// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/move-optimizer.h" namespace v8 { namespace internal { namespace compiler { namespace { struct MoveKey { InstructionOperand source; InstructionOperand destination; }; struct MoveKeyCompare { bool operator()(const MoveKey& a, const MoveKey& b) const { if (a.source.EqualsCanonicalized(b.source)) { return a.destination.CompareCanonicalized(b.destination); } return a.source.CompareCanonicalized(b.source); } }; typedef ZoneMap<MoveKey, unsigned, MoveKeyCompare> MoveMap; class OperandSet { public: explicit OperandSet(ZoneVector<InstructionOperand>* buffer) : set_(buffer), fp_reps_(0) { buffer->clear(); } void InsertOp(const InstructionOperand& op) { set_->push_back(op); if (!kSimpleFPAliasing && op.IsFPRegister()) fp_reps_ |= RepBit(LocationOperand::cast(op).representation()); } bool Contains(const InstructionOperand& op) const { for (const InstructionOperand& elem : *set_) { if (elem.EqualsCanonicalized(op)) return true; } return false; } bool ContainsOpOrAlias(const InstructionOperand& op) const { if (Contains(op)) return true; if (!kSimpleFPAliasing && op.IsFPRegister()) { // Platforms where FP registers have complex aliasing need extra checks. const LocationOperand& loc = LocationOperand::cast(op); MachineRepresentation rep = loc.representation(); // If haven't encountered mixed rep FP registers, skip the extra checks. if (!HasMixedFPReps(fp_reps_ | RepBit(rep))) return false; // Check register against aliasing registers of other FP representations. MachineRepresentation other_rep1, other_rep2; switch (rep) { case MachineRepresentation::kFloat32: other_rep1 = MachineRepresentation::kFloat64; other_rep2 = MachineRepresentation::kSimd128; break; case MachineRepresentation::kFloat64: other_rep1 = MachineRepresentation::kFloat32; other_rep2 = MachineRepresentation::kSimd128; break; case MachineRepresentation::kSimd128: other_rep1 = MachineRepresentation::kFloat32; other_rep2 = MachineRepresentation::kFloat64; break; default: UNREACHABLE(); break; } const RegisterConfiguration* config = RegisterConfiguration::Turbofan(); int base = -1; int aliases = config->GetAliases(rep, loc.register_code(), other_rep1, &base); DCHECK(aliases > 0 || (aliases == 0 && base == -1)); while (aliases--) { if (Contains(AllocatedOperand(LocationOperand::REGISTER, other_rep1, base + aliases))) { return true; } } aliases = config->GetAliases(rep, loc.register_code(), other_rep2, &base); DCHECK(aliases > 0 || (aliases == 0 && base == -1)); while (aliases--) { if (Contains(AllocatedOperand(LocationOperand::REGISTER, other_rep2, base + aliases))) { return true; } } } return false; } private: static int RepBit(MachineRepresentation rep) { return 1 << static_cast<int>(rep); } static bool HasMixedFPReps(int reps) { return reps && !base::bits::IsPowerOfTwo32(reps); } ZoneVector<InstructionOperand>* set_; int fp_reps_; }; int FindFirstNonEmptySlot(const Instruction* instr) { int i = Instruction::FIRST_GAP_POSITION; for (; i <= Instruction::LAST_GAP_POSITION; i++) { ParallelMove* moves = instr->parallel_moves()[i]; if (moves == nullptr) continue; for (MoveOperands* move : *moves) { if (!move->IsRedundant()) return i; move->Eliminate(); } moves->clear(); // Clear this redundant move. } return i; } } // namespace MoveOptimizer::MoveOptimizer(Zone* local_zone, InstructionSequence* code) : local_zone_(local_zone), code_(code), local_vector_(local_zone), operand_buffer1(local_zone), operand_buffer2(local_zone) {} void MoveOptimizer::Run() { for (Instruction* instruction : code()->instructions()) { CompressGaps(instruction); } for (InstructionBlock* block : code()->instruction_blocks()) { CompressBlock(block); } for (InstructionBlock* block : code()->instruction_blocks()) { if (block->PredecessorCount() <= 1) continue; if (!block->IsDeferred()) { bool has_only_deferred = true; for (RpoNumber& pred_id : block->predecessors()) { if (!code()->InstructionBlockAt(pred_id)->IsDeferred()) { has_only_deferred = false; break; } } // This would pull down common moves. If the moves occur in deferred // blocks, and the closest common successor is not deferred, we lose the // optimization of just spilling/filling in deferred blocks, when the // current block is not deferred. if (has_only_deferred) continue; } OptimizeMerge(block); } for (Instruction* gap : code()->instructions()) { FinalizeMoves(gap); } } void MoveOptimizer::RemoveClobberedDestinations(Instruction* instruction) { if (instruction->IsCall()) return; ParallelMove* moves = instruction->parallel_moves()[0]; if (moves == nullptr) return; DCHECK(instruction->parallel_moves()[1] == nullptr || instruction->parallel_moves()[1]->empty()); OperandSet outputs(&operand_buffer1); OperandSet inputs(&operand_buffer2); // Outputs and temps are treated together as potentially clobbering a // destination operand. for (size_t i = 0; i < instruction->OutputCount(); ++i) { outputs.InsertOp(*instruction->OutputAt(i)); } for (size_t i = 0; i < instruction->TempCount(); ++i) { outputs.InsertOp(*instruction->TempAt(i)); } // Input operands block elisions. for (size_t i = 0; i < instruction->InputCount(); ++i) { inputs.InsertOp(*instruction->InputAt(i)); } // Elide moves made redundant by the instruction. for (MoveOperands* move : *moves) { if (outputs.ContainsOpOrAlias(move->destination()) && !inputs.ContainsOpOrAlias(move->destination())) { move->Eliminate(); } } // The ret instruction makes any assignment before it unnecessary, except for // the one for its input. if (instruction->IsRet() || instruction->IsTailCall()) { for (MoveOperands* move : *moves) { if (!inputs.ContainsOpOrAlias(move->destination())) { move->Eliminate(); } } } } void MoveOptimizer::MigrateMoves(Instruction* to, Instruction* from) { if (from->IsCall()) return; ParallelMove* from_moves = from->parallel_moves()[0]; if (from_moves == nullptr || from_moves->empty()) return; OperandSet dst_cant_be(&operand_buffer1); OperandSet src_cant_be(&operand_buffer2); // If an operand is an input to the instruction, we cannot move assignments // where it appears on the LHS. for (size_t i = 0; i < from->InputCount(); ++i) { dst_cant_be.InsertOp(*from->InputAt(i)); } // If an operand is output to the instruction, we cannot move assignments // where it appears on the RHS, because we would lose its value before the // instruction. // Same for temp operands. // The output can't appear on the LHS because we performed // RemoveClobberedDestinations for the "from" instruction. for (size_t i = 0; i < from->OutputCount(); ++i) { src_cant_be.InsertOp(*from->OutputAt(i)); } for (size_t i = 0; i < from->TempCount(); ++i) { src_cant_be.InsertOp(*from->TempAt(i)); } for (MoveOperands* move : *from_moves) { if (move->IsRedundant()) continue; // Assume dest has a value "V". If we have a "dest = y" move, then we can't // move "z = dest", because z would become y rather than "V". // We assume CompressMoves has happened before this, which means we don't // have more than one assignment to dest. src_cant_be.InsertOp(move->destination()); } ZoneSet<MoveKey, MoveKeyCompare> move_candidates(local_zone()); // We start with all the moves that don't have conflicting source or // destination operands are eligible for being moved down. for (MoveOperands* move : *from_moves) { if (move->IsRedundant()) continue; if (!dst_cant_be.ContainsOpOrAlias(move->destination())) { MoveKey key = {move->source(), move->destination()}; move_candidates.insert(key); } } if (move_candidates.empty()) return; // Stabilize the candidate set. bool changed = false; do { changed = false; for (auto iter = move_candidates.begin(); iter != move_candidates.end();) { auto current = iter; ++iter; InstructionOperand src = current->source; if (src_cant_be.ContainsOpOrAlias(src)) { src_cant_be.InsertOp(current->destination); move_candidates.erase(current); changed = true; } } } while (changed); ParallelMove to_move(local_zone()); for (MoveOperands* move : *from_moves) { if (move->IsRedundant()) continue; MoveKey key = {move->source(), move->destination()}; if (move_candidates.find(key) != move_candidates.end()) { to_move.AddMove(move->source(), move->destination(), code_zone()); move->Eliminate(); } } if (to_move.empty()) return; ParallelMove* dest = to->GetOrCreateParallelMove(Instruction::GapPosition::START, code_zone()); CompressMoves(&to_move, dest); DCHECK(dest->empty()); for (MoveOperands* m : to_move) { dest->push_back(m); } } void MoveOptimizer::CompressMoves(ParallelMove* left, MoveOpVector* right) { if (right == nullptr) return; MoveOpVector& eliminated = local_vector(); DCHECK(eliminated.empty()); if (!left->empty()) { // Modify the right moves in place and collect moves that will be killed by // merging the two gaps. for (MoveOperands* move : *right) { if (move->IsRedundant()) continue; left->PrepareInsertAfter(move, &eliminated); } // Eliminate dead moves. for (MoveOperands* to_eliminate : eliminated) { to_eliminate->Eliminate(); } eliminated.clear(); } // Add all possibly modified moves from right side. for (MoveOperands* move : *right) { if (move->IsRedundant()) continue; left->push_back(move); } // Nuke right. right->clear(); DCHECK(eliminated.empty()); } void MoveOptimizer::CompressGaps(Instruction* instruction) { int i = FindFirstNonEmptySlot(instruction); bool has_moves = i <= Instruction::LAST_GAP_POSITION; USE(has_moves); if (i == Instruction::LAST_GAP_POSITION) { std::swap(instruction->parallel_moves()[Instruction::FIRST_GAP_POSITION], instruction->parallel_moves()[Instruction::LAST_GAP_POSITION]); } else if (i == Instruction::FIRST_GAP_POSITION) { CompressMoves( instruction->parallel_moves()[Instruction::FIRST_GAP_POSITION], instruction->parallel_moves()[Instruction::LAST_GAP_POSITION]); } // We either have no moves, or, after swapping or compressing, we have // all the moves in the first gap position, and none in the second/end gap // position. ParallelMove* first = instruction->parallel_moves()[Instruction::FIRST_GAP_POSITION]; ParallelMove* last = instruction->parallel_moves()[Instruction::LAST_GAP_POSITION]; USE(first); USE(last); DCHECK(!has_moves || (first != nullptr && (last == nullptr || last->empty()))); } void MoveOptimizer::CompressBlock(InstructionBlock* block) { int first_instr_index = block->first_instruction_index(); int last_instr_index = block->last_instruction_index(); // Start by removing gap assignments where the output of the subsequent // instruction appears on LHS, as long as they are not needed by its input. Instruction* prev_instr = code()->instructions()[first_instr_index]; RemoveClobberedDestinations(prev_instr); for (int index = first_instr_index + 1; index <= last_instr_index; ++index) { Instruction* instr = code()->instructions()[index]; // Migrate to the gap of prev_instr eligible moves from instr. MigrateMoves(instr, prev_instr); // Remove gap assignments clobbered by instr's output. RemoveClobberedDestinations(instr); prev_instr = instr; } } const Instruction* MoveOptimizer::LastInstruction( const InstructionBlock* block) const { return code()->instructions()[block->last_instruction_index()]; } void MoveOptimizer::OptimizeMerge(InstructionBlock* block) { DCHECK(block->PredecessorCount() > 1); // Ensure that the last instruction in all incoming blocks don't contain // things that would prevent moving gap moves across them. for (RpoNumber& pred_index : block->predecessors()) { const InstructionBlock* pred = code()->InstructionBlockAt(pred_index); // If the predecessor has more than one successor, we shouldn't attempt to // move down to this block (one of the successors) any of the gap moves, // because their effect may be necessary to the other successors. if (pred->SuccessorCount() > 1) return; const Instruction* last_instr = code()->instructions()[pred->last_instruction_index()]; if (last_instr->IsCall()) return; if (last_instr->TempCount() != 0) return; if (last_instr->OutputCount() != 0) return; for (size_t i = 0; i < last_instr->InputCount(); ++i) { const InstructionOperand* op = last_instr->InputAt(i); if (!op->IsConstant() && !op->IsImmediate()) return; } } // TODO(dcarney): pass a ZoneStats down for this? MoveMap move_map(local_zone()); size_t correct_counts = 0; // Accumulate set of shared moves. for (RpoNumber& pred_index : block->predecessors()) { const InstructionBlock* pred = code()->InstructionBlockAt(pred_index); const Instruction* instr = LastInstruction(pred); if (instr->parallel_moves()[0] == nullptr || instr->parallel_moves()[0]->empty()) { return; } for (const MoveOperands* move : *instr->parallel_moves()[0]) { if (move->IsRedundant()) continue; InstructionOperand src = move->source(); InstructionOperand dst = move->destination(); MoveKey key = {src, dst}; auto res = move_map.insert(std::make_pair(key, 1)); if (!res.second) { res.first->second++; if (res.first->second == block->PredecessorCount()) { correct_counts++; } } } } if (move_map.empty() || correct_counts == 0) return; // Find insertion point. Instruction* instr = code()->instructions()[block->first_instruction_index()]; if (correct_counts != move_map.size()) { // Moves that are unique to each predecessor won't be pushed to the common // successor. OperandSet conflicting_srcs(&operand_buffer1); for (auto iter = move_map.begin(), end = move_map.end(); iter != end;) { auto current = iter; ++iter; if (current->second != block->PredecessorCount()) { InstructionOperand dest = current->first.destination; // Not all the moves in all the gaps are the same. Maybe some are. If // there are such moves, we could move them, but the destination of the // moves staying behind can't appear as a source of a common move, // because the move staying behind will clobber this destination. conflicting_srcs.InsertOp(dest); move_map.erase(current); } } bool changed = false; do { // If a common move can't be pushed to the common successor, then its // destination also can't appear as source to any move being pushed. changed = false; for (auto iter = move_map.begin(), end = move_map.end(); iter != end;) { auto current = iter; ++iter; DCHECK_EQ(block->PredecessorCount(), current->second); if (conflicting_srcs.ContainsOpOrAlias(current->first.source)) { conflicting_srcs.InsertOp(current->first.destination); move_map.erase(current); changed = true; } } } while (changed); } if (move_map.empty()) return; DCHECK_NOT_NULL(instr); bool gap_initialized = true; if (instr->parallel_moves()[0] != nullptr && !instr->parallel_moves()[0]->empty()) { // Will compress after insertion. gap_initialized = false; std::swap(instr->parallel_moves()[0], instr->parallel_moves()[1]); } ParallelMove* moves = instr->GetOrCreateParallelMove( static_cast<Instruction::GapPosition>(0), code_zone()); // Delete relevant entries in predecessors and move everything to block. bool first_iteration = true; for (RpoNumber& pred_index : block->predecessors()) { const InstructionBlock* pred = code()->InstructionBlockAt(pred_index); for (MoveOperands* move : *LastInstruction(pred)->parallel_moves()[0]) { if (move->IsRedundant()) continue; MoveKey key = {move->source(), move->destination()}; auto it = move_map.find(key); if (it != move_map.end()) { if (first_iteration) { moves->AddMove(move->source(), move->destination()); } move->Eliminate(); } } first_iteration = false; } // Compress. if (!gap_initialized) { CompressMoves(instr->parallel_moves()[0], instr->parallel_moves()[1]); } CompressBlock(block); } namespace { bool IsSlot(const InstructionOperand& op) { return op.IsStackSlot() || op.IsFPStackSlot(); } bool LoadCompare(const MoveOperands* a, const MoveOperands* b) { if (!a->source().EqualsCanonicalized(b->source())) { return a->source().CompareCanonicalized(b->source()); } if (IsSlot(a->destination()) && !IsSlot(b->destination())) return false; if (!IsSlot(a->destination()) && IsSlot(b->destination())) return true; return a->destination().CompareCanonicalized(b->destination()); } } // namespace // Split multiple loads of the same constant or stack slot off into the second // slot and keep remaining moves in the first slot. void MoveOptimizer::FinalizeMoves(Instruction* instr) { MoveOpVector& loads = local_vector(); DCHECK(loads.empty()); ParallelMove* parallel_moves = instr->parallel_moves()[0]; if (parallel_moves == nullptr) return; // Find all the loads. for (MoveOperands* move : *parallel_moves) { if (move->IsRedundant()) continue; if (move->source().IsConstant() || IsSlot(move->source())) { loads.push_back(move); } } if (loads.empty()) return; // Group the loads by source, moving the preferred destination to the // beginning of the group. std::sort(loads.begin(), loads.end(), LoadCompare); MoveOperands* group_begin = nullptr; for (MoveOperands* load : loads) { // New group. if (group_begin == nullptr || !load->source().EqualsCanonicalized(group_begin->source())) { group_begin = load; continue; } // Nothing to be gained from splitting here. if (IsSlot(group_begin->destination())) continue; // Insert new move into slot 1. ParallelMove* slot_1 = instr->GetOrCreateParallelMove( static_cast<Instruction::GapPosition>(1), code_zone()); slot_1->AddMove(group_begin->destination(), load->destination()); load->Eliminate(); } loads.clear(); } } // namespace compiler } // namespace internal } // namespace v8