(xmm_scratch, output_reg); __ ucomisd(xmm_scratch, input_reg); __ j(below_equal, &done, Label::kNear); __ Move(xmm_scratch, 1.0); __ subsd(output_reg, xmm_scratch); __ bind(&done); } void LCodeGen::DoMathRoundI(LMathRoundI* instr) { Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); XMMRegister xmm_scratch = double_scratch0(); XMMRegister input_temp = ToDoubleRegister(instr->temp()); ExternalReference one_half = ExternalReference::address_of_one_half(); ExternalReference minus_one_half = ExternalReference::address_of_minus_one_half(); Label done, round_to_zero, below_one_half, do_not_compensate; Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ movsd(xmm_scratch, Operand::StaticVariable(one_half)); __ ucomisd(xmm_scratch, input_reg); __ j(above, &below_one_half, Label::kNear); // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x). __ addsd(xmm_scratch, input_reg); __ cvttsd2si(output_reg, Operand(xmm_scratch)); // Overflow is signalled with minint. __ cmp(output_reg, 0x1); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ jmp(&done, dist); __ bind(&below_one_half); __ movsd(xmm_scratch, Operand::StaticVariable(minus_one_half)); __ ucomisd(xmm_scratch, input_reg); __ j(below_equal, &round_to_zero, Label::kNear); // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then // compare and compensate. __ movaps(input_temp, input_reg); // Do not alter input_reg. __ subsd(input_temp, xmm_scratch); __ cvttsd2si(output_reg, Operand(input_temp)); // Catch minint due to overflow, and to prevent overflow when compensating. __ cmp(output_reg, 0x1); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ Cvtsi2sd(xmm_scratch, output_reg); __ ucomisd(xmm_scratch, input_temp); __ j(equal, &done, dist); __ sub(output_reg, Immediate(1)); // No overflow because we already ruled out minint. __ jmp(&done, dist); __ bind(&round_to_zero); // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if // we can ignore the difference between a result of -0 and +0. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // If the sign is positive, we return +0. __ movmskpd(output_reg, input_reg); __ test(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); } __ Move(output_reg, Immediate(0)); __ bind(&done); } void LCodeGen::DoMathFround(LMathFround* instr) { XMMRegister input_reg = ToDoubleRegister(instr->value()); XMMRegister output_reg = ToDoubleRegister(instr->result()); __ cvtsd2ss(output_reg, input_reg); __ cvtss2sd(output_reg, output_reg); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { Operand input = ToOperand(instr->value()); XMMRegister output = ToDoubleRegister(instr->result()); __ sqrtsd(output, input); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { XMMRegister xmm_scratch = double_scratch0(); XMMRegister input_reg = ToDoubleRegister(instr->value()); Register scratch = ToRegister(instr->temp()); DCHECK(ToDoubleRegister(instr->result()).is(input_reg)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done, sqrt; // Check base for -Infinity. According to IEEE-754, single-precision // -Infinity has the highest 9 bits set and the lowest 23 bits cleared. __ mov(scratch, 0xFF800000); __ movd(xmm_scratch, scratch); __ cvtss2sd(xmm_scratch, xmm_scratch); __ ucomisd(input_reg, xmm_scratch); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &sqrt, Label::kNear); __ j(carry, &sqrt, Label::kNear); // If input is -Infinity, return Infinity. __ xorps(input_reg, input_reg); __ subsd(input_reg, xmm_scratch); __ jmp(&done, Label::kNear); // Square root. __ bind(&sqrt); __ xorps(xmm_scratch, xmm_scratch); __ addsd(input_reg, xmm_scratch); // Convert -0 to +0. __ sqrtsd(input_reg, input_reg); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. Register tagged_exponent = MathPowTaggedDescriptor::exponent(); DCHECK(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(xmm1)); DCHECK(!instr->right()->IsRegister() || ToRegister(instr->right()).is(tagged_exponent)); DCHECK(ToDoubleRegister(instr->left()).is(xmm2)); DCHECK(ToDoubleRegister(instr->result()).is(xmm3)); if (exponent_type.IsSmi()) { MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(tagged_exponent, &no_deopt); DCHECK(!ecx.is(tagged_exponent)); __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, ecx); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); __ bind(&no_deopt); MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(isolate(), MathPowStub::INTEGER); __ CallStub(&stub); } else { DCHECK(exponent_type.IsDouble()); MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathLog(LMathLog* instr) { XMMRegister input = ToDoubleRegister(instr->value()); XMMRegister result = ToDoubleRegister(instr->result()); // Pass one double as argument on the stack. __ PrepareCallCFunction(2, eax); __ movsd(Operand(esp, 0 * kDoubleSize), input); __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 2); // Return value is in st(0) on ia32. // Store it into the result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } void LCodeGen::DoMathClz32(LMathClz32* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ Lzcnt(result, input); } void LCodeGen::DoMathCos(LMathCos* instr) { XMMRegister input = ToDoubleRegister(instr->value()); XMMRegister result = ToDoubleRegister(instr->result()); // Pass one double as argument on the stack. __ PrepareCallCFunction(2, eax); __ movsd(Operand(esp, 0 * kDoubleSize), input); __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 2); // Return value is in st(0) on ia32. // Store it into the result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } void LCodeGen::DoMathSin(LMathSin* instr) { XMMRegister input = ToDoubleRegister(instr->value()); XMMRegister result = ToDoubleRegister(instr->result()); // Pass one double as argument on the stack. __ PrepareCallCFunction(2, eax); __ movsd(Operand(esp, 0 * kDoubleSize), input); __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 2); // Return value is in st(0) on ia32. // Store it into the result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } void LCodeGen::DoMathExp(LMathExp* instr) { XMMRegister input = ToDoubleRegister(instr->value()); XMMRegister result = ToDoubleRegister(instr->result()); // Pass one double as argument on the stack. __ PrepareCallCFunction(2, eax); __ movsd(Operand(esp, 0 * kDoubleSize), input); __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 2); // Return value is in st(0) on ia32. // Store it into the result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } void LCodeGen::PrepareForTailCall(const ParameterCount& actual, Register scratch1, Register scratch2, Register scratch3) { #if DEBUG if (actual.is_reg()) { DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3)); } else { DCHECK(!AreAliased(scratch1, scratch2, scratch3)); } #endif if (FLAG_code_comments) { if (actual.is_reg()) { Comment(";;; PrepareForTailCall, actual: %s {", RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( actual.reg().code())); } else { Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate()); } } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ cmp(Operand(scratch2, StandardFrameConstants::kContextOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &no_arguments_adaptor, Label::kNear); // Drop current frame and load arguments count from arguments adaptor frame. __ mov(ebp, scratch2); __ mov(caller_args_count_reg, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ jmp(&formal_parameter_count_loaded, Label::kNear); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count. __ mov(caller_args_count_reg, Immediate(info()->literal()->parameter_count())); __ bind(&formal_parameter_count_loaded); __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3, ReturnAddressState::kNotOnStack, 0); Comment(";;; }"); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { HInvokeFunction* hinstr = instr->hydrogen(); DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(ToRegister(instr->function()).is(edi)); DCHECK(instr->HasPointerMap()); bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow; if (is_tail_call) { DCHECK(!info()->saves_caller_doubles()); ParameterCount actual(instr->arity()); // It is safe to use ebx, ecx and edx as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) ebx (expected arguments count) and edx (new.target) will be // initialized below. PrepareForTailCall(actual, ebx, ecx, edx); } Handle<JSFunction> known_function = hinstr->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(instr->arity()); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(edi, no_reg, actual, flag, generator); } else { CallKnownFunction(known_function, hinstr->formal_parameter_count(), instr->arity(), is_tail_call, instr); } } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(ToRegister(instr->constructor()).is(edi)); DCHECK(ToRegister(instr->result()).is(eax)); __ Move(eax, Immediate(instr->arity())); __ mov(ebx, instr->hydrogen()->site()); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need a change here // look at the first argument __ mov(ecx, Operand(esp, 0)); __ test(ecx, ecx); __ j(zero, &packed_case, Label::kNear); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(isolate(), holey_kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ jmp(&done, Label::kNear); __ bind(&packed_case); } ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { ArrayNArgumentsConstructorStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { DCHECK(ToRegister(instr->context()).is(esi)); CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles()); } void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { Register function = ToRegister(instr->function()); Register code_object = ToRegister(instr->code_object()); __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize)); __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); if (instr->offset()->IsConstantOperand()) { LConstantOperand* offset = LConstantOperand::cast(instr->offset()); __ lea(result, Operand(base, ToInteger32(offset))); } else { Register offset = ToRegister(instr->offset()); __ lea(result, Operand(base, offset, times_1, 0)); } } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Representation representation = instr->hydrogen()->field_representation(); HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); MemOperand operand = instr->object()->IsConstantOperand() ? MemOperand::StaticVariable( ToExternalReference(LConstantOperand::cast(instr->object()))) : MemOperand(ToRegister(instr->object()), offset); if (instr->value()->IsConstantOperand()) { LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); __ mov(operand, Immediate(ToInteger32(operand_value))); } else { Register value = ToRegister(instr->value()); __ Store(value, operand, representation); } return; } Register object = ToRegister(instr->object()); __ AssertNotSmi(object); DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsSmi(LConstantOperand::cast(instr->value()))); if (representation.IsDouble()) { DCHECK(access.IsInobject()); DCHECK(!instr->hydrogen()->has_transition()); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); XMMRegister value = ToDoubleRegister(instr->value()); __ movsd(FieldOperand(object, offset), value); return; } if (instr->hydrogen()->has_transition()) { Handle<Map> transition = instr->hydrogen()->transition_map(); AddDeprecationDependency(transition); __ mov(FieldOperand(object, HeapObject::kMapOffset), transition); if (instr->hydrogen()->NeedsWriteBarrierForMap()) { Register temp = ToRegister(instr->temp()); Register temp_map = ToRegister(instr->temp_map()); // Update the write barrier for the map field. __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs); } } // Do the store. Register write_register = object; if (!access.IsInobject()) { write_register = ToRegister(instr->temp()); __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset)); } MemOperand operand = FieldOperand(write_register, offset); if (instr->value()->IsConstantOperand()) { LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); if (operand_value->IsRegister()) { Register value = ToRegister(operand_value); __ Store(value, operand, representation); } else if (representation.IsInteger32() || representation.IsExternal()) { Immediate immediate = ToImmediate(operand_value, representation); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); __ mov(operand, immediate); } else { Handle<Object> handle_value = ToHandle(operand_value); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); __ mov(operand, handle_value); } } else { Register value = ToRegister(instr->value()); __ Store(value, operand, representation); } if (instr->hydrogen()->NeedsWriteBarrier()) { Register value = ToRegister(instr->value()); Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object; // Update the write barrier for the object for in-object properties. __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs, EMIT_REMEMBERED_SET, instr->hydrogen()->SmiCheckForWriteBarrier(), instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal; if (instr->index()->IsConstantOperand()) { __ cmp(ToOperand(instr->length()), ToImmediate(LConstantOperand::cast(instr->index()), instr->hydrogen()->length()->representation())); cc = CommuteCondition(cc); } else if (instr->length()->IsConstantOperand()) { __ cmp(ToOperand(instr->index()), ToImmediate(LConstantOperand::cast(instr->length()), instr->hydrogen()->index()->representation())); } else { __ cmp(ToRegister(instr->index()), ToOperand(instr->length())); } if (FLAG_debug_code && instr->hydrogen()->skip_check()) { Label done; __ j(NegateCondition(cc), &done, Label::kNear); __ int3(); __ bind(&done); } else { DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds); } } void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { ElementsKind elements_kind = instr->elements_kind(); LOperand* key = instr->key(); if (!key->IsConstantOperand() && ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(), elements_kind)) { __ SmiUntag(ToRegister(key)); } Operand operand(BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), elements_kind, instr->base_offset())); if (elements_kind == FLOAT32_ELEMENTS) { XMMRegister xmm_scratch = double_scratch0(); __ cvtsd2ss(xmm_scratch, ToDoubleRegister(instr->value())); __ movss(operand, xmm_scratch); } else if (elements_kind == FLOAT64_ELEMENTS) { __ movsd(operand, ToDoubleRegister(instr->value())); } else { Register value = ToRegister(instr->value()); switch (elements_kind) { case UINT8_ELEMENTS: case INT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ mov_b(operand, value); break; case UINT16_ELEMENTS: case INT16_ELEMENTS: __ mov_w(operand, value); break; case UINT32_ELEMENTS: case INT32_ELEMENTS: __ mov(operand, value); break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { Operand double_store_operand = BuildFastArrayOperand( instr->elements(), instr->key(), instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, instr->base_offset()); XMMRegister value = ToDoubleRegister(instr->value()); if (instr->NeedsCanonicalization()) { XMMRegister xmm_scratch = double_scratch0(); // Turn potential sNaN value into qNaN. __ xorps(xmm_scratch, xmm_scratch); __ subsd(value, xmm_scratch); } __ movsd(double_store_operand, value); } void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { Register elements = ToRegister(instr->elements()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Operand operand = BuildFastArrayOperand( instr->elements(), instr->key(), instr->hydrogen()->key()->representation(), FAST_ELEMENTS, instr->base_offset()); if (instr->value()->IsRegister()) { __ mov(operand, ToRegister(instr->value())); } else { LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); if (IsSmi(operand_value)) { Immediate immediate = ToImmediate(operand_value, Representation::Smi()); __ mov(operand, immediate); } else { DCHECK(!IsInteger32(operand_value)); Handle<Object> handle_value = ToHandle(operand_value); __ mov(operand, handle_value); } } if (instr->hydrogen()->NeedsWriteBarrier()) { DCHECK(instr->value()->IsRegister()); Register value = ToRegister(instr->value()); DCHECK(!instr->key()->IsConstantOperand()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ lea(key, operand); __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { // By cases...external, fast-double, fast if (instr->is_fixed_typed_array()) { DoStoreKeyedExternalArray(instr); } else if (instr->hydrogen()->value()->representation().IsDouble()) { DoStoreKeyedFixedDoubleArray(instr); } else { DoStoreKeyedFixedArray(instr); } } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp = ToRegister(instr->temp()); Label no_memento_found; __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); DeoptimizeIf(equal, instr, DeoptimizeReason::kMementoFound); __ bind(&no_memento_found); } void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { class DeferredMaybeGrowElements final : public LDeferredCode { public: DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } LInstruction* instr() override { return instr_; } private: LMaybeGrowElements* instr_; }; Register result = eax; DeferredMaybeGrowElements* deferred = new (zone()) DeferredMaybeGrowElements(this, instr); LOperand* key = instr->key(); LOperand* current_capacity = instr->current_capacity(); DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); DCHECK(key->IsConstantOperand() || key->IsRegister()); DCHECK(current_capacity->IsConstantOperand() || current_capacity->IsRegister()); if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); if (constant_key >= constant_capacity) { // Deferred case. __ jmp(deferred->entry()); } } else if (key->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); __ cmp(ToOperand(current_capacity), Immediate(constant_key)); __ j(less_equal, deferred->entry()); } else if (current_capacity->IsConstantOperand()) { int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); __ cmp(ToRegister(key), Immediate(constant_capacity)); __ j(greater_equal, deferred->entry()); } else { __ cmp(ToRegister(key), ToRegister(current_capacity)); __ j(greater_equal, deferred->entry()); } __ mov(result, ToOperand(instr->elements())); __ bind(deferred->exit()); } void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register result = eax; __ Move(result, Immediate(0)); // We have to call a stub. { PushSafepointRegistersScope scope(this); if (instr->object()->IsRegister()) { __ Move(result, ToRegister(instr->object())); } else { __ mov(result, ToOperand(instr->object())); } LOperand* key = instr->key(); if (key->IsConstantOperand()) { LConstantOperand* constant_key = LConstantOperand::cast(key); int32_t int_key = ToInteger32(constant_key); if (Smi::IsValid(int_key)) { __ mov(ebx, Immediate(Smi::FromInt(int_key))); } else { Abort(kArrayIndexConstantValueTooBig); } } else { Label is_smi; __ Move(ebx, ToRegister(key)); __ SmiTag(ebx); // Deopt if the key is outside Smi range. The stub expects Smi and would // bump the elements into dictionary mode (and trigger a deopt) anyways. __ j(no_overflow, &is_smi); __ PopSafepointRegisters(); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kOverflow); __ bind(&is_smi); } GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind()); __ CallStub(&stub); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); __ StoreToSafepointRegisterSlot(result, result); } // Deopt on smi, which means the elements array changed to dictionary mode. __ test(result, Immediate(kSmiTagMask)); DeoptimizeIf(equal, instr, DeoptimizeReason::kSmi); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Handle<Map> from_map = instr->original_map(); Handle<Map> to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; bool is_simple_map_transition = IsSimpleMapChangeTransition(from_kind, to_kind); Label::Distance branch_distance = is_simple_map_transition ? Label::kNear : Label::kFar; __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map); __ j(not_equal, ¬_applicable, branch_distance); if (is_simple_map_transition) { Register new_map_reg = ToRegister(instr->new_map_temp()); __ mov(FieldOperand(object_reg, HeapObject::kMapOffset), Immediate(to_map)); // Write barrier. DCHECK_NOT_NULL(instr->temp()); __ RecordWriteForMap(object_reg, to_map, new_map_reg, ToRegister(instr->temp()), kDontSaveFPRegs); } else { DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(object_reg.is(eax)); PushSafepointRegistersScope scope(this); __ mov(ebx, to_map); TransitionElementsKindStub stub(isolate(), from_kind, to_kind); __ CallStub(&stub); RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); } __ bind(¬_applicable); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt final : public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), factory(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Move(result, Immediate(0)); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (instr->index()->IsConstantOperand()) { Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()), Representation::Smi()); __ push(immediate); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); __ AssertSmi(eax); __ SmiUntag(eax); __ StoreToSafepointRegisterSlot(result, eax); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode final : public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStringCharFromCode(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); DCHECK(!char_code.is(result)); __ cmp(char_code, String::kMaxOneByteCharCode); __ j(above, deferred->entry()); __ Move(result, Immediate(factory()->single_character_string_cache())); __ mov(result, FieldOperand(result, char_code, times_pointer_size, FixedArray::kHeaderSize)); __ cmp(result, factory()->undefined_value()); __ j(equal, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Move(result, Immediate(0)); PushSafepointRegistersScope scope(this); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(result, eax); } void LCodeGen::DoStringAdd(LStringAdd* instr) { DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(ToRegister(instr->left()).is(edx)); DCHECK(ToRegister(instr->right()).is(eax)); StringAddStub stub(isolate(), instr->hydrogen()->flags(), instr->hydrogen()->pretenure_flag()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); DCHECK(input->IsRegister() || input->IsStackSlot()); DCHECK(output->IsDoubleRegister()); __ Cvtsi2sd(ToDoubleRegister(output), ToOperand(input)); } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); __ LoadUint32(ToDoubleRegister(output), ToRegister(input)); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI final : public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagIU( instr_, instr_->value(), instr_->temp(), SIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); __ SmiTag(reg); __ j(overflow, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU final : public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagIU( instr_, instr_->value(), instr_->temp(), UNSIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagU* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ cmp(reg, Immediate(Smi::kMaxValue)); __ j(above, deferred->entry()); __ SmiTag(reg); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value, LOperand* temp, IntegerSignedness signedness) { Label done, slow; Register reg = ToRegister(value); Register tmp = ToRegister(temp); XMMRegister xmm_scratch = double_scratch0(); if (signedness == SIGNED_INT32) { // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. __ SmiUntag(reg); __ xor_(reg, 0x80000000); __ Cvtsi2sd(xmm_scratch, Operand(reg)); } else { __ LoadUint32(xmm_scratch, reg); } if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, no_reg, &slow); __ jmp(&done, Label::kNear); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); { // TODO(3095996): Put a valid pointer value in the stack slot where the // result register is stored, as this register is in the pointer map, but // contains an integer value. __ Move(reg, Immediate(0)); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // Reset the context register. if (!reg.is(esi)) { __ Move(esi, Immediate(0)); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(reg, eax); } // Done. Put the value in xmm_scratch into the value of the allocated heap // number. __ bind(&done); __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), xmm_scratch); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD final : public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } LInstruction* instr() override { return instr_; } private: LNumberTagD* instr_; }; Register reg = ToRegister(instr->result()); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { Register tmp = ToRegister(instr->temp()); __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry()); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); XMMRegister input_reg = ToDoubleRegister(instr->value()); __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ Move(reg, Immediate(0)); PushSafepointRegistersScope scope(this); // Reset the context register. if (!reg.is(esi)) { __ Move(esi, Immediate(0)); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(reg, eax); } void LCodeGen::DoSmiTag(LSmiTag* instr) { HChange* hchange = instr->hydrogen(); Register input = ToRegister(instr->value()); if (hchange->CheckFlag(HValue::kCanOverflow) && hchange->value()->CheckFlag(HValue::kUint32)) { __ test(input, Immediate(0xc0000000)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOverflow); } __ SmiTag(input); if (hchange->CheckFlag(HValue::kCanOverflow) && !hchange->value()->CheckFlag(HValue::kUint32)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { LOperand* input = instr->value(); Register result = ToRegister(input); DCHECK(input->IsRegister() && input->Equals(instr->result())); if (instr->needs_check()) { __ test(result, Immediate(kSmiTagMask)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kNotASmi); } else { __ AssertSmi(result); } __ SmiUntag(result); } void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, Register temp_reg, XMMRegister result_reg, NumberUntagDMode mode) { bool can_convert_undefined_to_nan = instr->truncating(); bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); Label convert, load_smi, done; if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { // Smi check. __ JumpIfSmi(input_reg, &load_smi, Label::kNear); // Heap number map check. __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); if (can_convert_undefined_to_nan) { __ j(not_equal, &convert, Label::kNear); } else { DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); } // Heap number to XMM conversion. __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); if (deoptimize_on_minus_zero) { XMMRegister xmm_scratch = double_scratch0(); __ xorps(xmm_scratch, xmm_scratch); __ ucomisd(result_reg, xmm_scratch); __ j(not_zero, &done, Label::kNear); __ movmskpd(temp_reg, result_reg); __ test_b(temp_reg, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); } __ jmp(&done, Label::kNear); if (can_convert_undefined_to_nan) { __ bind(&convert); // Convert undefined to NaN. __ cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ xorpd(result_reg, result_reg); __ divsd(result_reg, result_reg); __ jmp(&done, Label::kNear); } } else { DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); } __ bind(&load_smi); // Smi to XMM conversion. Clobbering a temp is faster than re-tagging the // input register since we avoid dependencies. __ mov(temp_reg, input_reg); __ SmiUntag(temp_reg); // Untag smi before converting to float. __ Cvtsi2sd(result_reg, Operand(temp_reg)); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) { Register input_reg = ToRegister(instr->value()); // The input was optimistically untagged; revert it. STATIC_ASSERT(kSmiTagSize == 1); __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag)); if (instr->truncating()) { Label truncate; Label::Distance truncate_distance = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(equal, &truncate, truncate_distance); __ push(input_reg); __ CmpObjectType(input_reg, ODDBALL_TYPE, input_reg); __ pop(input_reg); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotANumberOrOddball); __ bind(&truncate); __ TruncateHeapNumberToI(input_reg, input_reg); } else { XMMRegister scratch = ToDoubleRegister(instr->temp()); DCHECK(!scratch.is(xmm0)); __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ cvttsd2si(input_reg, Operand(xmm0)); __ Cvtsi2sd(scratch, Operand(input_reg)); __ ucomisd(xmm0, scratch); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision); DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN); if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) { __ test(input_reg, Operand(input_reg)); __ j(not_zero, done); __ movmskpd(input_reg, xmm0); __ and_(input_reg, 1); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); } } } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI final : public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); } LInstruction* instr() override { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister()); Register input_reg = ToRegister(input); DCHECK(input_reg.is(ToRegister(instr->result()))); if (instr->hydrogen()->value()->representation().IsSmi()) { __ SmiUntag(input_reg); } else { DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); // Optimistically untag the input. // If the input is a HeapObject, SmiUntag will set the carry flag. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiUntag(input_reg); // Branch to deferred code if the input was tagged. // The deferred code will take care of restoring the tag. __ j(carry, deferred->entry()); __ bind(deferred->exit()); } } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister()); LOperand* temp = instr->temp(); DCHECK(temp->IsRegister()); LOperand* result = instr->result(); DCHECK(result->IsDoubleRegister()); Register input_reg = ToRegister(input); Register temp_reg = ToRegister(temp); HValue* value = instr->hydrogen()->value(); NumberUntagDMode mode = value->representation().IsSmi() ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; XMMRegister result_reg = ToDoubleRegister(result); EmitNumberUntagD(instr, input_reg, temp_reg, result_reg, mode); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { LOperand* input = instr->value(); DCHECK(input->IsDoubleRegister()); LOperand* result = instr->result(); DCHECK(result->IsRegister()); Register result_reg = ToRegister(result); if (instr->truncating()) { XMMRegister input_reg = ToDoubleRegister(input); __ TruncateDoubleToI(result_reg, input_reg); } else { Label lost_precision, is_nan, minus_zero, done; XMMRegister input_reg = ToDoubleRegister(input); XMMRegister xmm_scratch = double_scratch0(); Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ DoubleToI(result_reg, input_reg, xmm_scratch, instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan, &minus_zero, dist); __ jmp(&done, dist); __ bind(&lost_precision); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision); __ bind(&is_nan); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN); __ bind(&minus_zero); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); __ bind(&done); } } void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { LOperand* input = instr->value(); DCHECK(input->IsDoubleRegister()); LOperand* result = instr->result(); DCHECK(result->IsRegister()); Register result_reg = ToRegister(result); Label lost_precision, is_nan, minus_zero, done; XMMRegister input_reg = ToDoubleRegister(input); XMMRegister xmm_scratch = double_scratch0(); Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ DoubleToI(result_reg, input_reg, xmm_scratch, instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan, &minus_zero, dist); __ jmp(&done, dist); __ bind(&lost_precision); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision); __ bind(&is_nan); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN); __ bind(&minus_zero); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); __ bind(&done); __ SmiTag(result_reg); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); __ test(ToOperand(input), Immediate(kSmiTagMask)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kNotASmi); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->type().IsHeapObject()) { LOperand* input = instr->value(); __ test(ToOperand(input), Immediate(kSmiTagMask)); DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi); } } void LCodeGen::DoCheckArrayBufferNotNeutered( LCheckArrayBufferNotNeutered* instr) { Register view = ToRegister(instr->view()); Register scratch = ToRegister(instr->scratch()); __ mov(scratch, FieldOperand(view, JSArrayBufferView::kBufferOffset)); __ test_b(FieldOperand(scratch, JSArrayBuffer::kBitFieldOffset), Immediate(1 << JSArrayBuffer::WasNeutered::kShift)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOutOfBounds); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); __ mov(temp, FieldOperand(input, HeapObject::kMapOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(first)); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType); } else { DeoptimizeIf(below, instr, DeoptimizeReason::kWrongInstanceType); // Omit check for the last type. if (last != LAST_TYPE) { __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(last)); DeoptimizeIf(above, instr, DeoptimizeReason::kWrongInstanceType); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (base::bits::IsPowerOfTwo32(mask)) { DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(mask)); DeoptimizeIf(tag == 0 ? not_zero : zero, instr, DeoptimizeReason::kWrongInstanceType); } else { __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ and_(temp, mask); __ cmp(temp, tag); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType); } } } void LCodeGen::DoCheckValue(LCheckValue* instr) { Handle<HeapObject> object = instr->hydrogen()->object().handle(); if (instr->hydrogen()->object_in_new_space()) { Register reg = ToRegister(instr->value()); Handle<Cell> cell = isolate()->factory()->NewCell(object); __ cmp(reg, Operand::ForCell(cell)); } else { Operand operand = ToOperand(instr->value()); __ cmp(operand, object); } DeoptimizeIf(not_equal, instr, DeoptimizeReason::kValueMismatch); } void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { Label deopt, done; // If the map is not deprecated the migration attempt does not make sense. __ push(object); __ mov(object, FieldOperand(object, HeapObject::kMapOffset)); __ test(FieldOperand(object, Map::kBitField3Offset), Immediate(Map::Deprecated::kMask)); __ pop(object); __ j(zero, &deopt); { PushSafepointRegistersScope scope(this); __ push(object); __ xor_(esi, esi); __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); RecordSafepointWithRegisters( instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); __ test(eax, Immediate(kSmiTagMask)); } __ j(not_zero, &done); __ bind(&deopt); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kInstanceMigrationFailed); __ bind(&done); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { class DeferredCheckMaps final : public LDeferredCode { public: DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) : LDeferredCode(codegen), instr_(instr), object_(object) { SetExit(check_maps()); } void Generate() override { codegen()->DoDeferredInstanceMigration(instr_, object_); } Label* check_maps() { return &check_maps_; } LInstruction* instr() override { return instr_; } private: LCheckMaps* instr_; Label check_maps_; Register object_; }; if (instr->hydrogen()->IsStabilityCheck()) { const UniqueSet<Map>* maps = instr->hydrogen()->maps(); for (int i = 0; i < maps->size(); ++i) { AddStabilityDependency(maps->at(i).handle()); } return; } LOperand* input = instr->value(); DCHECK(input->IsRegister()); Register reg = ToRegister(input); DeferredCheckMaps* deferred = NULL; if (instr->hydrogen()->HasMigrationTarget()) { deferred = new(zone()) DeferredCheckMaps(this, instr, reg); __ bind(deferred->check_maps()); } const UniqueSet<Map>* maps = instr->hydrogen()->maps(); Label success; for (int i = 0; i < maps->size() - 1; i++) { Handle<Map> map = maps->at(i).handle(); __ CompareMap(reg, map); __ j(equal, &success, Label::kNear); } Handle<Map> map = maps->at(maps->size() - 1).handle(); __ CompareMap(reg, map); if (instr->hydrogen()->HasMigrationTarget()) { __ j(not_equal, deferred->entry()); } else { DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap); } __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); XMMRegister xmm_scratch = double_scratch0(); Register result_reg = ToRegister(instr->result()); __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { DCHECK(instr->unclamped()->Equals(instr->result())); Register value_reg = ToRegister(instr->result()); __ ClampUint8(value_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { DCHECK(instr->unclamped()->Equals(instr->result())); Register input_reg = ToRegister(instr->unclamped()); XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm()); XMMRegister xmm_scratch = double_scratch0(); Label is_smi, done, heap_number; __ JumpIfSmi(input_reg, &is_smi); // Check for heap number __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ mov(input_reg, 0); __ jmp(&done, Label::kNear); // Heap number __ bind(&heap_number); __ movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg); __ jmp(&done, Label::kNear); // smi __ bind(&is_smi); __ SmiUntag(input_reg); __ ClampUint8(input_reg); __ bind(&done); } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate final : public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredAllocate(instr_); } LInstruction* instr() override { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register temp = ToRegister(instr->temp()); // Allocate memory for the object. AllocationFlags flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE); } if (instr->hydrogen()->IsAllocationFoldingDominator()) { flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR); } DCHECK(!instr->hydrogen()->IsAllocationFolded()); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); } else { Register size = ToRegister(instr->size()); __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); } __ bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ mov(temp, (size / kPointerSize) - 1); } else { temp = ToRegister(instr->size()); __ shr(temp, kPointerSizeLog2); __ dec(temp); } Label loop; __ bind(&loop); __ mov(FieldOperand(result, temp, times_pointer_size, 0), isolate()->factory()->one_pointer_filler_map()); __ dec(temp); __ j(not_zero, &loop); } } void LCodeGen::DoFastAllocate(LFastAllocate* instr) { DCHECK(instr->hydrogen()->IsAllocationFolded()); DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); Register result = ToRegister(instr->result()); Register temp = ToRegister(instr->temp()); AllocationFlags flags = ALLOCATION_FOLDED; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ FastAllocate(size, result, temp, flags); } else { Register size = ToRegister(instr->size()); __ FastAllocate(size, result, temp, flags); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Move(result, Immediate(Smi::kZero)); PushSafepointRegistersScope scope(this); if (instr->size()->IsRegister()) { Register size = ToRegister(instr->size()); DCHECK(!size.is(result)); __ SmiTag(ToRegister(instr->size())); __ push(size); } else { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); if (size >= 0 && size <= Smi::kMaxValue) { __ push(Immediate(Smi::FromInt(size))); } else { // We should never get here at runtime => abort __ int3(); return; } } int flags = AllocateDoubleAlignFlag::encode( instr->hydrogen()->MustAllocateDoubleAligned()); if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_SPACE); } else { flags = AllocateTargetSpace::update(flags, NEW_SPACE); } __ push(Immediate(Smi::FromInt(flags))); CallRuntimeFromDeferred( Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); __ StoreToSafepointRegisterSlot(result, eax); if (instr->hydrogen()->IsAllocationFoldingDominator()) { AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE); } // If the allocation folding dominator allocate triggered a GC, allocation // happend in the runtime. We have to reset the top pointer to virtually // undo the allocation. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); __ sub(eax, Immediate(kHeapObjectTag)); __ mov(Operand::StaticVariable(allocation_top), eax); __ add(eax, Immediate(kHeapObjectTag)); } } void LCodeGen::DoTypeof(LTypeof* instr) { DCHECK(ToRegister(instr->context()).is(esi)); DCHECK(ToRegister(instr->value()).is(ebx)); Label end, do_call; Register value_register = ToRegister(instr->value()); __ JumpIfNotSmi(value_register, &do_call); __ mov(eax, Immediate(isolate()->factory()->number_string())); __ jmp(&end); __ bind(&do_call); Callable callable = CodeFactory::Typeof(isolate()); CallCode(callable.code(), RelocInfo::CODE_TARGET, instr); __ bind(&end); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); Condition final_branch_condition = EmitTypeofIs(instr, input); if (final_branch_condition != no_condition) { EmitBranch(instr, final_branch_condition); } } Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) { Label* true_label = instr->TrueLabel(chunk_); Label* false_label = instr->FalseLabel(chunk_); Handle<String> type_name = instr->type_literal(); int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); Label::Distance true_distance = left_block == next_block ? Label::kNear : Label::kFar; Label::Distance false_distance = right_block == next_block ? Label::kNear : Label::kFar; Condition final_branch_condition = no_condition; if (String::Equals(type_name, factory()->number_string())) { __ JumpIfSmi(input, true_label, true_distance); __ cmp(FieldOperand(input, HeapObject::kMapOffset), factory()->heap_number_map()); final_branch_condition = equal; } else if (String::Equals(type_name, factory()->string_string())) { __ JumpIfSmi(input, false_label, false_distance); __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); final_branch_condition = below; } else if (String::Equals(type_name, factory()->symbol_string())) { __ JumpIfSmi(input, false_label, false_distance); __ CmpObjectType(input, SYMBOL_TYPE, input); final_branch_condition = equal; } else if (String::Equals(type_name, factory()->boolean_string())) { __ cmp(input, factory()->true_value()); __ j(equal, true_label, true_distance); __ cmp(input, factory()->false_value()); final_branch_condition = equal; } else if (String::Equals(type_name, factory()->undefined_string())) { __ cmp(input, factory()->null_value()); __ j(equal, false_label, false_distance); __ JumpIfSmi(input, false_label, false_distance); // Check for undetectable objects => true. __ mov(input, FieldOperand(input, HeapObject::kMapOffset)); __ test_b(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = not_zero; } else if (String::Equals(type_name, factory()->function_string())) { __ JumpIfSmi(input, false_label, false_distance); // Check for callable and not undetectable objects => true. __ mov(input, FieldOperand(input, HeapObject::kMapOffset)); __ movzx_b(input, FieldOperand(input, Map::kBitFieldOffset)); __ and_(input, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); __ cmp(input, 1 << Map::kIsCallable); final_branch_condition = equal; } else if (String::Equals(type_name, factory()->object_string())) { __ JumpIfSmi(input, false_label, false_distance); __ cmp(input, factory()->null_value()); __ j(equal, true_label, true_distance); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input); __ j(below, false_label, false_distance); // Check for callable or undetectable objects => false. __ test_b(FieldOperand(input, Map::kBitFieldOffset), Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); final_branch_condition = zero; } else { __ jmp(false_label, false_distance); } return final_branch_condition; } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { if (info()->ShouldEnsureSpaceForLazyDeopt()) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; __ Nop(padding_size); } } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { last_lazy_deopt_pc_ = masm()->pc_offset(); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && type == Deoptimizer::EAGER) { type = Deoptimizer::LAZY; } DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type); } void LCodeGen::DoDummy(LDummy* instr) { // Nothing to see here, move on! } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck final : public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStackCheck(instr_); } LInstruction* instr() override { return instr_; } private: LStackCheck* instr_; }; DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &done, Label::kNear); DCHECK(instr->context()->IsRegister()); DCHECK(ToRegister(instr->context()).is(esi)); CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { DCHECK(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(below, deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. DCHECK(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); GenerateOsrPrologue(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { DCHECK(ToRegister(instr->context()).is(esi)); Label use_cache, call_runtime; __ CheckEnumCache(&call_runtime); __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(eax); CallRuntime(Runtime::kForInEnumerate, instr); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ cmp(result, Immediate(Smi::kZero)); __ j(not_equal, &load_cache, Label::kNear); __ mov(result, isolate()->factory()->empty_fixed_array()); __ jmp(&done, Label::kNear); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ mov(result, FieldOperand(result, DescriptorArray::kEnumCacheOffset)); __ mov(result, FieldOperand(result, FixedArray::SizeFor(instr->idx()))); __ bind(&done); __ test(result, result); DeoptimizeIf(equal, instr, DeoptimizeReason::kNoCache); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); __ cmp(ToRegister(instr->map()), FieldOperand(object, HeapObject::kMapOffset)); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap); } void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register object, Register index) { PushSafepointRegistersScope scope(this); __ push(object); __ push(index); __ xor_(esi, esi); __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); RecordSafepointWithRegisters( instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(object, eax); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { class DeferredLoadMutableDouble final : public LDeferredCode { public: DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr, Register object, Register index) : LDeferredCode(codegen), instr_(instr), object_(object), index_(index) { } void Generate() override { codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_); } LInstruction* instr() override { return instr_; } private: LLoadFieldByIndex* instr_; Register object_; Register index_; }; Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); DeferredLoadMutableDouble* deferred; deferred = new(zone()) DeferredLoadMutableDouble( this, instr, object, index); Label out_of_object, done; __ test(index, Immediate(Smi::FromInt(1))); __ j(not_zero, deferred->entry()); __ sar(index, 1); __ cmp(index, Immediate(0)); __ j(less, &out_of_object, Label::kNear); __ mov(object, FieldOperand(object, index, times_half_pointer_size, JSObject::kHeaderSize)); __ jmp(&done, Label::kNear); __ bind(&out_of_object); __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset)); __ neg(index); // Index is now equal to out of object property index plus 1. __ mov(object, FieldOperand(object, index, times_half_pointer_size, FixedArray::kHeaderSize - kPointerSize)); __ bind(deferred->exit()); __ bind(&done); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32