// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGISTER_ALLOCATOR_H_ #define V8_REGISTER_ALLOCATOR_H_ #include "src/base/compiler-specific.h" #include "src/compiler/instruction.h" #include "src/globals.h" #include "src/ostreams.h" #include "src/register-configuration.h" #include "src/zone/zone-containers.h" namespace v8 { namespace internal { namespace compiler { enum RegisterKind { GENERAL_REGISTERS, FP_REGISTERS }; // This class represents a single point of a InstructionOperand's lifetime. For // each instruction there are four lifetime positions: // // [[START, END], [START, END]] // // Where the first half position corresponds to // // [GapPosition::START, GapPosition::END] // // and the second half position corresponds to // // [Lifetime::USED_AT_START, Lifetime::USED_AT_END] // class LifetimePosition final { public: // Return the lifetime position that corresponds to the beginning of // the gap with the given index. static LifetimePosition GapFromInstructionIndex(int index) { return LifetimePosition(index * kStep); } // Return the lifetime position that corresponds to the beginning of // the instruction with the given index. static LifetimePosition InstructionFromInstructionIndex(int index) { return LifetimePosition(index * kStep + kHalfStep); } static bool ExistsGapPositionBetween(LifetimePosition pos1, LifetimePosition pos2) { if (pos1 > pos2) std::swap(pos1, pos2); LifetimePosition next(pos1.value_ + 1); if (next.IsGapPosition()) return next < pos2; return next.NextFullStart() < pos2; } // Returns a numeric representation of this lifetime position. int value() const { return value_; } // Returns the index of the instruction to which this lifetime position // corresponds. int ToInstructionIndex() const { DCHECK(IsValid()); return value_ / kStep; } // Returns true if this lifetime position corresponds to a START value bool IsStart() const { return (value_ & (kHalfStep - 1)) == 0; } // Returns true if this lifetime position corresponds to an END value bool IsEnd() const { return (value_ & (kHalfStep - 1)) == 1; } // Returns true if this lifetime position corresponds to a gap START value bool IsFullStart() const { return (value_ & (kStep - 1)) == 0; } bool IsGapPosition() const { return (value_ & 0x2) == 0; } bool IsInstructionPosition() const { return !IsGapPosition(); } // Returns the lifetime position for the current START. LifetimePosition Start() const { DCHECK(IsValid()); return LifetimePosition(value_ & ~(kHalfStep - 1)); } // Returns the lifetime position for the current gap START. LifetimePosition FullStart() const { DCHECK(IsValid()); return LifetimePosition(value_ & ~(kStep - 1)); } // Returns the lifetime position for the current END. LifetimePosition End() const { DCHECK(IsValid()); return LifetimePosition(Start().value_ + kHalfStep / 2); } // Returns the lifetime position for the beginning of the next START. LifetimePosition NextStart() const { DCHECK(IsValid()); return LifetimePosition(Start().value_ + kHalfStep); } // Returns the lifetime position for the beginning of the next gap START. LifetimePosition NextFullStart() const { DCHECK(IsValid()); return LifetimePosition(FullStart().value_ + kStep); } // Returns the lifetime position for the beginning of the previous START. LifetimePosition PrevStart() const { DCHECK(IsValid()); DCHECK(value_ >= kHalfStep); return LifetimePosition(Start().value_ - kHalfStep); } // Constructs the lifetime position which does not correspond to any // instruction. LifetimePosition() : value_(-1) {} // Returns true if this lifetime positions corrensponds to some // instruction. bool IsValid() const { return value_ != -1; } bool operator<(const LifetimePosition& that) const { return this->value_ < that.value_; } bool operator<=(const LifetimePosition& that) const { return this->value_ <= that.value_; } bool operator==(const LifetimePosition& that) const { return this->value_ == that.value_; } bool operator!=(const LifetimePosition& that) const { return this->value_ != that.value_; } bool operator>(const LifetimePosition& that) const { return this->value_ > that.value_; } bool operator>=(const LifetimePosition& that) const { return this->value_ >= that.value_; } void Print() const; static inline LifetimePosition Invalid() { return LifetimePosition(); } static inline LifetimePosition MaxPosition() { // We have to use this kind of getter instead of static member due to // crash bug in GDB. return LifetimePosition(kMaxInt); } static inline LifetimePosition FromInt(int value) { return LifetimePosition(value); } private: static const int kHalfStep = 2; static const int kStep = 2 * kHalfStep; // Code relies on kStep and kHalfStep being a power of two. STATIC_ASSERT(IS_POWER_OF_TWO(kHalfStep)); explicit LifetimePosition(int value) : value_(value) {} int value_; }; std::ostream& operator<<(std::ostream& os, const LifetimePosition pos); // Representation of the non-empty interval [start,end[. class UseInterval final : public ZoneObject { public: UseInterval(LifetimePosition start, LifetimePosition end) : start_(start), end_(end), next_(nullptr) { DCHECK(start < end); } LifetimePosition start() const { return start_; } void set_start(LifetimePosition start) { start_ = start; } LifetimePosition end() const { return end_; } void set_end(LifetimePosition end) { end_ = end; } UseInterval* next() const { return next_; } void set_next(UseInterval* next) { next_ = next; } // Split this interval at the given position without effecting the // live range that owns it. The interval must contain the position. UseInterval* SplitAt(LifetimePosition pos, Zone* zone); // If this interval intersects with other return smallest position // that belongs to both of them. LifetimePosition Intersect(const UseInterval* other) const { if (other->start() < start_) return other->Intersect(this); if (other->start() < end_) return other->start(); return LifetimePosition::Invalid(); } bool Contains(LifetimePosition point) const { return start_ <= point && point < end_; } // Returns the index of the first gap covered by this interval. int FirstGapIndex() const { int ret = start_.ToInstructionIndex(); if (start_.IsInstructionPosition()) { ++ret; } return ret; } // Returns the index of the last gap covered by this interval. int LastGapIndex() const { int ret = end_.ToInstructionIndex(); if (end_.IsGapPosition() && end_.IsStart()) { --ret; } return ret; } private: LifetimePosition start_; LifetimePosition end_; UseInterval* next_; DISALLOW_COPY_AND_ASSIGN(UseInterval); }; enum class UsePositionType : uint8_t { kAny, kRequiresRegister, kRequiresSlot }; enum class UsePositionHintType : uint8_t { kNone, kOperand, kUsePos, kPhi, kUnresolved }; static const int32_t kUnassignedRegister = RegisterConfiguration::kMaxGeneralRegisters; static_assert(kUnassignedRegister <= RegisterConfiguration::kMaxFPRegisters, "kUnassignedRegister too small"); // Representation of a use position. class V8_EXPORT_PRIVATE UsePosition final : public NON_EXPORTED_BASE(ZoneObject) { public: UsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint, UsePositionHintType hint_type); InstructionOperand* operand() const { return operand_; } bool HasOperand() const { return operand_ != nullptr; } bool RegisterIsBeneficial() const { return RegisterBeneficialField::decode(flags_); } UsePositionType type() const { return TypeField::decode(flags_); } void set_type(UsePositionType type, bool register_beneficial); LifetimePosition pos() const { return pos_; } UsePosition* next() const { return next_; } void set_next(UsePosition* next) { next_ = next; } // For hinting only. void set_assigned_register(int register_code) { flags_ = AssignedRegisterField::update(flags_, register_code); } UsePositionHintType hint_type() const { return HintTypeField::decode(flags_); } bool HasHint() const; bool HintRegister(int* register_code) const; void SetHint(UsePosition* use_pos); void ResolveHint(UsePosition* use_pos); bool IsResolved() const { return hint_type() != UsePositionHintType::kUnresolved; } static UsePositionHintType HintTypeForOperand(const InstructionOperand& op); private: typedef BitField<UsePositionType, 0, 2> TypeField; typedef BitField<UsePositionHintType, 2, 3> HintTypeField; typedef BitField<bool, 5, 1> RegisterBeneficialField; typedef BitField<int32_t, 6, 6> AssignedRegisterField; InstructionOperand* const operand_; void* hint_; UsePosition* next_; LifetimePosition const pos_; uint32_t flags_; DISALLOW_COPY_AND_ASSIGN(UsePosition); }; class SpillRange; class RegisterAllocationData; class TopLevelLiveRange; class LiveRangeGroup; // Representation of SSA values' live ranges as a collection of (continuous) // intervals over the instruction ordering. class V8_EXPORT_PRIVATE LiveRange : public NON_EXPORTED_BASE(ZoneObject) { public: UseInterval* first_interval() const { return first_interval_; } UsePosition* first_pos() const { return first_pos_; } TopLevelLiveRange* TopLevel() { return top_level_; } const TopLevelLiveRange* TopLevel() const { return top_level_; } bool IsTopLevel() const; LiveRange* next() const { return next_; } int relative_id() const { return relative_id_; } bool IsEmpty() const { return first_interval() == nullptr; } InstructionOperand GetAssignedOperand() const; MachineRepresentation representation() const { return RepresentationField::decode(bits_); } int assigned_register() const { return AssignedRegisterField::decode(bits_); } bool HasRegisterAssigned() const { return assigned_register() != kUnassignedRegister; } void set_assigned_register(int reg); void UnsetAssignedRegister(); bool spilled() const { return SpilledField::decode(bits_); } void Spill(); RegisterKind kind() const; // Returns use position in this live range that follows both start // and last processed use position. UsePosition* NextUsePosition(LifetimePosition start) const; // Returns use position for which register is required in this live // range and which follows both start and last processed use position UsePosition* NextRegisterPosition(LifetimePosition start) const; // Returns the first use position requiring stack slot, or nullptr. UsePosition* NextSlotPosition(LifetimePosition start) const; // Returns use position for which register is beneficial in this live // range and which follows both start and last processed use position UsePosition* NextUsePositionRegisterIsBeneficial( LifetimePosition start) const; // Returns lifetime position for which register is beneficial in this live // range and which follows both start and last processed use position. LifetimePosition NextLifetimePositionRegisterIsBeneficial( const LifetimePosition& start) const; // Returns use position for which register is beneficial in this live // range and which precedes start. UsePosition* PreviousUsePositionRegisterIsBeneficial( LifetimePosition start) const; // Can this live range be spilled at this position. bool CanBeSpilled(LifetimePosition pos) const; // Splitting primitive used by both splitting and splintering members. // Performs the split, but does not link the resulting ranges. // The given position must follow the start of the range. // All uses following the given position will be moved from this // live range to the result live range. // The current range will terminate at position, while result will start from // position. enum HintConnectionOption : bool { DoNotConnectHints = false, ConnectHints = true }; UsePosition* DetachAt(LifetimePosition position, LiveRange* result, Zone* zone, HintConnectionOption connect_hints); // Detaches at position, and then links the resulting ranges. Returns the // child, which starts at position. LiveRange* SplitAt(LifetimePosition position, Zone* zone); // Returns nullptr when no register is hinted, otherwise sets register_index. UsePosition* FirstHintPosition(int* register_index) const; UsePosition* FirstHintPosition() const { int register_index; return FirstHintPosition(®ister_index); } UsePosition* current_hint_position() const { DCHECK(current_hint_position_ == FirstHintPosition()); return current_hint_position_; } LifetimePosition Start() const { DCHECK(!IsEmpty()); return first_interval()->start(); } LifetimePosition End() const { DCHECK(!IsEmpty()); return last_interval_->end(); } bool ShouldBeAllocatedBefore(const LiveRange* other) const; bool CanCover(LifetimePosition position) const; bool Covers(LifetimePosition position) const; LifetimePosition FirstIntersection(LiveRange* other) const; void VerifyChildStructure() const { VerifyIntervals(); VerifyPositions(); } void ConvertUsesToOperand(const InstructionOperand& op, const InstructionOperand& spill_op); void SetUseHints(int register_index); void UnsetUseHints() { SetUseHints(kUnassignedRegister); } void Print(const RegisterConfiguration* config, bool with_children) const; void Print(bool with_children) const; private: friend class TopLevelLiveRange; explicit LiveRange(int relative_id, MachineRepresentation rep, TopLevelLiveRange* top_level); void UpdateParentForAllChildren(TopLevelLiveRange* new_top_level); void set_spilled(bool value) { bits_ = SpilledField::update(bits_, value); } UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const; void AdvanceLastProcessedMarker(UseInterval* to_start_of, LifetimePosition but_not_past) const; void VerifyPositions() const; void VerifyIntervals() const; typedef BitField<bool, 0, 1> SpilledField; typedef BitField<int32_t, 6, 6> AssignedRegisterField; typedef BitField<MachineRepresentation, 12, 8> RepresentationField; // Unique among children and splinters of the same virtual register. int relative_id_; uint32_t bits_; UseInterval* last_interval_; UseInterval* first_interval_; UsePosition* first_pos_; TopLevelLiveRange* top_level_; LiveRange* next_; // This is used as a cache, it doesn't affect correctness. mutable UseInterval* current_interval_; // This is used as a cache, it doesn't affect correctness. mutable UsePosition* last_processed_use_; // This is used as a cache, it's invalid outside of BuildLiveRanges. mutable UsePosition* current_hint_position_; // Cache the last position splintering stopped at. mutable UsePosition* splitting_pointer_; DISALLOW_COPY_AND_ASSIGN(LiveRange); }; class LiveRangeGroup final : public ZoneObject { public: explicit LiveRangeGroup(Zone* zone) : ranges_(zone) {} ZoneVector<LiveRange*>& ranges() { return ranges_; } const ZoneVector<LiveRange*>& ranges() const { return ranges_; } int assigned_register() const { return assigned_register_; } void set_assigned_register(int reg) { assigned_register_ = reg; } private: ZoneVector<LiveRange*> ranges_; int assigned_register_; DISALLOW_COPY_AND_ASSIGN(LiveRangeGroup); }; class V8_EXPORT_PRIVATE TopLevelLiveRange final : public LiveRange { public: explicit TopLevelLiveRange(int vreg, MachineRepresentation rep); int spill_start_index() const { return spill_start_index_; } bool IsFixed() const { return vreg_ < 0; } bool is_phi() const { return IsPhiField::decode(bits_); } void set_is_phi(bool value) { bits_ = IsPhiField::update(bits_, value); } bool is_non_loop_phi() const { return IsNonLoopPhiField::decode(bits_); } void set_is_non_loop_phi(bool value) { bits_ = IsNonLoopPhiField::update(bits_, value); } bool has_slot_use() const { return HasSlotUseField::decode(bits_); } void set_has_slot_use(bool value) { bits_ = HasSlotUseField::update(bits_, value); } // Add a new interval or a new use position to this live range. void EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone); void AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone); void AddUsePosition(UsePosition* pos); // Shorten the most recently added interval by setting a new start. void ShortenTo(LifetimePosition start); // Detaches between start and end, and attributes the resulting range to // result. // The current range is pointed to as "splintered_from". No parent/child // relationship is established between this and result. void Splinter(LifetimePosition start, LifetimePosition end, Zone* zone); // Assuming other was splintered from this range, embeds other and its // children as part of the children sequence of this range. void Merge(TopLevelLiveRange* other, Zone* zone); // Spill range management. void SetSpillRange(SpillRange* spill_range); enum class SpillType { kNoSpillType, kSpillOperand, kSpillRange }; void set_spill_type(SpillType value) { bits_ = SpillTypeField::update(bits_, value); } SpillType spill_type() const { return SpillTypeField::decode(bits_); } InstructionOperand* GetSpillOperand() const { DCHECK(spill_type() == SpillType::kSpillOperand); return spill_operand_; } SpillRange* GetAllocatedSpillRange() const { DCHECK(spill_type() != SpillType::kSpillOperand); return spill_range_; } SpillRange* GetSpillRange() const { DCHECK(spill_type() == SpillType::kSpillRange); return spill_range_; } bool HasNoSpillType() const { return spill_type() == SpillType::kNoSpillType; } bool HasSpillOperand() const { return spill_type() == SpillType::kSpillOperand; } bool HasSpillRange() const { return spill_type() == SpillType::kSpillRange; } AllocatedOperand GetSpillRangeOperand() const; void RecordSpillLocation(Zone* zone, int gap_index, InstructionOperand* operand); void SetSpillOperand(InstructionOperand* operand); void SetSpillStartIndex(int start) { spill_start_index_ = Min(start, spill_start_index_); } void CommitSpillMoves(InstructionSequence* sequence, const InstructionOperand& operand, bool might_be_duplicated); // If all the children of this range are spilled in deferred blocks, and if // for any non-spilled child with a use position requiring a slot, that range // is contained in a deferred block, mark the range as // IsSpilledOnlyInDeferredBlocks, so that we avoid spilling at definition, // and instead let the LiveRangeConnector perform the spills within the // deferred blocks. If so, we insert here spills for non-spilled ranges // with slot use positions. void TreatAsSpilledInDeferredBlock(Zone* zone, int total_block_count) { spill_start_index_ = -1; spilled_in_deferred_blocks_ = true; spill_move_insertion_locations_ = nullptr; list_of_blocks_requiring_spill_operands_ = new (zone) BitVector(total_block_count, zone); } void CommitSpillInDeferredBlocks(RegisterAllocationData* data, const InstructionOperand& spill_operand, BitVector* necessary_spill_points); TopLevelLiveRange* splintered_from() const { return splintered_from_; } bool IsSplinter() const { return splintered_from_ != nullptr; } bool MayRequireSpillRange() const { DCHECK(!IsSplinter()); return !HasSpillOperand() && spill_range_ == nullptr; } void UpdateSpillRangePostMerge(TopLevelLiveRange* merged); int vreg() const { return vreg_; } #if DEBUG int debug_virt_reg() const; #endif void Verify() const; void VerifyChildrenInOrder() const; int GetNextChildId() { return IsSplinter() ? splintered_from()->GetNextChildId() : ++last_child_id_; } int GetChildCount() const { return last_child_id_ + 1; } bool IsSpilledOnlyInDeferredBlocks() const { return spilled_in_deferred_blocks_; } struct SpillMoveInsertionList; SpillMoveInsertionList* GetSpillMoveInsertionLocations() const { DCHECK(!IsSpilledOnlyInDeferredBlocks()); return spill_move_insertion_locations_; } TopLevelLiveRange* splinter() const { return splinter_; } void SetSplinter(TopLevelLiveRange* splinter) { DCHECK_NULL(splinter_); DCHECK_NOT_NULL(splinter); splinter_ = splinter; splinter->relative_id_ = GetNextChildId(); splinter->set_spill_type(spill_type()); splinter->SetSplinteredFrom(this); } void MarkHasPreassignedSlot() { has_preassigned_slot_ = true; } bool has_preassigned_slot() const { return has_preassigned_slot_; } void AddBlockRequiringSpillOperand(RpoNumber block_id) { DCHECK(IsSpilledOnlyInDeferredBlocks()); GetListOfBlocksRequiringSpillOperands()->Add(block_id.ToInt()); } BitVector* GetListOfBlocksRequiringSpillOperands() const { DCHECK(IsSpilledOnlyInDeferredBlocks()); return list_of_blocks_requiring_spill_operands_; } private: void SetSplinteredFrom(TopLevelLiveRange* splinter_parent); typedef BitField<bool, 1, 1> HasSlotUseField; typedef BitField<bool, 2, 1> IsPhiField; typedef BitField<bool, 3, 1> IsNonLoopPhiField; typedef BitField<SpillType, 4, 2> SpillTypeField; int vreg_; int last_child_id_; TopLevelLiveRange* splintered_from_; union { // Correct value determined by spill_type() InstructionOperand* spill_operand_; SpillRange* spill_range_; }; union { SpillMoveInsertionList* spill_move_insertion_locations_; BitVector* list_of_blocks_requiring_spill_operands_; }; // TODO(mtrofin): generalize spilling after definition, currently specialized // just for spill in a single deferred block. bool spilled_in_deferred_blocks_; int spill_start_index_; UsePosition* last_pos_; TopLevelLiveRange* splinter_; bool has_preassigned_slot_; DISALLOW_COPY_AND_ASSIGN(TopLevelLiveRange); }; struct PrintableLiveRange { const RegisterConfiguration* register_configuration_; const LiveRange* range_; }; std::ostream& operator<<(std::ostream& os, const PrintableLiveRange& printable_range); class SpillRange final : public ZoneObject { public: static const int kUnassignedSlot = -1; SpillRange(TopLevelLiveRange* range, Zone* zone); UseInterval* interval() const { return use_interval_; } bool IsEmpty() const { return live_ranges_.empty(); } bool TryMerge(SpillRange* other); bool HasSlot() const { return assigned_slot_ != kUnassignedSlot; } void set_assigned_slot(int index) { DCHECK_EQ(kUnassignedSlot, assigned_slot_); assigned_slot_ = index; } int assigned_slot() { DCHECK_NE(kUnassignedSlot, assigned_slot_); return assigned_slot_; } const ZoneVector<TopLevelLiveRange*>& live_ranges() const { return live_ranges_; } ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; } // Spill slots can be 4, 8, or 16 bytes wide. int byte_width() const { return byte_width_; } void Print() const; private: LifetimePosition End() const { return end_position_; } bool IsIntersectingWith(SpillRange* other) const; // Merge intervals, making sure the use intervals are sorted void MergeDisjointIntervals(UseInterval* other); ZoneVector<TopLevelLiveRange*> live_ranges_; UseInterval* use_interval_; LifetimePosition end_position_; int assigned_slot_; int byte_width_; DISALLOW_COPY_AND_ASSIGN(SpillRange); }; class RegisterAllocationData final : public ZoneObject { public: class PhiMapValue : public ZoneObject { public: PhiMapValue(PhiInstruction* phi, const InstructionBlock* block, Zone* zone); const PhiInstruction* phi() const { return phi_; } const InstructionBlock* block() const { return block_; } // For hinting. int assigned_register() const { return assigned_register_; } void set_assigned_register(int register_code) { DCHECK_EQ(assigned_register_, kUnassignedRegister); assigned_register_ = register_code; } void UnsetAssignedRegister() { assigned_register_ = kUnassignedRegister; } void AddOperand(InstructionOperand* operand); void CommitAssignment(const InstructionOperand& operand); private: PhiInstruction* const phi_; const InstructionBlock* const block_; ZoneVector<InstructionOperand*> incoming_operands_; int assigned_register_; }; typedef ZoneMap<int, PhiMapValue*> PhiMap; struct DelayedReference { ReferenceMap* map; InstructionOperand* operand; }; typedef ZoneVector<DelayedReference> DelayedReferences; typedef ZoneVector<std::pair<TopLevelLiveRange*, int>> RangesWithPreassignedSlots; RegisterAllocationData(const RegisterConfiguration* config, Zone* allocation_zone, Frame* frame, InstructionSequence* code, const char* debug_name = nullptr); const ZoneVector<TopLevelLiveRange*>& live_ranges() const { return live_ranges_; } ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; } const ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() const { return fixed_live_ranges_; } ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() { return fixed_live_ranges_; } ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() { return fixed_float_live_ranges_; } const ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() const { return fixed_float_live_ranges_; } ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() { return fixed_double_live_ranges_; } const ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() const { return fixed_double_live_ranges_; } ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() { return fixed_simd128_live_ranges_; } const ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() const { return fixed_simd128_live_ranges_; } ZoneVector<BitVector*>& live_in_sets() { return live_in_sets_; } ZoneVector<BitVector*>& live_out_sets() { return live_out_sets_; } ZoneVector<SpillRange*>& spill_ranges() { return spill_ranges_; } DelayedReferences& delayed_references() { return delayed_references_; } InstructionSequence* code() const { return code_; } // This zone is for data structures only needed during register allocation // phases. Zone* allocation_zone() const { return allocation_zone_; } // This zone is for InstructionOperands and moves that live beyond register // allocation. Zone* code_zone() const { return code()->zone(); } Frame* frame() const { return frame_; } const char* debug_name() const { return debug_name_; } const RegisterConfiguration* config() const { return config_; } MachineRepresentation RepresentationFor(int virtual_register); TopLevelLiveRange* GetOrCreateLiveRangeFor(int index); // Creates a new live range. TopLevelLiveRange* NewLiveRange(int index, MachineRepresentation rep); TopLevelLiveRange* NextLiveRange(MachineRepresentation rep); SpillRange* AssignSpillRangeToLiveRange(TopLevelLiveRange* range); SpillRange* CreateSpillRangeForLiveRange(TopLevelLiveRange* range); MoveOperands* AddGapMove(int index, Instruction::GapPosition position, const InstructionOperand& from, const InstructionOperand& to); bool IsReference(TopLevelLiveRange* top_range) const { return code()->IsReference(top_range->vreg()); } bool ExistsUseWithoutDefinition(); bool RangesDefinedInDeferredStayInDeferred(); void MarkAllocated(MachineRepresentation rep, int index); PhiMapValue* InitializePhiMap(const InstructionBlock* block, PhiInstruction* phi); PhiMapValue* GetPhiMapValueFor(TopLevelLiveRange* top_range); PhiMapValue* GetPhiMapValueFor(int virtual_register); bool IsBlockBoundary(LifetimePosition pos) const; RangesWithPreassignedSlots& preassigned_slot_ranges() { return preassigned_slot_ranges_; } private: int GetNextLiveRangeId(); Zone* const allocation_zone_; Frame* const frame_; InstructionSequence* const code_; const char* const debug_name_; const RegisterConfiguration* const config_; PhiMap phi_map_; ZoneVector<BitVector*> live_in_sets_; ZoneVector<BitVector*> live_out_sets_; ZoneVector<TopLevelLiveRange*> live_ranges_; ZoneVector<TopLevelLiveRange*> fixed_live_ranges_; ZoneVector<TopLevelLiveRange*> fixed_float_live_ranges_; ZoneVector<TopLevelLiveRange*> fixed_double_live_ranges_; ZoneVector<TopLevelLiveRange*> fixed_simd128_live_ranges_; ZoneVector<SpillRange*> spill_ranges_; DelayedReferences delayed_references_; BitVector* assigned_registers_; BitVector* assigned_double_registers_; int virtual_register_count_; RangesWithPreassignedSlots preassigned_slot_ranges_; DISALLOW_COPY_AND_ASSIGN(RegisterAllocationData); }; class ConstraintBuilder final : public ZoneObject { public: explicit ConstraintBuilder(RegisterAllocationData* data); // Phase 1 : insert moves to account for fixed register operands. void MeetRegisterConstraints(); // Phase 2: deconstruct SSA by inserting moves in successors and the headers // of blocks containing phis. void ResolvePhis(); private: RegisterAllocationData* data() const { return data_; } InstructionSequence* code() const { return data()->code(); } Zone* allocation_zone() const { return data()->allocation_zone(); } InstructionOperand* AllocateFixed(UnallocatedOperand* operand, int pos, bool is_tagged); void MeetRegisterConstraints(const InstructionBlock* block); void MeetConstraintsBefore(int index); void MeetConstraintsAfter(int index); void MeetRegisterConstraintsForLastInstructionInBlock( const InstructionBlock* block); void ResolvePhis(const InstructionBlock* block); RegisterAllocationData* const data_; DISALLOW_COPY_AND_ASSIGN(ConstraintBuilder); }; class LiveRangeBuilder final : public ZoneObject { public: explicit LiveRangeBuilder(RegisterAllocationData* data, Zone* local_zone); // Phase 3: compute liveness of all virtual register. void BuildLiveRanges(); static BitVector* ComputeLiveOut(const InstructionBlock* block, RegisterAllocationData* data); private: RegisterAllocationData* data() const { return data_; } InstructionSequence* code() const { return data()->code(); } Zone* allocation_zone() const { return data()->allocation_zone(); } Zone* code_zone() const { return code()->zone(); } const RegisterConfiguration* config() const { return data()->config(); } ZoneVector<BitVector*>& live_in_sets() const { return data()->live_in_sets(); } // Verification. void Verify() const; bool IntervalStartsAtBlockBoundary(const UseInterval* interval) const; bool IntervalPredecessorsCoveredByRange(const UseInterval* interval, const TopLevelLiveRange* range) const; bool NextIntervalStartsInDifferentBlocks(const UseInterval* interval) const; // Liveness analysis support. void AddInitialIntervals(const InstructionBlock* block, BitVector* live_out); void ProcessInstructions(const InstructionBlock* block, BitVector* live); void ProcessPhis(const InstructionBlock* block, BitVector* live); void ProcessLoopHeader(const InstructionBlock* block, BitVector* live); static int FixedLiveRangeID(int index) { return -index - 1; } int FixedFPLiveRangeID(int index, MachineRepresentation rep); TopLevelLiveRange* FixedLiveRangeFor(int index); TopLevelLiveRange* FixedFPLiveRangeFor(int index, MachineRepresentation rep); void MapPhiHint(InstructionOperand* operand, UsePosition* use_pos); void ResolvePhiHint(InstructionOperand* operand, UsePosition* use_pos); UsePosition* NewUsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint, UsePositionHintType hint_type); UsePosition* NewUsePosition(LifetimePosition pos) { return NewUsePosition(pos, nullptr, nullptr, UsePositionHintType::kNone); } TopLevelLiveRange* LiveRangeFor(InstructionOperand* operand); // Helper methods for building intervals. UsePosition* Define(LifetimePosition position, InstructionOperand* operand, void* hint, UsePositionHintType hint_type); void Define(LifetimePosition position, InstructionOperand* operand) { Define(position, operand, nullptr, UsePositionHintType::kNone); } UsePosition* Use(LifetimePosition block_start, LifetimePosition position, InstructionOperand* operand, void* hint, UsePositionHintType hint_type); void Use(LifetimePosition block_start, LifetimePosition position, InstructionOperand* operand) { Use(block_start, position, operand, nullptr, UsePositionHintType::kNone); } RegisterAllocationData* const data_; ZoneMap<InstructionOperand*, UsePosition*> phi_hints_; DISALLOW_COPY_AND_ASSIGN(LiveRangeBuilder); }; class RegisterAllocator : public ZoneObject { public: RegisterAllocator(RegisterAllocationData* data, RegisterKind kind); protected: RegisterAllocationData* data() const { return data_; } InstructionSequence* code() const { return data()->code(); } RegisterKind mode() const { return mode_; } int num_registers() const { return num_registers_; } int num_allocatable_registers() const { return num_allocatable_registers_; } const int* allocatable_register_codes() const { return allocatable_register_codes_; } // Returns true iff. we must check float register aliasing. bool check_fp_aliasing() const { return check_fp_aliasing_; } // TODO(mtrofin): explain why splitting in gap START is always OK. LifetimePosition GetSplitPositionForInstruction(const LiveRange* range, int instruction_index); Zone* allocation_zone() const { return data()->allocation_zone(); } // Find the optimal split for ranges defined by a memory operand, e.g. // constants or function parameters passed on the stack. void SplitAndSpillRangesDefinedByMemoryOperand(); // Split the given range at the given position. // If range starts at or after the given position then the // original range is returned. // Otherwise returns the live range that starts at pos and contains // all uses from the original range that follow pos. Uses at pos will // still be owned by the original range after splitting. LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos); bool CanProcessRange(LiveRange* range) const { return range != nullptr && !range->IsEmpty() && range->kind() == mode(); } // Split the given range in a position from the interval [start, end]. LiveRange* SplitBetween(LiveRange* range, LifetimePosition start, LifetimePosition end); // Find a lifetime position in the interval [start, end] which // is optimal for splitting: it is either header of the outermost // loop covered by this interval or the latest possible position. LifetimePosition FindOptimalSplitPos(LifetimePosition start, LifetimePosition end); void Spill(LiveRange* range); // If we are trying to spill a range inside the loop try to // hoist spill position out to the point just before the loop. LifetimePosition FindOptimalSpillingPos(LiveRange* range, LifetimePosition pos); const ZoneVector<TopLevelLiveRange*>& GetFixedRegisters() const; const char* RegisterName(int allocation_index) const; private: RegisterAllocationData* const data_; const RegisterKind mode_; const int num_registers_; int num_allocatable_registers_; const int* allocatable_register_codes_; bool check_fp_aliasing_; private: bool no_combining_; DISALLOW_COPY_AND_ASSIGN(RegisterAllocator); }; class LinearScanAllocator final : public RegisterAllocator { public: LinearScanAllocator(RegisterAllocationData* data, RegisterKind kind, Zone* local_zone); // Phase 4: compute register assignments. void AllocateRegisters(); private: ZoneVector<LiveRange*>& unhandled_live_ranges() { return unhandled_live_ranges_; } ZoneVector<LiveRange*>& active_live_ranges() { return active_live_ranges_; } ZoneVector<LiveRange*>& inactive_live_ranges() { return inactive_live_ranges_; } void SetLiveRangeAssignedRegister(LiveRange* range, int reg); // Helper methods for updating the life range lists. void AddToActive(LiveRange* range); void AddToInactive(LiveRange* range); void AddToUnhandledSorted(LiveRange* range); void AddToUnhandledUnsorted(LiveRange* range); void SortUnhandled(); bool UnhandledIsSorted(); void ActiveToHandled(LiveRange* range); void ActiveToInactive(LiveRange* range); void InactiveToHandled(LiveRange* range); void InactiveToActive(LiveRange* range); // Helper methods for allocating registers. bool TryReuseSpillForPhi(TopLevelLiveRange* range); bool TryAllocateFreeReg(LiveRange* range, const Vector<LifetimePosition>& free_until_pos); bool TryAllocatePreferredReg(LiveRange* range, const Vector<LifetimePosition>& free_until_pos); void GetFPRegisterSet(MachineRepresentation rep, int* num_regs, int* num_codes, const int** codes) const; void FindFreeRegistersForRange(LiveRange* range, Vector<LifetimePosition> free_until_pos); void ProcessCurrentRange(LiveRange* current); void AllocateBlockedReg(LiveRange* range); bool TrySplitAndSpillSplinter(LiveRange* range); // Spill the given life range after position pos. void SpillAfter(LiveRange* range, LifetimePosition pos); // Spill the given life range after position [start] and up to position [end]. void SpillBetween(LiveRange* range, LifetimePosition start, LifetimePosition end); // Spill the given life range after position [start] and up to position [end]. // Range is guaranteed to be spilled at least until position [until]. void SpillBetweenUntil(LiveRange* range, LifetimePosition start, LifetimePosition until, LifetimePosition end); void SplitAndSpillIntersecting(LiveRange* range); ZoneVector<LiveRange*> unhandled_live_ranges_; ZoneVector<LiveRange*> active_live_ranges_; ZoneVector<LiveRange*> inactive_live_ranges_; #ifdef DEBUG LifetimePosition allocation_finger_; #endif DISALLOW_COPY_AND_ASSIGN(LinearScanAllocator); }; class SpillSlotLocator final : public ZoneObject { public: explicit SpillSlotLocator(RegisterAllocationData* data); void LocateSpillSlots(); private: RegisterAllocationData* data() const { return data_; } RegisterAllocationData* const data_; DISALLOW_COPY_AND_ASSIGN(SpillSlotLocator); }; class OperandAssigner final : public ZoneObject { public: explicit OperandAssigner(RegisterAllocationData* data); // Phase 5: assign spill splots. void AssignSpillSlots(); // Phase 6: commit assignment. void CommitAssignment(); private: RegisterAllocationData* data() const { return data_; } RegisterAllocationData* const data_; DISALLOW_COPY_AND_ASSIGN(OperandAssigner); }; class ReferenceMapPopulator final : public ZoneObject { public: explicit ReferenceMapPopulator(RegisterAllocationData* data); // Phase 7: compute values for pointer maps. void PopulateReferenceMaps(); private: RegisterAllocationData* data() const { return data_; } bool SafePointsAreInOrder() const; RegisterAllocationData* const data_; DISALLOW_COPY_AND_ASSIGN(ReferenceMapPopulator); }; class LiveRangeBoundArray; // Insert moves of the form // // Operand(child_(k+1)) = Operand(child_k) // // where child_k and child_(k+1) are consecutive children of a range (so // child_k->next() == child_(k+1)), and Operand(...) refers to the // assigned operand, be it a register or a slot. class LiveRangeConnector final : public ZoneObject { public: explicit LiveRangeConnector(RegisterAllocationData* data); // Phase 8: reconnect split ranges with moves, when the control flow // between the ranges is trivial (no branches). void ConnectRanges(Zone* local_zone); // Phase 9: insert moves to connect ranges across basic blocks, when the // control flow between them cannot be trivially resolved, such as joining // branches. void ResolveControlFlow(Zone* local_zone); private: RegisterAllocationData* data() const { return data_; } InstructionSequence* code() const { return data()->code(); } Zone* code_zone() const { return code()->zone(); } bool CanEagerlyResolveControlFlow(const InstructionBlock* block) const; int ResolveControlFlow(const InstructionBlock* block, const InstructionOperand& cur_op, const InstructionBlock* pred, const InstructionOperand& pred_op); void CommitSpillsInDeferredBlocks(TopLevelLiveRange* range, LiveRangeBoundArray* array, Zone* temp_zone); RegisterAllocationData* const data_; DISALLOW_COPY_AND_ASSIGN(LiveRangeConnector); }; } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_REGISTER_ALLOCATOR_H_