// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/code-stub-assembler.h" #include "src/code-factory.h" #include "src/frames-inl.h" #include "src/frames.h" namespace v8 { namespace internal { using compiler::Node; CodeStubAssembler::CodeStubAssembler(compiler::CodeAssemblerState* state) : compiler::CodeAssembler(state) { if (DEBUG_BOOL && FLAG_csa_trap_on_node != nullptr) { HandleBreakOnNode(); } } void CodeStubAssembler::HandleBreakOnNode() { // FLAG_csa_trap_on_node should be in a form "STUB,NODE" where STUB is a // string specifying the name of a stub and NODE is number specifying node id. const char* name = state()->name(); size_t name_length = strlen(name); if (strncmp(FLAG_csa_trap_on_node, name, name_length) != 0) { // Different name. return; } size_t option_length = strlen(FLAG_csa_trap_on_node); if (option_length < name_length + 2 || FLAG_csa_trap_on_node[name_length] != ',') { // Option is too short. return; } const char* start = &FLAG_csa_trap_on_node[name_length + 1]; char* end; int node_id = static_cast<int>(strtol(start, &end, 10)); if (start == end) { // Bad node id. return; } BreakOnNode(node_id); } void CodeStubAssembler::Assert(const NodeGenerator& codition_body, const char* message, const char* file, int line) { #if defined(DEBUG) if (FLAG_debug_code) { Label ok(this); Label not_ok(this, Label::kDeferred); if (message != nullptr && FLAG_code_comments) { Comment("[ Assert: %s", message); } else { Comment("[ Assert"); } Node* condition = codition_body(); DCHECK_NOT_NULL(condition); Branch(condition, &ok, ¬_ok); Bind(¬_ok); if (message != nullptr) { char chars[1024]; Vector<char> buffer(chars); if (file != nullptr) { SNPrintF(buffer, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line); } else { SNPrintF(buffer, "CSA_ASSERT failed: %s\n", message); } CallRuntime( Runtime::kGlobalPrint, SmiConstant(Smi::kZero), HeapConstant(factory()->NewStringFromAsciiChecked(&(buffer[0])))); } DebugBreak(); Goto(&ok); Bind(&ok); Comment("] Assert"); } #endif } Node* CodeStubAssembler::Select(Node* condition, const NodeGenerator& true_body, const NodeGenerator& false_body, MachineRepresentation rep) { Variable value(this, rep); Label vtrue(this), vfalse(this), end(this); Branch(condition, &vtrue, &vfalse); Bind(&vtrue); { value.Bind(true_body()); Goto(&end); } Bind(&vfalse); { value.Bind(false_body()); Goto(&end); } Bind(&end); return value.value(); } Node* CodeStubAssembler::SelectConstant(Node* condition, Node* true_value, Node* false_value, MachineRepresentation rep) { return Select(condition, [=] { return true_value; }, [=] { return false_value; }, rep); } Node* CodeStubAssembler::SelectInt32Constant(Node* condition, int true_value, int false_value) { return SelectConstant(condition, Int32Constant(true_value), Int32Constant(false_value), MachineRepresentation::kWord32); } Node* CodeStubAssembler::SelectIntPtrConstant(Node* condition, int true_value, int false_value) { return SelectConstant(condition, IntPtrConstant(true_value), IntPtrConstant(false_value), MachineType::PointerRepresentation()); } Node* CodeStubAssembler::SelectBooleanConstant(Node* condition) { return SelectConstant(condition, TrueConstant(), FalseConstant(), MachineRepresentation::kTagged); } Node* CodeStubAssembler::SelectTaggedConstant(Node* condition, Node* true_value, Node* false_value) { return SelectConstant(condition, true_value, false_value, MachineRepresentation::kTagged); } Node* CodeStubAssembler::SelectSmiConstant(Node* condition, Smi* true_value, Smi* false_value) { return SelectConstant(condition, SmiConstant(true_value), SmiConstant(false_value), MachineRepresentation::kTaggedSigned); } Node* CodeStubAssembler::NoContextConstant() { return NumberConstant(0); } #define HEAP_CONSTANT_ACCESSOR(rootName, name) \ Node* CodeStubAssembler::name##Constant() { \ return LoadRoot(Heap::k##rootName##RootIndex); \ } HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR); #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_TEST(rootName, name) \ Node* CodeStubAssembler::Is##name(Node* value) { \ return WordEqual(value, name##Constant()); \ } HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST); #undef HEAP_CONSTANT_TEST Node* CodeStubAssembler::HashSeed() { return LoadAndUntagToWord32Root(Heap::kHashSeedRootIndex); } Node* CodeStubAssembler::StaleRegisterConstant() { return LoadRoot(Heap::kStaleRegisterRootIndex); } Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) { if (mode == SMI_PARAMETERS) { return SmiConstant(Smi::FromInt(value)); } else { DCHECK_EQ(INTPTR_PARAMETERS, mode); return IntPtrConstant(value); } } bool CodeStubAssembler::IsIntPtrOrSmiConstantZero(Node* test) { int32_t constant_test; Smi* smi_test; if ((ToInt32Constant(test, constant_test) && constant_test == 0) || (ToSmiConstant(test, smi_test) && smi_test->value() == 0)) { return true; } return false; } Node* CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32(Node* value) { Comment("IntPtrRoundUpToPowerOfTwo32"); CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u))); value = IntPtrSub(value, IntPtrConstant(1)); for (int i = 1; i <= 16; i *= 2) { value = WordOr(value, WordShr(value, IntPtrConstant(i))); } return IntPtrAdd(value, IntPtrConstant(1)); } Node* CodeStubAssembler::WordIsPowerOfTwo(Node* value) { // value && !(value & (value - 1)) return WordEqual( Select( WordEqual(value, IntPtrConstant(0)), [=] { return IntPtrConstant(1); }, [=] { return WordAnd(value, IntPtrSub(value, IntPtrConstant(1))); }, MachineType::PointerRepresentation()), IntPtrConstant(0)); } Node* CodeStubAssembler::Float64Round(Node* x) { Node* one = Float64Constant(1.0); Node* one_half = Float64Constant(0.5); Label return_x(this); // Round up {x} towards Infinity. Variable var_x(this, MachineRepresentation::kFloat64, Float64Ceil(x)); GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Ceil(Node* x) { if (IsFloat64RoundUpSupported()) { return Float64RoundUp(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64, x); Label return_x(this), return_minus_x(this); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoIfNot(Float64LessThan(var_x.value(), x), &return_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoIfNot(Float64LessThan(x, zero), &return_x); // Round negated {x} towards Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64Floor(Node* x) { if (IsFloat64RoundDownSupported()) { return Float64RoundDown(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64, x); Label return_x(this), return_minus_x(this); // Check if {x} is greater than zero. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { // Just return {x} unless it's in the range ]-2^52,0[ GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoIfNot(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return the result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoIfNot(Float64LessThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Add(var_x.value(), one)); Goto(&return_minus_x); } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::Float64RoundToEven(Node* x) { if (IsFloat64RoundTiesEvenSupported()) { return Float64RoundTiesEven(x); } // See ES#sec-touint8clamp for details. Node* f = Float64Floor(x); Node* f_and_half = Float64Add(f, Float64Constant(0.5)); Variable var_result(this, MachineRepresentation::kFloat64); Label return_f(this), return_f_plus_one(this), done(this); GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one); GotoIf(Float64LessThan(x, f_and_half), &return_f); { Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0)); Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f, &return_f_plus_one); } Bind(&return_f); var_result.Bind(f); Goto(&done); Bind(&return_f_plus_one); var_result.Bind(Float64Add(f, Float64Constant(1.0))); Goto(&done); Bind(&done); return var_result.value(); } Node* CodeStubAssembler::Float64Trunc(Node* x) { if (IsFloat64RoundTruncateSupported()) { return Float64RoundTruncate(x); } Node* one = Float64Constant(1.0); Node* zero = Float64Constant(0.0); Node* two_52 = Float64Constant(4503599627370496.0E0); Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); Variable var_x(this, MachineRepresentation::kFloat64, x); Label return_x(this), return_minus_x(this); // Check if {x} is greater than 0. Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, &if_xnotgreaterthanzero); Bind(&if_xgreaterthanzero); { if (IsFloat64RoundDownSupported()) { var_x.Bind(Float64RoundDown(x)); } else { // Just return {x} unless it's in the range ]0,2^52[. GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); // Round positive {x} towards -Infinity. var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x); var_x.Bind(Float64Sub(var_x.value(), one)); } Goto(&return_x); } Bind(&if_xnotgreaterthanzero); { if (IsFloat64RoundUpSupported()) { var_x.Bind(Float64RoundUp(x)); Goto(&return_x); } else { // Just return {x} unless its in the range ]-2^52,0[. GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); GotoIfNot(Float64LessThan(x, zero), &return_x); // Round negated {x} towards -Infinity and return result negated. Node* minus_x = Float64Neg(x); var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); var_x.Bind(Float64Sub(var_x.value(), one)); Goto(&return_minus_x); } } Bind(&return_minus_x); var_x.Bind(Float64Neg(var_x.value())); Goto(&return_x); Bind(&return_x); return var_x.value(); } Node* CodeStubAssembler::SmiShiftBitsConstant() { return IntPtrConstant(kSmiShiftSize + kSmiTagSize); } Node* CodeStubAssembler::SmiFromWord32(Node* value) { value = ChangeInt32ToIntPtr(value); return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant())); } Node* CodeStubAssembler::SmiTag(Node* value) { int32_t constant_value; if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) { return SmiConstant(Smi::FromInt(constant_value)); } return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant())); } Node* CodeStubAssembler::SmiUntag(Node* value) { return WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant()); } Node* CodeStubAssembler::SmiToWord32(Node* value) { Node* result = SmiUntag(value); return TruncateWordToWord32(result); } Node* CodeStubAssembler::SmiToFloat64(Node* value) { return ChangeInt32ToFloat64(SmiToWord32(value)); } Node* CodeStubAssembler::SmiMax(Node* a, Node* b) { return SelectTaggedConstant(SmiLessThan(a, b), b, a); } Node* CodeStubAssembler::SmiMin(Node* a, Node* b) { return SelectTaggedConstant(SmiLessThan(a, b), a, b); } Node* CodeStubAssembler::SmiMod(Node* a, Node* b) { Variable var_result(this, MachineRepresentation::kTagged); Label return_result(this, &var_result), return_minuszero(this, Label::kDeferred), return_nan(this, Label::kDeferred); // Untag {a} and {b}. a = SmiToWord32(a); b = SmiToWord32(b); // Return NaN if {b} is zero. GotoIf(Word32Equal(b, Int32Constant(0)), &return_nan); // Check if {a} is non-negative. Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred); Branch(Int32LessThanOrEqual(Int32Constant(0), a), &if_aisnotnegative, &if_aisnegative); Bind(&if_aisnotnegative); { // Fast case, don't need to check any other edge cases. Node* r = Int32Mod(a, b); var_result.Bind(SmiFromWord32(r)); Goto(&return_result); } Bind(&if_aisnegative); { if (SmiValuesAre32Bits()) { // Check if {a} is kMinInt and {b} is -1 (only relevant if the // kMinInt is actually representable as a Smi). Label join(this); GotoIfNot(Word32Equal(a, Int32Constant(kMinInt)), &join); GotoIf(Word32Equal(b, Int32Constant(-1)), &return_minuszero); Goto(&join); Bind(&join); } // Perform the integer modulus operation. Node* r = Int32Mod(a, b); // Check if {r} is zero, and if so return -0, because we have to // take the sign of the left hand side {a}, which is negative. GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero); // The remainder {r} can be outside the valid Smi range on 32bit // architectures, so we cannot just say SmiFromWord32(r) here. var_result.Bind(ChangeInt32ToTagged(r)); Goto(&return_result); } Bind(&return_minuszero); var_result.Bind(MinusZeroConstant()); Goto(&return_result); Bind(&return_nan); var_result.Bind(NanConstant()); Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::SmiMul(Node* a, Node* b) { Variable var_result(this, MachineRepresentation::kTagged); Variable var_lhs_float64(this, MachineRepresentation::kFloat64), var_rhs_float64(this, MachineRepresentation::kFloat64); Label return_result(this, &var_result); // Both {a} and {b} are Smis. Convert them to integers and multiply. Node* lhs32 = SmiToWord32(a); Node* rhs32 = SmiToWord32(b); Node* pair = Int32MulWithOverflow(lhs32, rhs32); Node* overflow = Projection(1, pair); // Check if the multiplication overflowed. Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_notoverflow); { // If the answer is zero, we may need to return -0.0, depending on the // input. Label answer_zero(this), answer_not_zero(this); Node* answer = Projection(0, pair); Node* zero = Int32Constant(0); Branch(Word32Equal(answer, zero), &answer_zero, &answer_not_zero); Bind(&answer_not_zero); { var_result.Bind(ChangeInt32ToTagged(answer)); Goto(&return_result); } Bind(&answer_zero); { Node* or_result = Word32Or(lhs32, rhs32); Label if_should_be_negative_zero(this), if_should_be_zero(this); Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero, &if_should_be_zero); Bind(&if_should_be_negative_zero); { var_result.Bind(MinusZeroConstant()); Goto(&return_result); } Bind(&if_should_be_zero); { var_result.Bind(SmiConstant(0)); Goto(&return_result); } } } Bind(&if_overflow); { var_lhs_float64.Bind(SmiToFloat64(a)); var_rhs_float64.Bind(SmiToFloat64(b)); Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::TruncateWordToWord32(Node* value) { if (Is64()) { return TruncateInt64ToInt32(value); } return value; } Node* CodeStubAssembler::TaggedIsSmi(Node* a) { return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } Node* CodeStubAssembler::TaggedIsNotSmi(Node* a) { return WordNotEqual( WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), IntPtrConstant(0)); } Node* CodeStubAssembler::TaggedIsPositiveSmi(Node* a) { return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask | kSmiSignMask)), IntPtrConstant(0)); } Node* CodeStubAssembler::WordIsWordAligned(Node* word) { return WordEqual(IntPtrConstant(0), WordAnd(word, IntPtrConstant((1 << kPointerSizeLog2) - 1))); } void CodeStubAssembler::BranchIfPrototypesHaveNoElements( Node* receiver_map, Label* definitely_no_elements, Label* possibly_elements) { Variable var_map(this, MachineRepresentation::kTagged, receiver_map); Label loop_body(this, &var_map); Node* empty_elements = LoadRoot(Heap::kEmptyFixedArrayRootIndex); Goto(&loop_body); Bind(&loop_body); { Node* map = var_map.value(); Node* prototype = LoadMapPrototype(map); GotoIf(WordEqual(prototype, NullConstant()), definitely_no_elements); Node* prototype_map = LoadMap(prototype); // Pessimistically assume elements if a Proxy, Special API Object, // or JSValue wrapper is found on the prototype chain. After this // instance type check, it's not necessary to check for interceptors or // access checks. GotoIf(Int32LessThanOrEqual(LoadMapInstanceType(prototype_map), Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)), possibly_elements); GotoIf(WordNotEqual(LoadElements(prototype), empty_elements), possibly_elements); var_map.Bind(prototype_map); Goto(&loop_body); } } void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false) { GotoIf(TaggedIsSmi(object), if_false); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Branch(Int32GreaterThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_JS_RECEIVER_TYPE)), if_true, if_false); } void CodeStubAssembler::BranchIfJSObject(Node* object, Label* if_true, Label* if_false) { GotoIf(TaggedIsSmi(object), if_false); STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); Branch(Int32GreaterThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_JS_OBJECT_TYPE)), if_true, if_false); } void CodeStubAssembler::BranchIfFastJSArray( Node* object, Node* context, CodeStubAssembler::FastJSArrayAccessMode mode, Label* if_true, Label* if_false) { // Bailout if receiver is a Smi. GotoIf(TaggedIsSmi(object), if_false); Node* map = LoadMap(object); // Bailout if instance type is not JS_ARRAY_TYPE. GotoIf(Word32NotEqual(LoadMapInstanceType(map), Int32Constant(JS_ARRAY_TYPE)), if_false); Node* elements_kind = LoadMapElementsKind(map); // Bailout if receiver has slow elements. GotoIfNot(IsFastElementsKind(elements_kind), if_false); // Check prototype chain if receiver does not have packed elements. if (mode == FastJSArrayAccessMode::INBOUNDS_READ) { GotoIfNot(IsHoleyFastElementsKind(elements_kind), if_true); } BranchIfPrototypesHaveNoElements(map, if_true, if_false); } Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags, Node* top_address, Node* limit_address) { Node* top = Load(MachineType::Pointer(), top_address); Node* limit = Load(MachineType::Pointer(), limit_address); // If there's not enough space, call the runtime. Variable result(this, MachineRepresentation::kTagged); Label runtime_call(this, Label::kDeferred), no_runtime_call(this); Label merge_runtime(this, &result); if (flags & kAllowLargeObjectAllocation) { Label next(this); GotoIf(IsRegularHeapObjectSize(size_in_bytes), &next); Node* runtime_flags = SmiConstant( Smi::FromInt(AllocateDoubleAlignFlag::encode(false) | AllocateTargetSpace::encode(AllocationSpace::LO_SPACE))); Node* const runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), SmiTag(size_in_bytes), runtime_flags); result.Bind(runtime_result); Goto(&merge_runtime); Bind(&next); } Node* new_top = IntPtrAdd(top, size_in_bytes); Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call, &no_runtime_call); Bind(&runtime_call); Node* runtime_result; if (flags & kPretenured) { Node* runtime_flags = SmiConstant( Smi::FromInt(AllocateDoubleAlignFlag::encode(false) | AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE))); runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), SmiTag(size_in_bytes), runtime_flags); } else { runtime_result = CallRuntime(Runtime::kAllocateInNewSpace, NoContextConstant(), SmiTag(size_in_bytes)); } result.Bind(runtime_result); Goto(&merge_runtime); // When there is enough space, return `top' and bump it up. Bind(&no_runtime_call); Node* no_runtime_result = top; StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, new_top); no_runtime_result = BitcastWordToTagged( IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag))); result.Bind(no_runtime_result); Goto(&merge_runtime); Bind(&merge_runtime); return result.value(); } Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes, AllocationFlags flags, Node* top_address, Node* limit_address) { Node* top = Load(MachineType::Pointer(), top_address); Node* limit = Load(MachineType::Pointer(), limit_address); Variable adjusted_size(this, MachineType::PointerRepresentation(), size_in_bytes); if (flags & kDoubleAlignment) { Label aligned(this), not_aligned(this), merge(this, &adjusted_size); Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), ¬_aligned, &aligned); Bind(¬_aligned); Node* not_aligned_size = IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize)); adjusted_size.Bind(not_aligned_size); Goto(&merge); Bind(&aligned); Goto(&merge); Bind(&merge); } Variable address( this, MachineRepresentation::kTagged, AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit)); Label needs_filler(this), doesnt_need_filler(this), merge_address(this, &address); Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler, &needs_filler); Bind(&needs_filler); // Store a filler and increase the address by kPointerSize. StoreNoWriteBarrier(MachineType::PointerRepresentation(), top, LoadRoot(Heap::kOnePointerFillerMapRootIndex)); address.Bind(BitcastWordToTagged( IntPtrAdd(address.value(), IntPtrConstant(kPointerSize)))); Goto(&merge_address); Bind(&doesnt_need_filler); Goto(&merge_address); Bind(&merge_address); // Update the top. StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, IntPtrAdd(top, adjusted_size.value())); return address.value(); } Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) { Comment("Allocate"); bool const new_space = !(flags & kPretenured); Node* top_address = ExternalConstant( new_space ? ExternalReference::new_space_allocation_top_address(isolate()) : ExternalReference::old_space_allocation_top_address(isolate())); DCHECK_EQ(kPointerSize, ExternalReference::new_space_allocation_limit_address(isolate()) .address() - ExternalReference::new_space_allocation_top_address(isolate()) .address()); DCHECK_EQ(kPointerSize, ExternalReference::old_space_allocation_limit_address(isolate()) .address() - ExternalReference::old_space_allocation_top_address(isolate()) .address()); Node* limit_address = IntPtrAdd(top_address, IntPtrConstant(kPointerSize)); #ifdef V8_HOST_ARCH_32_BIT if (flags & kDoubleAlignment) { return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address); } #endif return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address); } Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) { return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); } Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) { return BitcastWordToTagged(IntPtrAdd(BitcastTaggedToWord(previous), offset)); } Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) { return InnerAllocate(previous, IntPtrConstant(offset)); } Node* CodeStubAssembler::IsRegularHeapObjectSize(Node* size) { return UintPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)); } void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false) { Label if_valueissmi(this), if_valueisnotsmi(this), if_valueisheapnumber(this, Label::kDeferred); // Rule out false {value}. GotoIf(WordEqual(value, BooleanConstant(false)), if_false); // Check if {value} is a Smi or a HeapObject. Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // The {value} is a Smi, only need to check against zero. BranchIfSmiEqual(value, SmiConstant(0), if_false, if_true); } Bind(&if_valueisnotsmi); { // Check if {value} is the empty string. GotoIf(IsEmptyString(value), if_false); // The {value} is a HeapObject, load its map. Node* value_map = LoadMap(value); // Only null, undefined and document.all have the undetectable bit set, // so we can return false immediately when that bit is set. Node* value_map_bitfield = LoadMapBitField(value_map); Node* value_map_undetectable = Word32And(value_map_bitfield, Int32Constant(1 << Map::kIsUndetectable)); // Check if the {value} is undetectable. GotoIfNot(Word32Equal(value_map_undetectable, Int32Constant(0)), if_false); // We still need to handle numbers specially, but all other {value}s // that make it here yield true. Branch(IsHeapNumberMap(value_map), &if_valueisheapnumber, if_true); Bind(&if_valueisheapnumber); { // Load the floating point value of {value}. Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset, MachineType::Float64()); // Check if the floating point {value} is neither 0.0, -0.0 nor NaN. Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)), if_true, if_false); } } } Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) { Node* frame_pointer = LoadFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType rep) { Node* frame_pointer = LoadParentFramePointer(); return Load(rep, frame_pointer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset, MachineType rep) { return Load(rep, buffer, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadObjectField(Node* object, int offset, MachineType rep) { return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag)); } Node* CodeStubAssembler::LoadObjectField(Node* object, Node* offset, MachineType rep) { return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))); } Node* CodeStubAssembler::LoadAndUntagObjectField(Node* object, int offset) { if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return ChangeInt32ToInt64( LoadObjectField(object, offset, MachineType::Int32())); } else { return SmiToWord(LoadObjectField(object, offset, MachineType::AnyTagged())); } } Node* CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object, int offset) { if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN offset += kPointerSize / 2; #endif return LoadObjectField(object, offset, MachineType::Int32()); } else { return SmiToWord32( LoadObjectField(object, offset, MachineType::AnyTagged())); } } Node* CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) { if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN index += kPointerSize / 2; #endif return ChangeInt32ToInt64( Load(MachineType::Int32(), base, IntPtrConstant(index))); } else { return SmiToWord( Load(MachineType::AnyTagged(), base, IntPtrConstant(index))); } } Node* CodeStubAssembler::LoadAndUntagToWord32Root( Heap::RootListIndex root_index) { Node* roots_array_start = ExternalConstant(ExternalReference::roots_array_start(isolate())); int index = root_index * kPointerSize; if (Is64()) { #if V8_TARGET_LITTLE_ENDIAN index += kPointerSize / 2; #endif return Load(MachineType::Int32(), roots_array_start, IntPtrConstant(index)); } else { return SmiToWord32(Load(MachineType::AnyTagged(), roots_array_start, IntPtrConstant(index))); } } Node* CodeStubAssembler::StoreAndTagSmi(Node* base, int offset, Node* value) { if (Is64()) { int zero_offset = offset + kPointerSize / 2; int payload_offset = offset; #if V8_TARGET_LITTLE_ENDIAN std::swap(zero_offset, payload_offset); #endif StoreNoWriteBarrier(MachineRepresentation::kWord32, base, IntPtrConstant(zero_offset), Int32Constant(0)); return StoreNoWriteBarrier(MachineRepresentation::kWord32, base, IntPtrConstant(payload_offset), TruncateInt64ToInt32(value)); } else { return StoreNoWriteBarrier(MachineRepresentation::kTaggedSigned, base, IntPtrConstant(offset), SmiTag(value)); } } Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) { return LoadObjectField(object, HeapNumber::kValueOffset, MachineType::Float64()); } Node* CodeStubAssembler::LoadMap(Node* object) { return LoadObjectField(object, HeapObject::kMapOffset); } Node* CodeStubAssembler::LoadInstanceType(Node* object) { return LoadMapInstanceType(LoadMap(object)); } Node* CodeStubAssembler::HasInstanceType(Node* object, InstanceType instance_type) { return Word32Equal(LoadInstanceType(object), Int32Constant(instance_type)); } Node* CodeStubAssembler::DoesntHaveInstanceType(Node* object, InstanceType instance_type) { return Word32NotEqual(LoadInstanceType(object), Int32Constant(instance_type)); } Node* CodeStubAssembler::LoadProperties(Node* object) { return LoadObjectField(object, JSObject::kPropertiesOffset); } Node* CodeStubAssembler::LoadElements(Node* object) { return LoadObjectField(object, JSObject::kElementsOffset); } Node* CodeStubAssembler::LoadJSArrayLength(Node* array) { CSA_ASSERT(this, IsJSArray(array)); return LoadObjectField(array, JSArray::kLengthOffset); } Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) { return LoadObjectField(array, FixedArrayBase::kLengthOffset); } Node* CodeStubAssembler::LoadAndUntagFixedArrayBaseLength(Node* array) { return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset); } Node* CodeStubAssembler::LoadMapBitField(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapBitField2(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapBitField3(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32()); } Node* CodeStubAssembler::LoadMapInstanceType(Node* map) { return LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint8()); } Node* CodeStubAssembler::LoadMapElementsKind(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field2 = LoadMapBitField2(map); return DecodeWord32<Map::ElementsKindBits>(bit_field2); } Node* CodeStubAssembler::LoadMapDescriptors(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kDescriptorsOffset); } Node* CodeStubAssembler::LoadMapPrototype(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return LoadObjectField(map, Map::kPrototypeOffset); } Node* CodeStubAssembler::LoadMapPrototypeInfo(Node* map, Label* if_no_proto_info) { CSA_ASSERT(this, IsMap(map)); Node* prototype_info = LoadObjectField(map, Map::kTransitionsOrPrototypeInfoOffset); GotoIf(TaggedIsSmi(prototype_info), if_no_proto_info); GotoIfNot(WordEqual(LoadMap(prototype_info), LoadRoot(Heap::kPrototypeInfoMapRootIndex)), if_no_proto_info); return prototype_info; } Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return ChangeUint32ToWord( LoadObjectField(map, Map::kInstanceSizeOffset, MachineType::Uint8())); } Node* CodeStubAssembler::LoadMapInobjectProperties(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); // See Map::GetInObjectProperties() for details. STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); CSA_ASSERT(this, Int32GreaterThanOrEqual(LoadMapInstanceType(map), Int32Constant(FIRST_JS_OBJECT_TYPE))); return ChangeUint32ToWord(LoadObjectField( map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset, MachineType::Uint8())); } Node* CodeStubAssembler::LoadMapConstructorFunctionIndex(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); // See Map::GetConstructorFunctionIndex() for details. STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); CSA_ASSERT(this, Int32LessThanOrEqual(LoadMapInstanceType(map), Int32Constant(LAST_PRIMITIVE_TYPE))); return ChangeUint32ToWord(LoadObjectField( map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset, MachineType::Uint8())); } Node* CodeStubAssembler::LoadMapConstructor(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); Variable result(this, MachineRepresentation::kTagged, LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); Label done(this), loop(this, &result); Goto(&loop); Bind(&loop); { GotoIf(TaggedIsSmi(result.value()), &done); Node* is_map_type = Word32Equal(LoadInstanceType(result.value()), Int32Constant(MAP_TYPE)); GotoIfNot(is_map_type, &done); result.Bind( LoadObjectField(result.value(), Map::kConstructorOrBackPointerOffset)); Goto(&loop); } Bind(&done); return result.value(); } Node* CodeStubAssembler::LoadSharedFunctionInfoSpecialField( Node* shared, int offset, ParameterMode mode) { if (Is64()) { Node* result = LoadObjectField(shared, offset, MachineType::Int32()); if (mode == SMI_PARAMETERS) { result = SmiTag(result); } else { result = ChangeUint32ToWord(result); } return result; } else { Node* result = LoadObjectField(shared, offset); if (mode != SMI_PARAMETERS) { result = SmiUntag(result); } return result; } } Node* CodeStubAssembler::LoadNameHashField(Node* name) { CSA_ASSERT(this, IsName(name)); return LoadObjectField(name, Name::kHashFieldOffset, MachineType::Uint32()); } Node* CodeStubAssembler::LoadNameHash(Node* name, Label* if_hash_not_computed) { Node* hash_field = LoadNameHashField(name); if (if_hash_not_computed != nullptr) { GotoIf(Word32Equal( Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)), Int32Constant(0)), if_hash_not_computed); } return Word32Shr(hash_field, Int32Constant(Name::kHashShift)); } Node* CodeStubAssembler::LoadStringLength(Node* object) { CSA_ASSERT(this, IsString(object)); return LoadObjectField(object, String::kLengthOffset); } Node* CodeStubAssembler::LoadJSValueValue(Node* object) { CSA_ASSERT(this, IsJSValue(object)); return LoadObjectField(object, JSValue::kValueOffset); } Node* CodeStubAssembler::LoadWeakCellValueUnchecked(Node* weak_cell) { // TODO(ishell): fix callers. return LoadObjectField(weak_cell, WeakCell::kValueOffset); } Node* CodeStubAssembler::LoadWeakCellValue(Node* weak_cell, Label* if_cleared) { CSA_ASSERT(this, IsWeakCell(weak_cell)); Node* value = LoadWeakCellValueUnchecked(weak_cell); if (if_cleared != nullptr) { GotoIf(WordEqual(value, IntPtrConstant(0)), if_cleared); } return value; } Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node, int additional_offset, ParameterMode parameter_mode) { int32_t header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); return Load(MachineType::AnyTagged(), object, offset); } Node* CodeStubAssembler::LoadFixedTypedArrayElement( Node* data_pointer, Node* index_node, ElementsKind elements_kind, ParameterMode parameter_mode) { Node* offset = ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0); MachineType type; switch (elements_kind) { case UINT8_ELEMENTS: /* fall through */ case UINT8_CLAMPED_ELEMENTS: type = MachineType::Uint8(); break; case INT8_ELEMENTS: type = MachineType::Int8(); break; case UINT16_ELEMENTS: type = MachineType::Uint16(); break; case INT16_ELEMENTS: type = MachineType::Int16(); break; case UINT32_ELEMENTS: type = MachineType::Uint32(); break; case INT32_ELEMENTS: type = MachineType::Int32(); break; case FLOAT32_ELEMENTS: type = MachineType::Float32(); break; case FLOAT64_ELEMENTS: type = MachineType::Float64(); break; default: UNREACHABLE(); } return Load(type, data_pointer, offset); } Node* CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement( Node* object, Node* index_node, int additional_offset, ParameterMode parameter_mode) { int32_t header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; #if V8_TARGET_LITTLE_ENDIAN if (Is64()) { header_size += kPointerSize / 2; } #endif Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); if (Is64()) { return Load(MachineType::Int32(), object, offset); } else { return SmiToWord32(Load(MachineType::AnyTagged(), object, offset)); } } Node* CodeStubAssembler::LoadFixedDoubleArrayElement( Node* object, Node* index_node, MachineType machine_type, int additional_offset, ParameterMode parameter_mode, Label* if_hole) { CSA_ASSERT(this, IsFixedDoubleArray(object)); int32_t header_size = FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size); return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type); } Node* CodeStubAssembler::LoadDoubleWithHoleCheck(Node* base, Node* offset, Label* if_hole, MachineType machine_type) { if (if_hole) { // TODO(ishell): Compare only the upper part for the hole once the // compiler is able to fold addition of already complex |offset| with // |kIeeeDoubleExponentWordOffset| into one addressing mode. if (Is64()) { Node* element = Load(MachineType::Uint64(), base, offset); GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole); } else { Node* element_upper = Load( MachineType::Uint32(), base, IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset))); GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)), if_hole); } } if (machine_type.IsNone()) { // This means the actual value is not needed. return nullptr; } return Load(machine_type, base, offset); } Node* CodeStubAssembler::LoadContextElement(Node* context, int slot_index) { int offset = Context::SlotOffset(slot_index); return Load(MachineType::AnyTagged(), context, IntPtrConstant(offset)); } Node* CodeStubAssembler::LoadContextElement(Node* context, Node* slot_index) { Node* offset = IntPtrAdd(WordShl(slot_index, kPointerSizeLog2), IntPtrConstant(Context::kHeaderSize - kHeapObjectTag)); return Load(MachineType::AnyTagged(), context, offset); } Node* CodeStubAssembler::StoreContextElement(Node* context, int slot_index, Node* value) { int offset = Context::SlotOffset(slot_index); return Store(context, IntPtrConstant(offset), value); } Node* CodeStubAssembler::StoreContextElement(Node* context, Node* slot_index, Node* value) { Node* offset = IntPtrAdd(WordShl(slot_index, kPointerSizeLog2), IntPtrConstant(Context::kHeaderSize - kHeapObjectTag)); return Store(context, offset, value); } Node* CodeStubAssembler::StoreContextElementNoWriteBarrier(Node* context, int slot_index, Node* value) { int offset = Context::SlotOffset(slot_index); return StoreNoWriteBarrier(MachineRepresentation::kTagged, context, IntPtrConstant(offset), value); } Node* CodeStubAssembler::LoadNativeContext(Node* context) { return LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX); } Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind, Node* native_context) { CSA_ASSERT(this, IsNativeContext(native_context)); return LoadContextElement(native_context, Context::ArrayMapIndex(kind)); } Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) { return StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value, MachineRepresentation::kFloat64); } Node* CodeStubAssembler::StoreObjectField( Node* object, int offset, Node* value) { DCHECK_NE(HeapObject::kMapOffset, offset); // Use StoreMap instead. return Store(object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectField(Node* object, Node* offset, Node* value) { int const_offset; if (ToInt32Constant(offset, const_offset)) { return StoreObjectField(object, const_offset, value); } return Store(object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, int offset, Node* value, MachineRepresentation rep) { return StoreNoWriteBarrier(rep, object, IntPtrConstant(offset - kHeapObjectTag), value); } Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( Node* object, Node* offset, Node* value, MachineRepresentation rep) { int const_offset; if (ToInt32Constant(offset, const_offset)) { return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep); } return StoreNoWriteBarrier( rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } Node* CodeStubAssembler::StoreMap(Node* object, Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return StoreWithMapWriteBarrier( object, IntPtrConstant(HeapObject::kMapOffset - kHeapObjectTag), map); } Node* CodeStubAssembler::StoreMapNoWriteBarrier( Node* object, Heap::RootListIndex map_root_index) { return StoreMapNoWriteBarrier(object, LoadRoot(map_root_index)); } Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); return StoreNoWriteBarrier( MachineRepresentation::kTagged, object, IntPtrConstant(HeapObject::kMapOffset - kHeapObjectTag), map); } Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset, Heap::RootListIndex root_index) { if (Heap::RootIsImmortalImmovable(root_index)) { return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index)); } else { return StoreObjectField(object, offset, LoadRoot(root_index)); } } Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode, int additional_offset, ParameterMode parameter_mode) { DCHECK(barrier_mode == SKIP_WRITE_BARRIER || barrier_mode == UPDATE_WRITE_BARRIER); int header_size = FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode, header_size); if (barrier_mode == SKIP_WRITE_BARRIER) { return StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value); } else { return Store(object, offset, value); } } Node* CodeStubAssembler::StoreFixedDoubleArrayElement( Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) { CSA_ASSERT(this, IsFixedDoubleArray(object)); Node* offset = ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode, FixedArray::kHeaderSize - kHeapObjectTag); MachineRepresentation rep = MachineRepresentation::kFloat64; return StoreNoWriteBarrier(rep, object, offset, value); } Node* CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, Node* context, Node* array, CodeStubArguments& args, Variable& arg_index, Label* bailout) { Comment("BuildAppendJSArray: %s", ElementsKindToString(kind)); Label pre_bailout(this); Label success(this); Variable var_tagged_length(this, MachineRepresentation::kTagged); ParameterMode mode = OptimalParameterMode(); Variable var_length(this, OptimalParameterRepresentation(), TaggedToParameter(LoadJSArrayLength(array), mode)); Variable var_elements(this, MachineRepresentation::kTagged, LoadElements(array)); Node* capacity = TaggedToParameter(LoadFixedArrayBaseLength(var_elements.value()), mode); // Resize the capacity of the fixed array if it doesn't fit. Label fits(this, &var_elements); Node* first = arg_index.value(); Node* growth = IntPtrSub(args.GetLength(), first); Node* new_length = IntPtrOrSmiAdd(WordToParameter(growth, mode), var_length.value(), mode); GotoIfNot(IntPtrOrSmiGreaterThan(new_length, capacity, mode), &fits); Node* new_capacity = CalculateNewElementsCapacity(new_length, mode); var_elements.Bind(GrowElementsCapacity(array, var_elements.value(), kind, kind, capacity, new_capacity, mode, &pre_bailout)); Goto(&fits); Bind(&fits); Node* elements = var_elements.value(); // Push each argument onto the end of the array now that there is enough // capacity. CodeStubAssembler::VariableList push_vars({&var_length}, zone()); args.ForEach( push_vars, [this, kind, mode, elements, &var_length, &pre_bailout](Node* arg) { if (IsFastSmiElementsKind(kind)) { GotoIf(TaggedIsNotSmi(arg), &pre_bailout); } else if (IsFastDoubleElementsKind(kind)) { GotoIfNotNumber(arg, &pre_bailout); } if (IsFastDoubleElementsKind(kind)) { Node* double_value = ChangeNumberToFloat64(arg); StoreFixedDoubleArrayElement(elements, var_length.value(), Float64SilenceNaN(double_value), mode); } else { WriteBarrierMode barrier_mode = IsFastSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; StoreFixedArrayElement(elements, var_length.value(), arg, barrier_mode, 0, mode); } Increment(var_length, 1, mode); }, first, nullptr); { Node* length = ParameterToTagged(var_length.value(), mode); var_tagged_length.Bind(length); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); Goto(&success); } Bind(&pre_bailout); { Node* length = ParameterToTagged(var_length.value(), mode); var_tagged_length.Bind(length); Node* diff = SmiSub(length, LoadJSArrayLength(array)); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); arg_index.Bind(IntPtrAdd(arg_index.value(), SmiUntag(diff))); Goto(bailout); } Bind(&success); return var_tagged_length.value(); } Node* CodeStubAssembler::AllocateHeapNumber(MutableMode mode) { Node* result = Allocate(HeapNumber::kSize, kNone); Heap::RootListIndex heap_map_index = mode == IMMUTABLE ? Heap::kHeapNumberMapRootIndex : Heap::kMutableHeapNumberMapRootIndex; StoreMapNoWriteBarrier(result, heap_map_index); return result; } Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value, MutableMode mode) { Node* result = AllocateHeapNumber(mode); StoreHeapNumberValue(result, value); return result; } Node* CodeStubAssembler::AllocateSeqOneByteString(int length, AllocationFlags flags) { Comment("AllocateSeqOneByteString"); if (length == 0) { return LoadRoot(Heap::kempty_stringRootIndex); } Node* result = Allocate(SeqOneByteString::SizeFor(length), flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex)); StoreMapNoWriteBarrier(result, Heap::kOneByteStringMapRootIndex); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, SmiConstant(Smi::FromInt(length))); // Initialize both used and unused parts of hash field slot at once. StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldSlot, IntPtrConstant(String::kEmptyHashField), MachineType::PointerRepresentation()); return result; } Node* CodeStubAssembler::AllocateSeqOneByteString(Node* context, Node* length, ParameterMode mode, AllocationFlags flags) { Comment("AllocateSeqOneByteString"); Variable var_result(this, MachineRepresentation::kTagged); // Compute the SeqOneByteString size and check if it fits into new space. Label if_lengthiszero(this), if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); GotoIf(WordEqual(length, IntPtrOrSmiConstant(0, mode)), &if_lengthiszero); Node* raw_size = GetArrayAllocationSize( length, UINT8_ELEMENTS, mode, SeqOneByteString::kHeaderSize + kObjectAlignmentMask); Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); Bind(&if_sizeissmall); { // Just allocate the SeqOneByteString in new space. Node* result = Allocate(size, flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex)); StoreMapNoWriteBarrier(result, Heap::kOneByteStringMapRootIndex); StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, ParameterToTagged(length, mode)); // Initialize both used and unused parts of hash field slot at once. StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldSlot, IntPtrConstant(String::kEmptyHashField), MachineType::PointerRepresentation()); var_result.Bind(result); Goto(&if_join); } Bind(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context, ParameterToTagged(length, mode)); var_result.Bind(result); Goto(&if_join); } Bind(&if_lengthiszero); { var_result.Bind(LoadRoot(Heap::kempty_stringRootIndex)); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::AllocateSeqTwoByteString(int length, AllocationFlags flags) { Comment("AllocateSeqTwoByteString"); if (length == 0) { return LoadRoot(Heap::kempty_stringRootIndex); } Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex)); StoreMapNoWriteBarrier(result, Heap::kStringMapRootIndex); StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, SmiConstant(Smi::FromInt(length))); // Initialize both used and unused parts of hash field slot at once. StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldSlot, IntPtrConstant(String::kEmptyHashField), MachineType::PointerRepresentation()); return result; } Node* CodeStubAssembler::AllocateSeqTwoByteString(Node* context, Node* length, ParameterMode mode, AllocationFlags flags) { Comment("AllocateSeqTwoByteString"); Variable var_result(this, MachineRepresentation::kTagged); // Compute the SeqTwoByteString size and check if it fits into new space. Label if_lengthiszero(this), if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred), if_join(this); GotoIf(WordEqual(length, IntPtrOrSmiConstant(0, mode)), &if_lengthiszero); Node* raw_size = GetArrayAllocationSize( length, UINT16_ELEMENTS, mode, SeqOneByteString::kHeaderSize + kObjectAlignmentMask); Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), &if_sizeissmall, &if_notsizeissmall); Bind(&if_sizeissmall); { // Just allocate the SeqTwoByteString in new space. Node* result = Allocate(size, flags); DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex)); StoreMapNoWriteBarrier(result, Heap::kStringMapRootIndex); StoreObjectFieldNoWriteBarrier( result, SeqTwoByteString::kLengthOffset, mode == SMI_PARAMETERS ? length : SmiFromWord(length)); // Initialize both used and unused parts of hash field slot at once. StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldSlot, IntPtrConstant(String::kEmptyHashField), MachineType::PointerRepresentation()); var_result.Bind(result); Goto(&if_join); } Bind(&if_notsizeissmall); { // We might need to allocate in large object space, go to the runtime. Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context, mode == SMI_PARAMETERS ? length : SmiFromWord(length)); var_result.Bind(result); Goto(&if_join); } Bind(&if_lengthiszero); { var_result.Bind(LoadRoot(Heap::kempty_stringRootIndex)); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::AllocateSlicedString( Heap::RootListIndex map_root_index, Node* length, Node* parent, Node* offset) { CSA_ASSERT(this, TaggedIsSmi(length)); Node* result = Allocate(SlicedString::kSize); DCHECK(Heap::RootIsImmortalImmovable(map_root_index)); StoreMapNoWriteBarrier(result, map_root_index); StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length, MachineRepresentation::kTagged); // Initialize both used and unused parts of hash field slot at once. StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldSlot, IntPtrConstant(String::kEmptyHashField), MachineType::PointerRepresentation()); StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset, MachineRepresentation::kTagged); return result; } Node* CodeStubAssembler::AllocateSlicedOneByteString(Node* length, Node* parent, Node* offset) { return AllocateSlicedString(Heap::kSlicedOneByteStringMapRootIndex, length, parent, offset); } Node* CodeStubAssembler::AllocateSlicedTwoByteString(Node* length, Node* parent, Node* offset) { return AllocateSlicedString(Heap::kSlicedStringMapRootIndex, length, parent, offset); } Node* CodeStubAssembler::AllocateConsString(Heap::RootListIndex map_root_index, Node* length, Node* first, Node* second, AllocationFlags flags) { CSA_ASSERT(this, TaggedIsSmi(length)); Node* result = Allocate(ConsString::kSize, flags); DCHECK(Heap::RootIsImmortalImmovable(map_root_index)); StoreMapNoWriteBarrier(result, map_root_index); StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length, MachineRepresentation::kTagged); // Initialize both used and unused parts of hash field slot at once. StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldSlot, IntPtrConstant(String::kEmptyHashField), MachineType::PointerRepresentation()); bool const new_space = !(flags & kPretenured); if (new_space) { StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, first, MachineRepresentation::kTagged); StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, second, MachineRepresentation::kTagged); } else { StoreObjectField(result, ConsString::kFirstOffset, first); StoreObjectField(result, ConsString::kSecondOffset, second); } return result; } Node* CodeStubAssembler::AllocateOneByteConsString(Node* length, Node* first, Node* second, AllocationFlags flags) { return AllocateConsString(Heap::kConsOneByteStringMapRootIndex, length, first, second, flags); } Node* CodeStubAssembler::AllocateTwoByteConsString(Node* length, Node* first, Node* second, AllocationFlags flags) { return AllocateConsString(Heap::kConsStringMapRootIndex, length, first, second, flags); } Node* CodeStubAssembler::NewConsString(Node* context, Node* length, Node* left, Node* right, AllocationFlags flags) { CSA_ASSERT(this, TaggedIsSmi(length)); // Added string can be a cons string. Comment("Allocating ConsString"); Node* left_instance_type = LoadInstanceType(left); Node* right_instance_type = LoadInstanceType(right); // Compute intersection and difference of instance types. Node* anded_instance_types = Word32And(left_instance_type, right_instance_type); Node* xored_instance_types = Word32Xor(left_instance_type, right_instance_type); // We create a one-byte cons string if // 1. both strings are one-byte, or // 2. at least one of the strings is two-byte, but happens to contain only // one-byte characters. // To do this, we check // 1. if both strings are one-byte, or if the one-byte data hint is set in // both strings, or // 2. if one of the strings has the one-byte data hint set and the other // string is one-byte. STATIC_ASSERT(kOneByteStringTag != 0); STATIC_ASSERT(kOneByteDataHintTag != 0); Label one_byte_map(this); Label two_byte_map(this); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); GotoIf(Word32NotEqual(Word32And(anded_instance_types, Int32Constant(kStringEncodingMask | kOneByteDataHintTag)), Int32Constant(0)), &one_byte_map); Branch(Word32NotEqual(Word32And(xored_instance_types, Int32Constant(kStringEncodingMask | kOneByteDataHintMask)), Int32Constant(kOneByteStringTag | kOneByteDataHintTag)), &two_byte_map, &one_byte_map); Bind(&one_byte_map); Comment("One-byte ConsString"); result.Bind(AllocateOneByteConsString(length, left, right, flags)); Goto(&done); Bind(&two_byte_map); Comment("Two-byte ConsString"); result.Bind(AllocateTwoByteConsString(length, left, right, flags)); Goto(&done); Bind(&done); return result.value(); } Node* CodeStubAssembler::AllocateRegExpResult(Node* context, Node* length, Node* index, Node* input) { Node* const max_length = SmiConstant(Smi::FromInt(JSArray::kInitialMaxFastElementArray)); CSA_ASSERT(this, SmiLessThanOrEqual(length, max_length)); USE(max_length); // Allocate the JSRegExpResult. // TODO(jgruber): Fold JSArray and FixedArray allocations, then remove // unneeded store of elements. Node* const result = Allocate(JSRegExpResult::kSize); // TODO(jgruber): Store map as Heap constant? Node* const native_context = LoadNativeContext(context); Node* const map = LoadContextElement(native_context, Context::REGEXP_RESULT_MAP_INDEX); StoreMapNoWriteBarrier(result, map); // Initialize the header before allocating the elements. Node* const empty_array = EmptyFixedArrayConstant(); DCHECK(Heap::RootIsImmortalImmovable(Heap::kEmptyFixedArrayRootIndex)); StoreObjectFieldNoWriteBarrier(result, JSArray::kPropertiesOffset, empty_array); StoreObjectFieldNoWriteBarrier(result, JSArray::kElementsOffset, empty_array); StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset, length); StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kIndexOffset, index); StoreObjectField(result, JSRegExpResult::kInputOffset, input); Node* const zero = IntPtrConstant(0); Node* const length_intptr = SmiUntag(length); const ElementsKind elements_kind = FAST_ELEMENTS; Node* const elements = AllocateFixedArray(elements_kind, length_intptr); StoreObjectField(result, JSArray::kElementsOffset, elements); // Fill in the elements with undefined. FillFixedArrayWithValue(elements_kind, elements, zero, length_intptr, Heap::kUndefinedValueRootIndex); return result; } Node* CodeStubAssembler::AllocateNameDictionary(int at_least_space_for) { return AllocateNameDictionary(IntPtrConstant(at_least_space_for)); } Node* CodeStubAssembler::AllocateNameDictionary(Node* at_least_space_for) { CSA_ASSERT(this, UintPtrLessThanOrEqual( at_least_space_for, IntPtrConstant(NameDictionary::kMaxCapacity))); Node* capacity = HashTableComputeCapacity(at_least_space_for); CSA_ASSERT(this, WordIsPowerOfTwo(capacity)); Node* length = EntryToIndex<NameDictionary>(capacity); Node* store_size = IntPtrAdd(WordShl(length, IntPtrConstant(kPointerSizeLog2)), IntPtrConstant(NameDictionary::kHeaderSize)); Node* result = Allocate(store_size); Comment("Initialize NameDictionary"); // Initialize FixedArray fields. DCHECK(Heap::RootIsImmortalImmovable(Heap::kHashTableMapRootIndex)); StoreMapNoWriteBarrier(result, Heap::kHashTableMapRootIndex); StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset, SmiFromWord(length)); // Initialized HashTable fields. Node* zero = SmiConstant(0); StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex, zero, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kCapacityIndex, SmiTag(capacity), SKIP_WRITE_BARRIER); // Initialize Dictionary fields. Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex); StoreFixedArrayElement(result, NameDictionary::kMaxNumberKeyIndex, filler, SKIP_WRITE_BARRIER); StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex, SmiConstant(PropertyDetails::kInitialIndex), SKIP_WRITE_BARRIER); // Initialize NameDictionary elements. Node* result_word = BitcastTaggedToWord(result); Node* start_address = IntPtrAdd( result_word, IntPtrConstant(NameDictionary::OffsetOfElementAt( NameDictionary::kElementsStartIndex) - kHeapObjectTag)); Node* end_address = IntPtrAdd( result_word, IntPtrSub(store_size, IntPtrConstant(kHeapObjectTag))); StoreFieldsNoWriteBarrier(start_address, end_address, filler); return result; } Node* CodeStubAssembler::AllocateJSObjectFromMap(Node* map, Node* properties, Node* elements, AllocationFlags flags) { CSA_ASSERT(this, IsMap(map)); Node* size = IntPtrMul(LoadMapInstanceSize(map), IntPtrConstant(kPointerSize)); CSA_ASSERT(this, IsRegularHeapObjectSize(size)); Node* object = Allocate(size, flags); StoreMapNoWriteBarrier(object, map); InitializeJSObjectFromMap(object, map, size, properties, elements); return object; } void CodeStubAssembler::InitializeJSObjectFromMap(Node* object, Node* map, Node* size, Node* properties, Node* elements) { // This helper assumes that the object is in new-space, as guarded by the // check in AllocatedJSObjectFromMap. if (properties == nullptr) { CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map)))); StoreObjectFieldRoot(object, JSObject::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); } else { StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOffset, properties); } if (elements == nullptr) { StoreObjectFieldRoot(object, JSObject::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); } else { StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements); } InitializeJSObjectBody(object, map, size, JSObject::kHeaderSize); } void CodeStubAssembler::InitializeJSObjectBody(Node* object, Node* map, Node* size, int start_offset) { // TODO(cbruni): activate in-object slack tracking machinery. Comment("InitializeJSObjectBody"); Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex); // Calculate the untagged field addresses. object = BitcastTaggedToWord(object); Node* start_address = IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag)); Node* end_address = IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag)); StoreFieldsNoWriteBarrier(start_address, end_address, filler); } void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address, Node* value) { Comment("StoreFieldsNoWriteBarrier"); CSA_ASSERT(this, WordIsWordAligned(start_address)); CSA_ASSERT(this, WordIsWordAligned(end_address)); BuildFastLoop(start_address, end_address, [this, value](Node* current) { StoreNoWriteBarrier(MachineRepresentation::kTagged, current, value); }, kPointerSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); } Node* CodeStubAssembler::AllocateUninitializedJSArrayWithoutElements( ElementsKind kind, Node* array_map, Node* length, Node* allocation_site) { Comment("begin allocation of JSArray without elements"); int base_size = JSArray::kSize; if (allocation_site != nullptr) { base_size += AllocationMemento::kSize; } Node* size = IntPtrConstant(base_size); Node* array = AllocateUninitializedJSArray(kind, array_map, length, allocation_site, size); return array; } std::pair<Node*, Node*> CodeStubAssembler::AllocateUninitializedJSArrayWithElements( ElementsKind kind, Node* array_map, Node* length, Node* allocation_site, Node* capacity, ParameterMode capacity_mode) { Comment("begin allocation of JSArray with elements"); int base_size = JSArray::kSize; if (allocation_site != nullptr) { base_size += AllocationMemento::kSize; } int elements_offset = base_size; // Compute space for elements base_size += FixedArray::kHeaderSize; Node* size = ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size); Node* array = AllocateUninitializedJSArray(kind, array_map, length, allocation_site, size); Node* elements = InnerAllocate(array, elements_offset); StoreObjectFieldNoWriteBarrier(array, JSObject::kElementsOffset, elements); return {array, elements}; } Node* CodeStubAssembler::AllocateUninitializedJSArray(ElementsKind kind, Node* array_map, Node* length, Node* allocation_site, Node* size_in_bytes) { Node* array = Allocate(size_in_bytes); Comment("write JSArray headers"); StoreMapNoWriteBarrier(array, array_map); CSA_ASSERT(this, TaggedIsSmi(length)); StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); StoreObjectFieldRoot(array, JSArray::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); if (allocation_site != nullptr) { InitializeAllocationMemento(array, JSArray::kSize, allocation_site); } return array; } Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity, Node* length, Node* allocation_site, ParameterMode capacity_mode) { Node *array = nullptr, *elements = nullptr; if (IsIntPtrOrSmiConstantZero(capacity)) { // Array is empty. Use the shared empty fixed array instead of allocating a // new one. array = AllocateUninitializedJSArrayWithoutElements(kind, array_map, length, nullptr); StoreObjectFieldRoot(array, JSArray::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); } else { // Allocate both array and elements object, and initialize the JSArray. std::tie(array, elements) = AllocateUninitializedJSArrayWithElements( kind, array_map, length, allocation_site, capacity, capacity_mode); // Setup elements object. Heap::RootListIndex elements_map_index = IsFastDoubleElementsKind(kind) ? Heap::kFixedDoubleArrayMapRootIndex : Heap::kFixedArrayMapRootIndex; DCHECK(Heap::RootIsImmortalImmovable(elements_map_index)); StoreMapNoWriteBarrier(elements, elements_map_index); StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, ParameterToTagged(capacity, capacity_mode)); // Fill in the elements with holes. FillFixedArrayWithValue(kind, elements, IntPtrOrSmiConstant(0, capacity_mode), capacity, Heap::kTheHoleValueRootIndex, capacity_mode); } return array; } Node* CodeStubAssembler::AllocateFixedArray(ElementsKind kind, Node* capacity_node, ParameterMode mode, AllocationFlags flags) { CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity_node, IntPtrOrSmiConstant(0, mode), mode)); Node* total_size = GetFixedArrayAllocationSize(capacity_node, kind, mode); // Allocate both array and elements object, and initialize the JSArray. Node* array = Allocate(total_size, flags); Heap::RootListIndex map_index = IsFastDoubleElementsKind(kind) ? Heap::kFixedDoubleArrayMapRootIndex : Heap::kFixedArrayMapRootIndex; DCHECK(Heap::RootIsImmortalImmovable(map_index)); StoreMapNoWriteBarrier(array, map_index); StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset, ParameterToTagged(capacity_node, mode)); return array; } void CodeStubAssembler::FillFixedArrayWithValue( ElementsKind kind, Node* array, Node* from_node, Node* to_node, Heap::RootListIndex value_root_index, ParameterMode mode) { bool is_double = IsFastDoubleElementsKind(kind); DCHECK(value_root_index == Heap::kTheHoleValueRootIndex || value_root_index == Heap::kUndefinedValueRootIndex); DCHECK_IMPLIES(is_double, value_root_index == Heap::kTheHoleValueRootIndex); STATIC_ASSERT(kHoleNanLower32 == kHoleNanUpper32); Node* double_hole = Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32); Node* value = LoadRoot(value_root_index); BuildFastFixedArrayForEach( array, kind, from_node, to_node, [this, value, is_double, double_hole](Node* array, Node* offset) { if (is_double) { // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, array, offset, double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, array, offset, double_hole); StoreNoWriteBarrier(MachineRepresentation::kWord32, array, IntPtrAdd(offset, IntPtrConstant(kPointerSize)), double_hole); } } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, array, offset, value); } }, mode); } void CodeStubAssembler::CopyFixedArrayElements( ElementsKind from_kind, Node* from_array, ElementsKind to_kind, Node* to_array, Node* element_count, Node* capacity, WriteBarrierMode barrier_mode, ParameterMode mode) { STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; Comment("[ CopyFixedArrayElements"); // Typed array elements are not supported. DCHECK(!IsFixedTypedArrayElementsKind(from_kind)); DCHECK(!IsFixedTypedArrayElementsKind(to_kind)); Label done(this); bool from_double_elements = IsFastDoubleElementsKind(from_kind); bool to_double_elements = IsFastDoubleElementsKind(to_kind); bool element_size_matches = Is64() || IsFastDoubleElementsKind(from_kind) == IsFastDoubleElementsKind(to_kind); bool doubles_to_objects_conversion = IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind); bool needs_write_barrier = doubles_to_objects_conversion || (barrier_mode == UPDATE_WRITE_BARRIER && IsFastObjectElementsKind(to_kind)); Node* double_hole = Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32); if (doubles_to_objects_conversion) { // If the copy might trigger a GC, make sure that the FixedArray is // pre-initialized with holes to make sure that it's always in a // consistent state. FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode), capacity, Heap::kTheHoleValueRootIndex, mode); } else if (element_count != capacity) { FillFixedArrayWithValue(to_kind, to_array, element_count, capacity, Heap::kTheHoleValueRootIndex, mode); } Node* limit_offset = ElementOffsetFromIndex( IntPtrOrSmiConstant(0, mode), from_kind, mode, first_element_offset); Variable var_from_offset(this, MachineType::PointerRepresentation(), ElementOffsetFromIndex(element_count, from_kind, mode, first_element_offset)); // This second variable is used only when the element sizes of source and // destination arrays do not match. Variable var_to_offset(this, MachineType::PointerRepresentation()); if (element_size_matches) { var_to_offset.Bind(var_from_offset.value()); } else { var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode, first_element_offset)); } Variable* vars[] = {&var_from_offset, &var_to_offset}; Label decrement(this, 2, vars); Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement); Bind(&decrement); { Node* from_offset = IntPtrSub( var_from_offset.value(), IntPtrConstant(from_double_elements ? kDoubleSize : kPointerSize)); var_from_offset.Bind(from_offset); Node* to_offset; if (element_size_matches) { to_offset = from_offset; } else { to_offset = IntPtrSub( var_to_offset.value(), IntPtrConstant(to_double_elements ? kDoubleSize : kPointerSize)); var_to_offset.Bind(to_offset); } Label next_iter(this), store_double_hole(this); Label* if_hole; if (doubles_to_objects_conversion) { // The target elements array is already preinitialized with holes, so we // can just proceed with the next iteration. if_hole = &next_iter; } else if (IsFastDoubleElementsKind(to_kind)) { if_hole = &store_double_hole; } else { // In all the other cases don't check for holes and copy the data as is. if_hole = nullptr; } Node* value = LoadElementAndPrepareForStore( from_array, var_from_offset.value(), from_kind, to_kind, if_hole); if (needs_write_barrier) { Store(to_array, to_offset, value); } else if (to_double_elements) { StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array, to_offset, value); } else { StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, to_offset, value); } Goto(&next_iter); if (if_hole == &store_double_hole) { Bind(&store_double_hole); // Don't use doubles to store the hole double, since manipulating the // signaling NaN used for the hole in C++, e.g. with bit_cast, will // change its value on ia32 (the x87 stack is used to return values // and stores to the stack silently clear the signalling bit). // // TODO(danno): When we have a Float32/Float64 wrapper class that // preserves double bits during manipulation, remove this code/change // this to an indexed Float64 store. if (Is64()) { StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array, to_offset, double_hole); } else { StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array, to_offset, double_hole); StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array, IntPtrAdd(to_offset, IntPtrConstant(kPointerSize)), double_hole); } Goto(&next_iter); } Bind(&next_iter); Node* compare = WordNotEqual(from_offset, limit_offset); Branch(compare, &decrement, &done); } Bind(&done); IncrementCounter(isolate()->counters()->inlined_copied_elements(), 1); Comment("] CopyFixedArrayElements"); } void CodeStubAssembler::CopyStringCharacters(Node* from_string, Node* to_string, Node* from_index, Node* to_index, Node* character_count, String::Encoding from_encoding, String::Encoding to_encoding, ParameterMode mode) { bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING; bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING; DCHECK_IMPLIES(to_one_byte, from_one_byte); Comment("CopyStringCharacters %s -> %s", from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING"); ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag; Node* from_offset = ElementOffsetFromIndex(from_index, from_kind, mode, header_size); Node* to_offset = ElementOffsetFromIndex(to_index, to_kind, mode, header_size); Node* byte_count = ElementOffsetFromIndex(character_count, from_kind, mode); Node* limit_offset = IntPtrAdd(from_offset, byte_count); // Prepare the fast loop MachineType type = from_one_byte ? MachineType::Uint8() : MachineType::Uint16(); MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8 : MachineRepresentation::kWord16; int from_increment = 1 << ElementsKindToShiftSize(from_kind); int to_increment = 1 << ElementsKindToShiftSize(to_kind); Variable current_to_offset(this, MachineType::PointerRepresentation(), to_offset); VariableList vars({¤t_to_offset}, zone()); int to_index_constant = 0, from_index_constant = 0; Smi* to_index_smi = nullptr; Smi* from_index_smi = nullptr; bool index_same = (from_encoding == to_encoding) && (from_index == to_index || (ToInt32Constant(from_index, from_index_constant) && ToInt32Constant(to_index, to_index_constant) && from_index_constant == to_index_constant) || (ToSmiConstant(from_index, from_index_smi) && ToSmiConstant(to_index, to_index_smi) && to_index_smi == from_index_smi)); BuildFastLoop(vars, from_offset, limit_offset, [this, from_string, to_string, ¤t_to_offset, to_increment, type, rep, index_same](Node* offset) { Node* value = Load(type, from_string, offset); StoreNoWriteBarrier( rep, to_string, index_same ? offset : current_to_offset.value(), value); if (!index_same) { Increment(current_to_offset, to_increment); } }, from_increment, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); } Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array, Node* offset, ElementsKind from_kind, ElementsKind to_kind, Label* if_hole) { if (IsFastDoubleElementsKind(from_kind)) { Node* value = LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64()); if (!IsFastDoubleElementsKind(to_kind)) { value = AllocateHeapNumberWithValue(value); } return value; } else { Node* value = Load(MachineType::AnyTagged(), array, offset); if (if_hole) { GotoIf(WordEqual(value, TheHoleConstant()), if_hole); } if (IsFastDoubleElementsKind(to_kind)) { if (IsFastSmiElementsKind(from_kind)) { value = SmiToFloat64(value); } else { value = LoadHeapNumberValue(value); } } return value; } } Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity, ParameterMode mode) { Node* half_old_capacity = WordOrSmiShr(old_capacity, 1, mode); Node* new_capacity = IntPtrOrSmiAdd(half_old_capacity, old_capacity, mode); Node* padding = IntPtrOrSmiConstant(16, mode); return IntPtrOrSmiAdd(new_capacity, padding, mode); } Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, Node* key, Label* bailout) { Node* capacity = LoadFixedArrayBaseLength(elements); ParameterMode mode = OptimalParameterMode(); capacity = TaggedToParameter(capacity, mode); key = TaggedToParameter(key, mode); return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode, bailout); } Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind, Node* key, Node* capacity, ParameterMode mode, Label* bailout) { Comment("TryGrowElementsCapacity"); // If the gap growth is too big, fall back to the runtime. Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode); Node* max_capacity = IntPtrOrSmiAdd(capacity, max_gap, mode); GotoIf(UintPtrOrSmiGreaterThanOrEqual(key, max_capacity, mode), bailout); // Calculate the capacity of the new backing store. Node* new_capacity = CalculateNewElementsCapacity( IntPtrOrSmiAdd(key, IntPtrOrSmiConstant(1, mode), mode), mode); return GrowElementsCapacity(object, elements, kind, kind, capacity, new_capacity, mode, bailout); } Node* CodeStubAssembler::GrowElementsCapacity( Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind, Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) { Comment("[ GrowElementsCapacity"); // If size of the allocation for the new capacity doesn't fit in a page // that we can bump-pointer allocate from, fall back to the runtime. int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind); GotoIf(UintPtrOrSmiGreaterThanOrEqual( new_capacity, IntPtrOrSmiConstant(max_size, mode), mode), bailout); // Allocate the new backing store. Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode); // Copy the elements from the old elements store to the new. // The size-check above guarantees that the |new_elements| is allocated // in new space so we can skip the write barrier. CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity, new_capacity, SKIP_WRITE_BARRIER, mode); StoreObjectField(object, JSObject::kElementsOffset, new_elements); Comment("] GrowElementsCapacity"); return new_elements; } void CodeStubAssembler::InitializeAllocationMemento(Node* base_allocation, int base_allocation_size, Node* allocation_site) { StoreObjectFieldNoWriteBarrier( base_allocation, AllocationMemento::kMapOffset + base_allocation_size, HeapConstant(Handle<Map>(isolate()->heap()->allocation_memento_map()))); StoreObjectFieldNoWriteBarrier( base_allocation, AllocationMemento::kAllocationSiteOffset + base_allocation_size, allocation_site); if (FLAG_allocation_site_pretenuring) { Node* count = LoadObjectField(allocation_site, AllocationSite::kPretenureCreateCountOffset); Node* incremented_count = SmiAdd(count, SmiConstant(Smi::FromInt(1))); StoreObjectFieldNoWriteBarrier(allocation_site, AllocationSite::kPretenureCreateCountOffset, incremented_count); } } Node* CodeStubAssembler::TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber) { Label out(this); Variable var_result(this, MachineRepresentation::kFloat64); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToFloat64(value)); Goto(&out); } Bind(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this); Branch(IsHeapNumberMap(LoadMap(value)), &if_valueisheapnumber, if_valueisnotnumber); Bind(&if_valueisheapnumber); { // Load the floating point value. var_result.Bind(LoadHeapNumberValue(value)); Goto(&out); } } Bind(&out); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. Variable var_value(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kFloat64); Label loop(this, &var_value), done_loop(this, &var_result); var_value.Bind(value); Goto(&loop); Bind(&loop); { Label if_valueisnotnumber(this, Label::kDeferred); // Load the current {value}. value = var_value.value(); // Convert {value} to Float64 if it is a number and convert it to a number // otherwise. Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber); var_result.Bind(result); Goto(&done_loop); Bind(&if_valueisnotnumber); { // Convert the {value} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&loop); } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) { // We might need to loop once due to ToNumber conversion. Variable var_value(this, MachineRepresentation::kTagged, value), var_result(this, MachineRepresentation::kWord32); Label loop(this, &var_value), done_loop(this, &var_result); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this), if_valueisnotsmi(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueissmi); { // Convert the Smi {value}. var_result.Bind(SmiToWord32(value)); Goto(&done_loop); } Bind(&if_valueisnotsmi); { // Check if {value} is a HeapNumber. Label if_valueisheapnumber(this), if_valueisnotheapnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(LoadMap(value)), &if_valueisheapnumber, &if_valueisnotheapnumber); Bind(&if_valueisheapnumber); { // Truncate the floating point value. var_result.Bind(TruncateHeapNumberValueToWord32(value)); Goto(&done_loop); } Bind(&if_valueisnotheapnumber); { // Convert the {value} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&loop); } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) { Node* value = LoadHeapNumberValue(object); return TruncateFloat64ToWord32(value); } Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) { Node* value32 = RoundFloat64ToInt32(value); Node* value64 = ChangeInt32ToFloat64(value32); Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this); Label if_valueisequal(this), if_valueisnotequal(this); Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal); Bind(&if_valueisequal); { GotoIfNot(Word32Equal(value32, Int32Constant(0)), &if_valueisint32); Branch(Int32LessThan(Float64ExtractHighWord32(value), Int32Constant(0)), &if_valueisheapnumber, &if_valueisint32); } Bind(&if_valueisnotequal); Goto(&if_valueisheapnumber); Variable var_result(this, MachineRepresentation::kTagged); Bind(&if_valueisint32); { if (Is64()) { Node* result = SmiTag(ChangeInt32ToInt64(value32)); var_result.Bind(result); Goto(&if_join); } else { Node* pair = Int32AddWithOverflow(value32, value32); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); Goto(&if_valueisheapnumber); Bind(&if_notoverflow); { Node* result = BitcastWordToTaggedSigned(Projection(0, pair)); var_result.Bind(result); Goto(&if_join); } } } Bind(&if_valueisheapnumber); { Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&if_join); } Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) { if (Is64()) { return SmiTag(ChangeInt32ToInt64(value)); } Variable var_result(this, MachineRepresentation::kTagged); Node* pair = Int32AddWithOverflow(value, value); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this), if_join(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); { Node* value64 = ChangeInt32ToFloat64(value); Node* result = AllocateHeapNumberWithValue(value64); var_result.Bind(result); } Goto(&if_join); Bind(&if_notoverflow); { Node* result = BitcastWordToTaggedSigned(Projection(0, pair)); var_result.Bind(result); } Goto(&if_join); Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) { Label if_overflow(this, Label::kDeferred), if_not_overflow(this), if_join(this); Variable var_result(this, MachineRepresentation::kTagged); // If {value} > 2^31 - 1, we need to store it in a HeapNumber. Branch(Uint32LessThan(Int32Constant(Smi::kMaxValue), value), &if_overflow, &if_not_overflow); Bind(&if_not_overflow); { if (Is64()) { var_result.Bind(SmiTag(ChangeUint32ToUint64(value))); } else { // If tagging {value} results in an overflow, we need to use a HeapNumber // to represent it. Node* pair = Int32AddWithOverflow(value, value); Node* overflow = Projection(1, pair); GotoIf(overflow, &if_overflow); Node* result = BitcastWordToTaggedSigned(Projection(0, pair)); var_result.Bind(result); } } Goto(&if_join); Bind(&if_overflow); { Node* float64_value = ChangeUint32ToFloat64(value); var_result.Bind(AllocateHeapNumberWithValue(float64_value)); } Goto(&if_join); Bind(&if_join); return var_result.value(); } Node* CodeStubAssembler::ToThisString(Node* context, Node* value, char const* method_name) { Variable var_value(this, MachineRepresentation::kTagged, value); // Check if the {value} is a Smi or a HeapObject. Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this), if_valueisstring(this); Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); Bind(&if_valueisnotsmi); { // Load the instance type of the {value}. Node* value_instance_type = LoadInstanceType(value); // Check if the {value} is already String. Label if_valueisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(value_instance_type), &if_valueisstring, &if_valueisnotstring); Bind(&if_valueisnotstring); { // Check if the {value} is null. Label if_valueisnullorundefined(this, Label::kDeferred), if_valueisnotnullorundefined(this, Label::kDeferred), if_valueisnotnull(this, Label::kDeferred); Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined, &if_valueisnotnull); Bind(&if_valueisnotnull); { // Check if the {value} is undefined. Branch(WordEqual(value, UndefinedConstant()), &if_valueisnullorundefined, &if_valueisnotnullorundefined); Bind(&if_valueisnotnullorundefined); { // Convert the {value} to a String. Callable callable = CodeFactory::ToString(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&if_valueisstring); } } Bind(&if_valueisnullorundefined); { // The {value} is either null or undefined. CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context, HeapConstant(factory()->NewStringFromAsciiChecked( method_name, TENURED))); Unreachable(); } } } Bind(&if_valueissmi); { // The {value} is a Smi, convert it to a String. Callable callable = CodeFactory::NumberToString(isolate()); var_value.Bind(CallStub(callable, context, value)); Goto(&if_valueisstring); } Bind(&if_valueisstring); return var_value.value(); } Node* CodeStubAssembler::ChangeNumberToFloat64(compiler::Node* value) { Variable result(this, MachineRepresentation::kFloat64); Label smi(this); Label done(this, &result); GotoIf(TaggedIsSmi(value), &smi); result.Bind( LoadObjectField(value, HeapNumber::kValueOffset, MachineType::Float64())); Goto(&done); Bind(&smi); { result.Bind(SmiToFloat64(value)); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::ToThisValue(Node* context, Node* value, PrimitiveType primitive_type, char const* method_name) { // We might need to loop once due to JSValue unboxing. Variable var_value(this, MachineRepresentation::kTagged, value); Label loop(this, &var_value), done_loop(this), done_throw(this, Label::kDeferred); Goto(&loop); Bind(&loop); { // Load the current {value}. value = var_value.value(); // Check if the {value} is a Smi or a HeapObject. GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber) ? &done_loop : &done_throw); // Load the mape of the {value}. Node* value_map = LoadMap(value); // Load the instance type of the {value}. Node* value_instance_type = LoadMapInstanceType(value_map); // Check if {value} is a JSValue. Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this); Branch(Word32Equal(value_instance_type, Int32Constant(JS_VALUE_TYPE)), &if_valueisvalue, &if_valueisnotvalue); Bind(&if_valueisvalue); { // Load the actual value from the {value}. var_value.Bind(LoadObjectField(value, JSValue::kValueOffset)); Goto(&loop); } Bind(&if_valueisnotvalue); { switch (primitive_type) { case PrimitiveType::kBoolean: GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop); break; case PrimitiveType::kNumber: GotoIf( Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &done_loop); break; case PrimitiveType::kString: GotoIf(IsStringInstanceType(value_instance_type), &done_loop); break; case PrimitiveType::kSymbol: GotoIf(Word32Equal(value_instance_type, Int32Constant(SYMBOL_TYPE)), &done_loop); break; } Goto(&done_throw); } } Bind(&done_throw); { // The {value} is not a compatible receiver for this method. CallRuntime(Runtime::kThrowNotGeneric, context, HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED))); Unreachable(); } Bind(&done_loop); return var_value.value(); } Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value, InstanceType instance_type, char const* method_name) { Label out(this), throw_exception(this, Label::kDeferred); Variable var_value_map(this, MachineRepresentation::kTagged); GotoIf(TaggedIsSmi(value), &throw_exception); // Load the instance type of the {value}. var_value_map.Bind(LoadMap(value)); Node* const value_instance_type = LoadMapInstanceType(var_value_map.value()); Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out, &throw_exception); // The {value} is not a compatible receiver for this method. Bind(&throw_exception); CallRuntime( Runtime::kThrowIncompatibleMethodReceiver, context, HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED)), value); Unreachable(); Bind(&out); return var_value_map.value(); } Node* CodeStubAssembler::InstanceTypeEqual(Node* instance_type, int type) { return Word32Equal(instance_type, Int32Constant(type)); } Node* CodeStubAssembler::IsSpecialReceiverMap(Node* map) { Node* is_special = IsSpecialReceiverInstanceType(LoadMapInstanceType(map)); uint32_t mask = 1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded; USE(mask); // Interceptors or access checks imply special receiver. CSA_ASSERT(this, SelectConstant(IsSetWord32(LoadMapBitField(map), mask), is_special, Int32Constant(1), MachineRepresentation::kWord32)); return is_special; } Node* CodeStubAssembler::IsDictionaryMap(Node* map) { CSA_SLOW_ASSERT(this, IsMap(map)); Node* bit_field3 = LoadMapBitField3(map); return Word32NotEqual(IsSetWord32<Map::DictionaryMap>(bit_field3), Int32Constant(0)); } Node* CodeStubAssembler::IsCallableMap(Node* map) { CSA_ASSERT(this, IsMap(map)); return Word32NotEqual( Word32And(LoadMapBitField(map), Int32Constant(1 << Map::kIsCallable)), Int32Constant(0)); } Node* CodeStubAssembler::IsCallable(Node* object) { return IsCallableMap(LoadMap(object)); } Node* CodeStubAssembler::IsConstructorMap(Node* map) { CSA_ASSERT(this, IsMap(map)); return Word32NotEqual( Word32And(LoadMapBitField(map), Int32Constant(1 << Map::kIsConstructor)), Int32Constant(0)); } Node* CodeStubAssembler::IsSpecialReceiverInstanceType(Node* instance_type) { STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)); } Node* CodeStubAssembler::IsStringInstanceType(Node* instance_type) { STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE); return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE)); } Node* CodeStubAssembler::IsJSReceiverInstanceType(Node* instance_type) { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)); } Node* CodeStubAssembler::IsJSReceiver(Node* object) { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return IsJSReceiverInstanceType(LoadInstanceType(object)); } Node* CodeStubAssembler::IsJSReceiverMap(Node* map) { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return IsJSReceiverInstanceType(LoadMapInstanceType(map)); } Node* CodeStubAssembler::IsJSObject(Node* object) { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return Int32GreaterThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_JS_RECEIVER_TYPE)); } Node* CodeStubAssembler::IsJSGlobalProxy(Node* object) { return Word32Equal(LoadInstanceType(object), Int32Constant(JS_GLOBAL_PROXY_TYPE)); } Node* CodeStubAssembler::IsMap(Node* map) { return HasInstanceType(map, MAP_TYPE); } Node* CodeStubAssembler::IsJSValue(Node* map) { return HasInstanceType(map, JS_VALUE_TYPE); } Node* CodeStubAssembler::IsJSArray(Node* object) { return HasInstanceType(object, JS_ARRAY_TYPE); } Node* CodeStubAssembler::IsWeakCell(Node* object) { return HasInstanceType(object, WEAK_CELL_TYPE); } Node* CodeStubAssembler::IsBoolean(Node* object) { return IsBooleanMap(LoadMap(object)); } Node* CodeStubAssembler::IsHeapNumber(Node* object) { return IsHeapNumberMap(LoadMap(object)); } Node* CodeStubAssembler::IsName(Node* object) { return Int32LessThanOrEqual(LoadInstanceType(object), Int32Constant(LAST_NAME_TYPE)); } Node* CodeStubAssembler::IsString(Node* object) { return Int32LessThanOrEqual(LoadInstanceType(object), Int32Constant(FIRST_NONSTRING_TYPE)); } Node* CodeStubAssembler::IsSymbol(Node* object) { return IsSymbolMap(LoadMap(object)); } Node* CodeStubAssembler::IsPrivateSymbol(Node* object) { return Select( IsSymbol(object), [=] { Node* const flags = SmiToWord32(LoadObjectField(object, Symbol::kFlagsOffset)); const int kPrivateMask = 1 << Symbol::kPrivateBit; return IsSetWord32(flags, kPrivateMask); }, [=] { return Int32Constant(0); }, MachineRepresentation::kWord32); } Node* CodeStubAssembler::IsNativeContext(Node* object) { return WordEqual(LoadMap(object), LoadRoot(Heap::kNativeContextMapRootIndex)); } Node* CodeStubAssembler::IsFixedDoubleArray(Node* object) { return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant()); } Node* CodeStubAssembler::IsHashTable(Node* object) { return WordEqual(LoadMap(object), LoadRoot(Heap::kHashTableMapRootIndex)); } Node* CodeStubAssembler::IsDictionary(Node* object) { return Word32Or(IsHashTable(object), IsUnseededNumberDictionary(object)); } Node* CodeStubAssembler::IsUnseededNumberDictionary(Node* object) { return WordEqual(LoadMap(object), LoadRoot(Heap::kUnseededNumberDictionaryMapRootIndex)); } Node* CodeStubAssembler::IsJSFunction(Node* object) { return HasInstanceType(object, JS_FUNCTION_TYPE); } Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index, ParameterMode parameter_mode) { CSA_ASSERT(this, IsString(string)); // Translate the {index} into a Word. index = ParameterToWord(index, parameter_mode); // We may need to loop in case of cons, thin, or sliced strings. Variable var_index(this, MachineType::PointerRepresentation(), index); Variable var_string(this, MachineRepresentation::kTagged, string); Variable var_result(this, MachineRepresentation::kWord32); Variable* loop_vars[] = {&var_index, &var_string}; Label done_loop(this, &var_result), loop(this, 2, loop_vars); Goto(&loop); Bind(&loop); { // Load the current {index}. index = var_index.value(); // Load the current {string}. string = var_string.value(); // Load the instance type of the {string}. Node* string_instance_type = LoadInstanceType(string); // Check if the {string} is a SeqString. Label if_stringissequential(this), if_stringisnotsequential(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kSeqStringTag)), &if_stringissequential, &if_stringisnotsequential); Bind(&if_stringissequential); { // Check if the {string} is a TwoByteSeqString or a OneByteSeqString. Label if_stringistwobyte(this), if_stringisonebyte(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &if_stringistwobyte, &if_stringisonebyte); Bind(&if_stringisonebyte); { var_result.Bind( Load(MachineType::Uint8(), string, IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)))); Goto(&done_loop); } Bind(&if_stringistwobyte); { var_result.Bind( Load(MachineType::Uint16(), string, IntPtrAdd(WordShl(index, IntPtrConstant(1)), IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag)))); Goto(&done_loop); } } Bind(&if_stringisnotsequential); { // Check if the {string} is a ConsString. Label if_stringiscons(this), if_stringisnotcons(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kConsStringTag)), &if_stringiscons, &if_stringisnotcons); Bind(&if_stringiscons); { // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we flatten the string first. Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred); Node* rhs = LoadObjectField(string, ConsString::kSecondOffset); Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty, &if_rhsisnotempty); Bind(&if_rhsisempty); { // Just operate on the left hand side of the {string}. var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset)); Goto(&loop); } Bind(&if_rhsisnotempty); { // Flatten the {string} and lookup in the resulting string. var_string.Bind(CallRuntime(Runtime::kFlattenString, NoContextConstant(), string)); Goto(&loop); } } Bind(&if_stringisnotcons); { // Check if the {string} is an ExternalString. Label if_stringisexternal(this), if_stringisnotexternal(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kExternalStringTag)), &if_stringisexternal, &if_stringisnotexternal); Bind(&if_stringisexternal); { // Check if the {string} is a short external string. Label if_stringisnotshort(this), if_stringisshort(this, Label::kDeferred); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kShortExternalStringMask)), Int32Constant(0)), &if_stringisnotshort, &if_stringisshort); Bind(&if_stringisnotshort); { // Load the actual resource data from the {string}. Node* string_resource_data = LoadObjectField(string, ExternalString::kResourceDataOffset, MachineType::Pointer()); // Check if the {string} is a TwoByteExternalString or a // OneByteExternalString. Label if_stringistwobyte(this), if_stringisonebyte(this); Branch(Word32Equal(Word32And(string_instance_type, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &if_stringistwobyte, &if_stringisonebyte); Bind(&if_stringisonebyte); { var_result.Bind( Load(MachineType::Uint8(), string_resource_data, index)); Goto(&done_loop); } Bind(&if_stringistwobyte); { var_result.Bind(Load(MachineType::Uint16(), string_resource_data, WordShl(index, IntPtrConstant(1)))); Goto(&done_loop); } } Bind(&if_stringisshort); { // The {string} might be compressed, call the runtime. var_result.Bind(SmiToWord32( CallRuntime(Runtime::kExternalStringGetChar, NoContextConstant(), string, SmiTag(index)))); Goto(&done_loop); } } Bind(&if_stringisnotexternal); { Label if_stringissliced(this), if_stringisthin(this); Branch( Word32Equal(Word32And(string_instance_type, Int32Constant(kStringRepresentationMask)), Int32Constant(kSlicedStringTag)), &if_stringissliced, &if_stringisthin); Bind(&if_stringissliced); { // The {string} is a SlicedString, continue with its parent. Node* string_offset = LoadAndUntagObjectField(string, SlicedString::kOffsetOffset); Node* string_parent = LoadObjectField(string, SlicedString::kParentOffset); var_index.Bind(IntPtrAdd(index, string_offset)); var_string.Bind(string_parent); Goto(&loop); } Bind(&if_stringisthin); { // The {string} is a ThinString, continue with its actual value. var_string.Bind(LoadObjectField(string, ThinString::kActualOffset)); Goto(&loop); } } } } } Bind(&done_loop); return var_result.value(); } Node* CodeStubAssembler::StringFromCharCode(Node* code) { Variable var_result(this, MachineRepresentation::kTagged); // Check if the {code} is a one-byte char code. Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred), if_done(this); Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)), &if_codeisonebyte, &if_codeistwobyte); Bind(&if_codeisonebyte); { // Load the isolate wide single character string cache. Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex); Node* code_index = ChangeUint32ToWord(code); // Check if we have an entry for the {code} in the single character string // cache already. Label if_entryisundefined(this, Label::kDeferred), if_entryisnotundefined(this); Node* entry = LoadFixedArrayElement(cache, code_index); Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined, &if_entryisnotundefined); Bind(&if_entryisundefined); { // Allocate a new SeqOneByteString for {code} and store it in the {cache}. Node* result = AllocateSeqOneByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord8, result, IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code); StoreFixedArrayElement(cache, code_index, result); var_result.Bind(result); Goto(&if_done); } Bind(&if_entryisnotundefined); { // Return the entry from the {cache}. var_result.Bind(entry); Goto(&if_done); } } Bind(&if_codeistwobyte); { // Allocate a new SeqTwoByteString for {code}. Node* result = AllocateSeqTwoByteString(1); StoreNoWriteBarrier( MachineRepresentation::kWord16, result, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code); var_result.Bind(result); Goto(&if_done); } Bind(&if_done); return var_result.value(); } namespace { // A wrapper around CopyStringCharacters which determines the correct string // encoding, allocates a corresponding sequential string, and then copies the // given character range using CopyStringCharacters. // |from_string| must be a sequential string. |from_index| and // |character_count| must be Smis s.t. // 0 <= |from_index| <= |from_index| + |character_count| < from_string.length. Node* AllocAndCopyStringCharacters(CodeStubAssembler* a, Node* context, Node* from, Node* from_instance_type, Node* from_index, Node* character_count) { typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; Label end(a), two_byte_sequential(a); Variable var_result(a, MachineRepresentation::kTagged); Node* const smi_zero = a->SmiConstant(Smi::kZero); STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); a->GotoIf(a->Word32Equal(a->Word32And(from_instance_type, a->Int32Constant(kStringEncodingMask)), a->Int32Constant(0)), &two_byte_sequential); // The subject string is a sequential one-byte string. { Node* result = a->AllocateSeqOneByteString(context, a->SmiToWord(character_count)); a->CopyStringCharacters(from, result, from_index, smi_zero, character_count, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING, CodeStubAssembler::SMI_PARAMETERS); var_result.Bind(result); a->Goto(&end); } // The subject string is a sequential two-byte string. a->Bind(&two_byte_sequential); { Node* result = a->AllocateSeqTwoByteString(context, a->SmiToWord(character_count)); a->CopyStringCharacters(from, result, from_index, smi_zero, character_count, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING, CodeStubAssembler::SMI_PARAMETERS); var_result.Bind(result); a->Goto(&end); } a->Bind(&end); return var_result.value(); } } // namespace Node* CodeStubAssembler::SubString(Node* context, Node* string, Node* from, Node* to) { Label end(this); Label runtime(this); Node* const int_zero = Int32Constant(0); // Int32 variables. Variable var_instance_type(this, MachineRepresentation::kWord32, int_zero); Variable var_representation(this, MachineRepresentation::kWord32, int_zero); Variable var_from(this, MachineRepresentation::kTagged, from); // Smi. Variable var_string(this, MachineRepresentation::kTagged, string); // String. Variable var_result(this, MachineRepresentation::kTagged); // String. // Make sure first argument is a string. CSA_ASSERT(this, TaggedIsNotSmi(string)); CSA_ASSERT(this, IsString(string)); // Load the instance type of the {string}. Node* const instance_type = LoadInstanceType(string); var_instance_type.Bind(instance_type); // Make sure that both from and to are non-negative smis. GotoIfNot(TaggedIsPositiveSmi(from), &runtime); GotoIfNot(TaggedIsPositiveSmi(to), &runtime); Node* const substr_length = SmiSub(to, from); Node* const string_length = LoadStringLength(string); // Begin dispatching based on substring length. Label original_string_or_invalid_length(this); GotoIf(SmiAboveOrEqual(substr_length, string_length), &original_string_or_invalid_length); // A real substring (substr_length < string_length). Label single_char(this); GotoIf(SmiEqual(substr_length, SmiConstant(Smi::FromInt(1))), &single_char); // TODO(jgruber): Add an additional case for substring of length == 0? // Deal with different string types: update the index if necessary // and put the underlying string into var_string. // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag & kThinStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); Label underlying_unpacked(this); GotoIf(Word32Equal( Word32And(instance_type, Int32Constant(kIsIndirectStringMask)), Int32Constant(0)), &underlying_unpacked); // The subject string is a sliced, cons, or thin string. Label thin_string(this), thin_or_sliced(this); var_representation.Bind( Word32And(instance_type, Int32Constant(kStringRepresentationMask))); GotoIf( Word32NotEqual(var_representation.value(), Int32Constant(kConsStringTag)), &thin_or_sliced); // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. { GotoIf(WordNotEqual(LoadObjectField(string, ConsString::kSecondOffset), EmptyStringConstant()), &runtime); Node* first_string_part = LoadObjectField(string, ConsString::kFirstOffset); var_string.Bind(first_string_part); var_instance_type.Bind(LoadInstanceType(first_string_part)); var_representation.Bind(Word32And( var_instance_type.value(), Int32Constant(kStringRepresentationMask))); // The loaded first part might be a thin string. Branch(Word32Equal(Word32And(var_instance_type.value(), Int32Constant(kIsIndirectStringMask)), Int32Constant(0)), &underlying_unpacked, &thin_string); } Bind(&thin_or_sliced); { GotoIf( Word32Equal(var_representation.value(), Int32Constant(kThinStringTag)), &thin_string); // Otherwise it's a sliced string. // Fetch parent and correct start index by offset. Node* sliced_offset = LoadObjectField(var_string.value(), SlicedString::kOffsetOffset); var_from.Bind(SmiAdd(from, sliced_offset)); Node* slice_parent = LoadObjectField(string, SlicedString::kParentOffset); var_string.Bind(slice_parent); Node* slice_parent_instance_type = LoadInstanceType(slice_parent); var_instance_type.Bind(slice_parent_instance_type); // The loaded parent might be a thin string. Branch(Word32Equal(Word32And(var_instance_type.value(), Int32Constant(kIsIndirectStringMask)), Int32Constant(0)), &underlying_unpacked, &thin_string); } Bind(&thin_string); { Node* actual_string = LoadObjectField(var_string.value(), ThinString::kActualOffset); var_string.Bind(actual_string); var_instance_type.Bind(LoadInstanceType(actual_string)); Goto(&underlying_unpacked); } // The subject string can only be external or sequential string of either // encoding at this point. Label external_string(this); Bind(&underlying_unpacked); { if (FLAG_string_slices) { Label copy_routine(this); // Short slice. Copy instead of slicing. GotoIf(SmiLessThan(substr_length, SmiConstant(Smi::FromInt(SlicedString::kMinLength))), ©_routine); // Allocate new sliced string. Label two_byte_slice(this); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); GotoIf(Word32Equal(Word32And(var_instance_type.value(), Int32Constant(kStringEncodingMask)), Int32Constant(0)), &two_byte_slice); var_result.Bind(AllocateSlicedOneByteString( substr_length, var_string.value(), var_from.value())); Goto(&end); Bind(&two_byte_slice); var_result.Bind(AllocateSlicedTwoByteString( substr_length, var_string.value(), var_from.value())); Goto(&end); Bind(©_routine); } // The subject string can only be external or sequential string of either // encoding at this point. STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); GotoIfNot(Word32Equal(Word32And(var_instance_type.value(), Int32Constant(kExternalStringTag)), Int32Constant(0)), &external_string); var_result.Bind(AllocAndCopyStringCharacters( this, context, var_string.value(), var_instance_type.value(), var_from.value(), substr_length)); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Goto(&end); } // Handle external string. Bind(&external_string); { Node* const fake_sequential_string = TryDerefExternalString( var_string.value(), var_instance_type.value(), &runtime); var_result.Bind(AllocAndCopyStringCharacters( this, context, fake_sequential_string, var_instance_type.value(), var_from.value(), substr_length)); Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); Goto(&end); } // Substrings of length 1 are generated through CharCodeAt and FromCharCode. Bind(&single_char); { Node* char_code = StringCharCodeAt(var_string.value(), var_from.value()); var_result.Bind(StringFromCharCode(char_code)); Goto(&end); } Bind(&original_string_or_invalid_length); { // Longer than original string's length or negative: unsafe arguments. GotoIf(SmiAbove(substr_length, string_length), &runtime); // Equal length - check if {from, to} == {0, str.length}. GotoIf(SmiAbove(from, SmiConstant(Smi::kZero)), &runtime); // Return the original string (substr_length == string_length). Counters* counters = isolate()->counters(); IncrementCounter(counters->sub_string_native(), 1); var_result.Bind(string); Goto(&end); } // Fall back to a runtime call. Bind(&runtime); { var_result.Bind( CallRuntime(Runtime::kSubString, context, string, from, to)); Goto(&end); } Bind(&end); return var_result.value(); } namespace { Node* IsExternalStringInstanceType(CodeStubAssembler* a, Node* const instance_type) { CSA_ASSERT(a, a->IsStringInstanceType(instance_type)); return a->Word32Equal( a->Word32And(instance_type, a->Int32Constant(kStringRepresentationMask)), a->Int32Constant(kExternalStringTag)); } Node* IsShortExternalStringInstanceType(CodeStubAssembler* a, Node* const instance_type) { CSA_ASSERT(a, a->IsStringInstanceType(instance_type)); STATIC_ASSERT(kShortExternalStringTag != 0); return a->Word32NotEqual( a->Word32And(instance_type, a->Int32Constant(kShortExternalStringMask)), a->Int32Constant(0)); } } // namespace Node* CodeStubAssembler::TryDerefExternalString(Node* const string, Node* const instance_type, Label* if_bailout) { Label out(this); USE(IsExternalStringInstanceType); CSA_ASSERT(this, IsExternalStringInstanceType(this, instance_type)); GotoIf(IsShortExternalStringInstanceType(this, instance_type), if_bailout); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); Node* resource_data = LoadObjectField( string, ExternalString::kResourceDataOffset, MachineType::Pointer()); Node* const fake_sequential_string = IntPtrSub(resource_data, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); return fake_sequential_string; } void CodeStubAssembler::MaybeDerefIndirectString(Variable* var_string, Node* instance_type, Variable* var_did_something) { Label deref(this), done(this, var_did_something); Node* representation = Word32And(instance_type, Int32Constant(kStringRepresentationMask)); GotoIf(Word32Equal(representation, Int32Constant(kThinStringTag)), &deref); GotoIf(Word32NotEqual(representation, Int32Constant(kConsStringTag)), &done); // Cons string. Node* rhs = LoadObjectField(var_string->value(), ConsString::kSecondOffset); GotoIf(WordEqual(rhs, EmptyStringConstant()), &deref); Goto(&done); Bind(&deref); STATIC_ASSERT(ThinString::kActualOffset == ConsString::kFirstOffset); var_string->Bind( LoadObjectField(var_string->value(), ThinString::kActualOffset)); var_did_something->Bind(IntPtrConstant(1)); Goto(&done); Bind(&done); } void CodeStubAssembler::MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type, Variable* var_right, Node* right_instance_type, Label* did_something) { Variable var_did_something(this, MachineType::PointerRepresentation(), IntPtrConstant(0)); MaybeDerefIndirectString(var_left, left_instance_type, &var_did_something); MaybeDerefIndirectString(var_right, right_instance_type, &var_did_something); GotoIf(WordNotEqual(var_did_something.value(), IntPtrConstant(0)), did_something); // Fall through if neither string was an indirect string. } Node* CodeStubAssembler::StringAdd(Node* context, Node* left, Node* right, AllocationFlags flags) { Label check_right(this); Label runtime(this, Label::kDeferred); Label cons(this); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); Label done_native(this, &result); Counters* counters = isolate()->counters(); Node* left_length = LoadStringLength(left); GotoIf(WordNotEqual(IntPtrConstant(0), left_length), &check_right); result.Bind(right); Goto(&done_native); Bind(&check_right); Node* right_length = LoadStringLength(right); GotoIf(WordNotEqual(IntPtrConstant(0), right_length), &cons); result.Bind(left); Goto(&done_native); Bind(&cons); { CSA_ASSERT(this, TaggedIsSmi(left_length)); CSA_ASSERT(this, TaggedIsSmi(right_length)); Node* new_length = SmiAdd(left_length, right_length); GotoIf(SmiAboveOrEqual(new_length, SmiConstant(String::kMaxLength)), &runtime); Variable var_left(this, MachineRepresentation::kTagged, left); Variable var_right(this, MachineRepresentation::kTagged, right); Variable* input_vars[2] = {&var_left, &var_right}; Label non_cons(this, 2, input_vars); Label slow(this, Label::kDeferred); GotoIf(SmiLessThan(new_length, SmiConstant(ConsString::kMinLength)), &non_cons); result.Bind(NewConsString(context, new_length, var_left.value(), var_right.value(), flags)); Goto(&done_native); Bind(&non_cons); Comment("Full string concatenate"); Node* left_instance_type = LoadInstanceType(var_left.value()); Node* right_instance_type = LoadInstanceType(var_right.value()); // Compute intersection and difference of instance types. Node* ored_instance_types = Word32Or(left_instance_type, right_instance_type); Node* xored_instance_types = Word32Xor(left_instance_type, right_instance_type); // Check if both strings have the same encoding and both are sequential. GotoIf(Word32NotEqual(Word32And(xored_instance_types, Int32Constant(kStringEncodingMask)), Int32Constant(0)), &runtime); GotoIf(Word32NotEqual(Word32And(ored_instance_types, Int32Constant(kStringRepresentationMask)), Int32Constant(0)), &slow); Label two_byte(this); GotoIf(Word32Equal(Word32And(ored_instance_types, Int32Constant(kStringEncodingMask)), Int32Constant(kTwoByteStringTag)), &two_byte); // One-byte sequential string case Node* new_string = AllocateSeqOneByteString(context, new_length, SMI_PARAMETERS); CopyStringCharacters(var_left.value(), new_string, SmiConstant(Smi::kZero), SmiConstant(Smi::kZero), left_length, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING, SMI_PARAMETERS); CopyStringCharacters(var_right.value(), new_string, SmiConstant(Smi::kZero), left_length, right_length, String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING, SMI_PARAMETERS); result.Bind(new_string); Goto(&done_native); Bind(&two_byte); { // Two-byte sequential string case new_string = AllocateSeqTwoByteString(context, new_length, SMI_PARAMETERS); CopyStringCharacters(var_left.value(), new_string, SmiConstant(Smi::kZero), SmiConstant(Smi::kZero), left_length, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING, SMI_PARAMETERS); CopyStringCharacters(var_right.value(), new_string, SmiConstant(Smi::kZero), left_length, right_length, String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING, SMI_PARAMETERS); result.Bind(new_string); Goto(&done_native); } Bind(&slow); { // Try to unwrap indirect strings, restart the above attempt on success. MaybeDerefIndirectStrings(&var_left, left_instance_type, &var_right, right_instance_type, &non_cons); Goto(&runtime); } } Bind(&runtime); { result.Bind(CallRuntime(Runtime::kStringAdd, context, left, right)); Goto(&done); } Bind(&done_native); { IncrementCounter(counters->string_add_native(), 1); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::StringFromCodePoint(Node* codepoint, UnicodeEncoding encoding) { Variable var_result(this, MachineRepresentation::kTagged, EmptyStringConstant()); Label if_isword16(this), if_isword32(this), return_result(this); Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16, &if_isword32); Bind(&if_isword16); { var_result.Bind(StringFromCharCode(codepoint)); Goto(&return_result); } Bind(&if_isword32); { switch (encoding) { case UnicodeEncoding::UTF16: break; case UnicodeEncoding::UTF32: { // Convert UTF32 to UTF16 code units, and store as a 32 bit word. Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10)); // lead = (codepoint >> 10) + LEAD_OFFSET Node* lead = Int32Add(WordShr(codepoint, Int32Constant(10)), lead_offset); // trail = (codepoint & 0x3FF) + 0xDC00; Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)), Int32Constant(0xDC00)); // codpoint = (trail << 16) | lead; codepoint = Word32Or(WordShl(trail, Int32Constant(16)), lead); break; } } Node* value = AllocateSeqTwoByteString(2); StoreNoWriteBarrier( MachineRepresentation::kWord32, value, IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), codepoint); var_result.Bind(value); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::StringToNumber(Node* context, Node* input) { Label runtime(this, Label::kDeferred); Label end(this); Variable var_result(this, MachineRepresentation::kTagged); // Check if string has a cached array index. Node* hash = LoadNameHashField(input); Node* bit = Word32And(hash, Int32Constant(String::kContainsCachedArrayIndexMask)); GotoIf(Word32NotEqual(bit, Int32Constant(0)), &runtime); var_result.Bind( SmiTag(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash))); Goto(&end); Bind(&runtime); { var_result.Bind(CallRuntime(Runtime::kStringToNumber, context, input)); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::NumberToString(Node* context, Node* argument) { Variable result(this, MachineRepresentation::kTagged); Label runtime(this, Label::kDeferred); Label smi(this); Label done(this, &result); // Load the number string cache. Node* number_string_cache = LoadRoot(Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. // TODO(ishell): cleanup mask handling. Node* mask = BitcastTaggedToWord(LoadFixedArrayBaseLength(number_string_cache)); Node* one = IntPtrConstant(1); mask = IntPtrSub(mask, one); GotoIf(TaggedIsSmi(argument), &smi); // Argument isn't smi, check to see if it's a heap-number. Node* map = LoadMap(argument); GotoIfNot(IsHeapNumberMap(map), &runtime); // Make a hash from the two 32-bit values of the double. Node* low = LoadObjectField(argument, HeapNumber::kValueOffset, MachineType::Int32()); Node* high = LoadObjectField(argument, HeapNumber::kValueOffset + kIntSize, MachineType::Int32()); Node* hash = Word32Xor(low, high); hash = ChangeInt32ToIntPtr(hash); hash = WordShl(hash, one); Node* index = WordAnd(hash, SmiUntag(BitcastWordToTagged(mask))); // Cache entry's key must be a heap number Node* number_key = LoadFixedArrayElement(number_string_cache, index); GotoIf(TaggedIsSmi(number_key), &runtime); map = LoadMap(number_key); GotoIfNot(IsHeapNumberMap(map), &runtime); // Cache entry's key must match the heap number value we're looking for. Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset, MachineType::Int32()); Node* high_compare = LoadObjectField( number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32()); GotoIfNot(Word32Equal(low, low_compare), &runtime); GotoIfNot(Word32Equal(high, high_compare), &runtime); // Heap number match, return value from cache entry. IncrementCounter(isolate()->counters()->number_to_string_native(), 1); result.Bind(LoadFixedArrayElement(number_string_cache, index, kPointerSize)); Goto(&done); Bind(&runtime); { // No cache entry, go to the runtime. result.Bind(CallRuntime(Runtime::kNumberToString, context, argument)); } Goto(&done); Bind(&smi); { // Load the smi key, make sure it matches the smi we're looking for. Node* smi_index = BitcastWordToTagged( WordAnd(WordShl(BitcastTaggedToWord(argument), one), mask)); Node* smi_key = LoadFixedArrayElement(number_string_cache, smi_index, 0, SMI_PARAMETERS); GotoIf(WordNotEqual(smi_key, argument), &runtime); // Smi match, return value from cache entry. IncrementCounter(isolate()->counters()->number_to_string_native(), 1); result.Bind(LoadFixedArrayElement(number_string_cache, smi_index, kPointerSize, SMI_PARAMETERS)); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::ToName(Node* context, Node* value) { Label end(this); Variable var_result(this, MachineRepresentation::kTagged); Label is_number(this); GotoIf(TaggedIsSmi(value), &is_number); Label not_name(this); Node* value_instance_type = LoadInstanceType(value); STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); GotoIf(Int32GreaterThan(value_instance_type, Int32Constant(LAST_NAME_TYPE)), ¬_name); var_result.Bind(value); Goto(&end); Bind(&is_number); { Callable callable = CodeFactory::NumberToString(isolate()); var_result.Bind(CallStub(callable, context, value)); Goto(&end); } Bind(¬_name); { GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &is_number); Label not_oddball(this); GotoIf(Word32NotEqual(value_instance_type, Int32Constant(ODDBALL_TYPE)), ¬_oddball); var_result.Bind(LoadObjectField(value, Oddball::kToStringOffset)); Goto(&end); Bind(¬_oddball); { var_result.Bind(CallRuntime(Runtime::kToName, context, value)); Goto(&end); } } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::NonNumberToNumber(Node* context, Node* input) { // Assert input is a HeapObject (not smi or heap number) CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input))); CSA_ASSERT(this, Word32BinaryNot(IsHeapNumberMap(LoadMap(input)))); // We might need to loop once here due to ToPrimitive conversions. Variable var_input(this, MachineRepresentation::kTagged, input); Variable var_result(this, MachineRepresentation::kTagged); Label loop(this, &var_input); Label end(this); Goto(&loop); Bind(&loop); { // Load the current {input} value (known to be a HeapObject). Node* input = var_input.value(); // Dispatch on the {input} instance type. Node* input_instance_type = LoadInstanceType(input); Label if_inputisstring(this), if_inputisoddball(this), if_inputisreceiver(this, Label::kDeferred), if_inputisother(this, Label::kDeferred); GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring); GotoIf(Word32Equal(input_instance_type, Int32Constant(ODDBALL_TYPE)), &if_inputisoddball); Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver, &if_inputisother); Bind(&if_inputisstring); { // The {input} is a String, use the fast stub to convert it to a Number. var_result.Bind(StringToNumber(context, input)); Goto(&end); } Bind(&if_inputisoddball); { // The {input} is an Oddball, we just need to load the Number value of it. var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset)); Goto(&end); } Bind(&if_inputisreceiver); { // The {input} is a JSReceiver, we need to convert it to a Primitive first // using the ToPrimitive type conversion, preferably yielding a Number. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); Node* result = CallStub(callable, context, input); // Check if the {result} is already a Number. Label if_resultisnumber(this), if_resultisnotnumber(this); GotoIf(TaggedIsSmi(result), &if_resultisnumber); Node* result_map = LoadMap(result); Branch(IsHeapNumberMap(result_map), &if_resultisnumber, &if_resultisnotnumber); Bind(&if_resultisnumber); { // The ToPrimitive conversion already gave us a Number, so we're done. var_result.Bind(result); Goto(&end); } Bind(&if_resultisnotnumber); { // We now have a Primitive {result}, but it's not yet a Number. var_input.Bind(result); Goto(&loop); } } Bind(&if_inputisother); { // The {input} is something else (e.g. Symbol), let the runtime figure // out the correct exception. // Note: We cannot tail call to the runtime here, as js-to-wasm // trampolines also use this code currently, and they declare all // outgoing parameters as untagged, while we would push a tagged // object here. var_result.Bind(CallRuntime(Runtime::kToNumber, context, input)); Goto(&end); } } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::ToNumber(Node* context, Node* input) { Variable var_result(this, MachineRepresentation::kTagged); Label end(this); Label not_smi(this, Label::kDeferred); GotoIfNot(TaggedIsSmi(input), ¬_smi); var_result.Bind(input); Goto(&end); Bind(¬_smi); { Label not_heap_number(this, Label::kDeferred); Node* input_map = LoadMap(input); GotoIfNot(IsHeapNumberMap(input_map), ¬_heap_number); var_result.Bind(input); Goto(&end); Bind(¬_heap_number); { var_result.Bind(NonNumberToNumber(context, input)); Goto(&end); } } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::ToUint32(Node* context, Node* input) { Node* const float_zero = Float64Constant(0.0); Node* const float_two_32 = Float64Constant(static_cast<double>(1ULL << 32)); Label out(this); Variable var_result(this, MachineRepresentation::kTagged, input); // Early exit for positive smis. { // TODO(jgruber): This branch and the recheck below can be removed once we // have a ToNumber with multiple exits. Label next(this, Label::kDeferred); Branch(TaggedIsPositiveSmi(input), &out, &next); Bind(&next); } Node* const number = ToNumber(context, input); var_result.Bind(number); // Perhaps we have a positive smi now. { Label next(this, Label::kDeferred); Branch(TaggedIsPositiveSmi(number), &out, &next); Bind(&next); } Label if_isnegativesmi(this), if_isheapnumber(this); Branch(TaggedIsSmi(number), &if_isnegativesmi, &if_isheapnumber); Bind(&if_isnegativesmi); { // floor({input}) mod 2^32 === {input} + 2^32. Node* const float_number = SmiToFloat64(number); Node* const float_result = Float64Add(float_number, float_two_32); Node* const result = ChangeFloat64ToTagged(float_result); var_result.Bind(result); Goto(&out); } Bind(&if_isheapnumber); { Label return_zero(this); Node* const value = LoadHeapNumberValue(number); { // +-0. Label next(this); Branch(Float64Equal(value, float_zero), &return_zero, &next); Bind(&next); } { // NaN. Label next(this); Branch(Float64Equal(value, value), &next, &return_zero); Bind(&next); } { // +Infinity. Label next(this); Node* const positive_infinity = Float64Constant(std::numeric_limits<double>::infinity()); Branch(Float64Equal(value, positive_infinity), &return_zero, &next); Bind(&next); } { // -Infinity. Label next(this); Node* const negative_infinity = Float64Constant(-1.0 * std::numeric_limits<double>::infinity()); Branch(Float64Equal(value, negative_infinity), &return_zero, &next); Bind(&next); } // Return floor({input}) mod 2^32 (assuming mod semantics that always return // positive results). { Node* x = Float64Floor(value); x = Float64Mod(x, float_two_32); x = Float64Add(x, float_two_32); x = Float64Mod(x, float_two_32); Node* const result = ChangeFloat64ToTagged(x); var_result.Bind(result); Goto(&out); } Bind(&return_zero); { var_result.Bind(SmiConstant(Smi::kZero)); Goto(&out); } } Bind(&out); return var_result.value(); } Node* CodeStubAssembler::ToString(Node* context, Node* input) { Label is_number(this); Label runtime(this, Label::kDeferred); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); GotoIf(TaggedIsSmi(input), &is_number); Node* input_map = LoadMap(input); Node* input_instance_type = LoadMapInstanceType(input_map); result.Bind(input); GotoIf(IsStringInstanceType(input_instance_type), &done); Label not_heap_number(this); Branch(IsHeapNumberMap(input_map), &is_number, ¬_heap_number); Bind(&is_number); result.Bind(NumberToString(context, input)); Goto(&done); Bind(¬_heap_number); { GotoIf(Word32NotEqual(input_instance_type, Int32Constant(ODDBALL_TYPE)), &runtime); result.Bind(LoadObjectField(input, Oddball::kToStringOffset)); Goto(&done); } Bind(&runtime); { result.Bind(CallRuntime(Runtime::kToString, context, input)); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) { Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this); Variable result(this, MachineRepresentation::kTagged); Label done(this, &result); BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver); Bind(&if_isreceiver); { // Convert {input} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); result.Bind(CallStub(callable, context, input)); Goto(&done); } Bind(&if_isnotreceiver); { result.Bind(input); Goto(&done); } Bind(&done); return result.value(); } Node* CodeStubAssembler::ToInteger(Node* context, Node* input, ToIntegerTruncationMode mode) { // We might need to loop once for ToNumber conversion. Variable var_arg(this, MachineRepresentation::kTagged, input); Label loop(this, &var_arg), out(this); Goto(&loop); Bind(&loop); { // Shared entry points. Label return_zero(this, Label::kDeferred); // Load the current {arg} value. Node* arg = var_arg.value(); // Check if {arg} is a Smi. GotoIf(TaggedIsSmi(arg), &out); // Check if {arg} is a HeapNumber. Label if_argisheapnumber(this), if_argisnotheapnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(LoadMap(arg)), &if_argisheapnumber, &if_argisnotheapnumber); Bind(&if_argisheapnumber); { // Load the floating-point value of {arg}. Node* arg_value = LoadHeapNumberValue(arg); // Check if {arg} is NaN. GotoIfNot(Float64Equal(arg_value, arg_value), &return_zero); // Truncate {arg} towards zero. Node* value = Float64Trunc(arg_value); if (mode == kTruncateMinusZero) { // Truncate -0.0 to 0. GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero); } var_arg.Bind(ChangeFloat64ToTagged(value)); Goto(&out); } Bind(&if_argisnotheapnumber); { // Need to convert {arg} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_arg.Bind(CallStub(callable, context, arg)); Goto(&loop); } Bind(&return_zero); var_arg.Bind(SmiConstant(Smi::kZero)); Goto(&out); } Bind(&out); return var_arg.value(); } Node* CodeStubAssembler::DecodeWord32(Node* word32, uint32_t shift, uint32_t mask) { return Word32Shr(Word32And(word32, Int32Constant(mask)), static_cast<int>(shift)); } Node* CodeStubAssembler::DecodeWord(Node* word, uint32_t shift, uint32_t mask) { return WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift)); } void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, Int32Constant(value)); } } void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) { DCHECK(delta > 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Add(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) { DCHECK(delta > 0); if (FLAG_native_code_counters && counter->Enabled()) { Node* counter_address = ExternalConstant(ExternalReference(counter)); Node* value = Load(MachineType::Int32(), counter_address); value = Int32Sub(value, Int32Constant(delta)); StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); } } void CodeStubAssembler::Increment(Variable& variable, int value, ParameterMode mode) { DCHECK_IMPLIES(mode == INTPTR_PARAMETERS, variable.rep() == MachineType::PointerRepresentation()); DCHECK_IMPLIES(mode == SMI_PARAMETERS, variable.rep() == MachineRepresentation::kTagged || variable.rep() == MachineRepresentation::kTaggedSigned); variable.Bind( IntPtrOrSmiAdd(variable.value(), IntPtrOrSmiConstant(value, mode), mode)); } void CodeStubAssembler::Use(Label* label) { GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label); } void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex, Variable* var_index, Label* if_keyisunique, Variable* var_unique, Label* if_bailout) { DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep()); DCHECK_EQ(MachineRepresentation::kTagged, var_unique->rep()); Comment("TryToName"); Label if_hascachedindex(this), if_keyisnotindex(this), if_thinstring(this); // Handle Smi and HeapNumber keys. var_index->Bind(TryToIntptr(key, &if_keyisnotindex)); Goto(if_keyisindex); Bind(&if_keyisnotindex); Node* key_map = LoadMap(key); var_unique->Bind(key); // Symbols are unique. GotoIf(IsSymbolMap(key_map), if_keyisunique); Node* key_instance_type = LoadMapInstanceType(key_map); // Miss if |key| is not a String. STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); GotoIfNot(IsStringInstanceType(key_instance_type), if_bailout); // |key| is a String. Check if it has a cached array index. Node* hash = LoadNameHashField(key); Node* contains_index = Word32And(hash, Int32Constant(Name::kContainsCachedArrayIndexMask)); GotoIf(Word32Equal(contains_index, Int32Constant(0)), &if_hascachedindex); // No cached array index. If the string knows that it contains an index, // then it must be an uncacheable index. Handle this case in the runtime. Node* not_an_index = Word32And(hash, Int32Constant(Name::kIsNotArrayIndexMask)); GotoIf(Word32Equal(not_an_index, Int32Constant(0)), if_bailout); // Check if we have a ThinString. GotoIf(Word32Equal(key_instance_type, Int32Constant(THIN_STRING_TYPE)), &if_thinstring); GotoIf( Word32Equal(key_instance_type, Int32Constant(THIN_ONE_BYTE_STRING_TYPE)), &if_thinstring); // Finally, check if |key| is internalized. STATIC_ASSERT(kNotInternalizedTag != 0); Node* not_internalized = Word32And(key_instance_type, Int32Constant(kIsNotInternalizedMask)); GotoIf(Word32NotEqual(not_internalized, Int32Constant(0)), if_bailout); Goto(if_keyisunique); Bind(&if_thinstring); var_unique->Bind(LoadObjectField(key, ThinString::kActualOffset)); Goto(if_keyisunique); Bind(&if_hascachedindex); var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash)); Goto(if_keyisindex); } template <typename Dictionary> Node* CodeStubAssembler::EntryToIndex(Node* entry, int field_index) { Node* entry_index = IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize)); return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex + field_index)); } template Node* CodeStubAssembler::EntryToIndex<NameDictionary>(Node*, int); template Node* CodeStubAssembler::EntryToIndex<GlobalDictionary>(Node*, int); template Node* CodeStubAssembler::EntryToIndex<SeededNumberDictionary>(Node*, int); Node* CodeStubAssembler::HashTableComputeCapacity(Node* at_least_space_for) { Node* capacity = IntPtrRoundUpToPowerOfTwo32( WordShl(at_least_space_for, IntPtrConstant(1))); return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity)); } Node* CodeStubAssembler::IntPtrMax(Node* left, Node* right) { return SelectConstant(IntPtrGreaterThanOrEqual(left, right), left, right, MachineType::PointerRepresentation()); } Node* CodeStubAssembler::IntPtrMin(Node* left, Node* right) { return SelectConstant(IntPtrLessThanOrEqual(left, right), left, right, MachineType::PointerRepresentation()); } template <class Dictionary> Node* CodeStubAssembler::GetNumberOfElements(Node* dictionary) { return LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex); } template <class Dictionary> void CodeStubAssembler::SetNumberOfElements(Node* dictionary, Node* num_elements_smi) { StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex, num_elements_smi, SKIP_WRITE_BARRIER); } template <class Dictionary> Node* CodeStubAssembler::GetNumberOfDeletedElements(Node* dictionary) { return LoadFixedArrayElement(dictionary, Dictionary::kNumberOfDeletedElementsIndex); } template <class Dictionary> Node* CodeStubAssembler::GetCapacity(Node* dictionary) { return LoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex); } template <class Dictionary> Node* CodeStubAssembler::GetNextEnumerationIndex(Node* dictionary) { return LoadFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex); } template <class Dictionary> void CodeStubAssembler::SetNextEnumerationIndex(Node* dictionary, Node* next_enum_index_smi) { StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex, next_enum_index_smi, SKIP_WRITE_BARRIER); } template <typename Dictionary> void CodeStubAssembler::NameDictionaryLookup(Node* dictionary, Node* unique_name, Label* if_found, Variable* var_name_index, Label* if_not_found, int inlined_probes, LookupMode mode) { CSA_ASSERT(this, IsDictionary(dictionary)); DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep()); DCHECK_IMPLIES(mode == kFindInsertionIndex, inlined_probes == 0 && if_found == nullptr); Comment("NameDictionaryLookup"); Node* capacity = SmiUntag(GetCapacity<Dictionary>(dictionary)); Node* mask = IntPtrSub(capacity, IntPtrConstant(1)); Node* hash = ChangeUint32ToWord(LoadNameHash(unique_name)); // See Dictionary::FirstProbe(). Node* count = IntPtrConstant(0); Node* entry = WordAnd(hash, mask); for (int i = 0; i < inlined_probes; i++) { Node* index = EntryToIndex<Dictionary>(entry); var_name_index->Bind(index); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, unique_name), if_found); // See Dictionary::NextProbe(). count = IntPtrConstant(i + 1); entry = WordAnd(IntPtrAdd(entry, count), mask); } if (mode == kFindInsertionIndex) { // Appease the variable merging algorithm for "Goto(&loop)" below. var_name_index->Bind(IntPtrConstant(0)); } Node* undefined = UndefinedConstant(); Node* the_hole = mode == kFindExisting ? nullptr : TheHoleConstant(); Variable var_count(this, MachineType::PointerRepresentation(), count); Variable var_entry(this, MachineType::PointerRepresentation(), entry); Variable* loop_vars[] = {&var_count, &var_entry, var_name_index}; Label loop(this, 3, loop_vars); Goto(&loop); Bind(&loop); { Node* entry = var_entry.value(); Node* index = EntryToIndex<Dictionary>(entry); var_name_index->Bind(index); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, undefined), if_not_found); if (mode == kFindExisting) { GotoIf(WordEqual(current, unique_name), if_found); } else { DCHECK_EQ(kFindInsertionIndex, mode); GotoIf(WordEqual(current, the_hole), if_not_found); } // See Dictionary::NextProbe(). Increment(var_count); entry = WordAnd(IntPtrAdd(entry, var_count.value()), mask); var_entry.Bind(entry); Goto(&loop); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NameDictionaryLookup<NameDictionary>( Node*, Node*, Label*, Variable*, Label*, int, LookupMode); template void CodeStubAssembler::NameDictionaryLookup<GlobalDictionary>( Node*, Node*, Label*, Variable*, Label*, int, LookupMode); Node* CodeStubAssembler::ComputeIntegerHash(Node* key, Node* seed) { // See v8::internal::ComputeIntegerHash() Node* hash = TruncateWordToWord32(key); hash = Word32Xor(hash, seed); hash = Int32Add(Word32Xor(hash, Int32Constant(0xffffffff)), Word32Shl(hash, Int32Constant(15))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12))); hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2))); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4))); hash = Int32Mul(hash, Int32Constant(2057)); hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16))); return Word32And(hash, Int32Constant(0x3fffffff)); } template <typename Dictionary> void CodeStubAssembler::NumberDictionaryLookup(Node* dictionary, Node* intptr_index, Label* if_found, Variable* var_entry, Label* if_not_found) { CSA_ASSERT(this, IsDictionary(dictionary)); DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep()); Comment("NumberDictionaryLookup"); Node* capacity = SmiUntag(GetCapacity<Dictionary>(dictionary)); Node* mask = IntPtrSub(capacity, IntPtrConstant(1)); Node* int32_seed; if (Dictionary::ShapeT::UsesSeed) { int32_seed = HashSeed(); } else { int32_seed = Int32Constant(kZeroHashSeed); } Node* hash = ChangeUint32ToWord(ComputeIntegerHash(intptr_index, int32_seed)); Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index); // See Dictionary::FirstProbe(). Node* count = IntPtrConstant(0); Node* entry = WordAnd(hash, mask); Node* undefined = UndefinedConstant(); Node* the_hole = TheHoleConstant(); Variable var_count(this, MachineType::PointerRepresentation(), count); Variable* loop_vars[] = {&var_count, var_entry}; Label loop(this, 2, loop_vars); var_entry->Bind(entry); Goto(&loop); Bind(&loop); { Node* entry = var_entry->value(); Node* index = EntryToIndex<Dictionary>(entry); Node* current = LoadFixedArrayElement(dictionary, index); GotoIf(WordEqual(current, undefined), if_not_found); Label next_probe(this); { Label if_currentissmi(this), if_currentisnotsmi(this); Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi); Bind(&if_currentissmi); { Node* current_value = SmiUntag(current); Branch(WordEqual(current_value, intptr_index), if_found, &next_probe); } Bind(&if_currentisnotsmi); { GotoIf(WordEqual(current, the_hole), &next_probe); // Current must be the Number. Node* current_value = LoadHeapNumberValue(current); Branch(Float64Equal(current_value, key_as_float64), if_found, &next_probe); } } Bind(&next_probe); // See Dictionary::NextProbe(). Increment(var_count); entry = WordAnd(IntPtrAdd(entry, var_count.value()), mask); var_entry->Bind(entry); Goto(&loop); } } template <class Dictionary> void CodeStubAssembler::FindInsertionEntry(Node* dictionary, Node* key, Variable* var_key_index) { UNREACHABLE(); } template <> void CodeStubAssembler::FindInsertionEntry<NameDictionary>( Node* dictionary, Node* key, Variable* var_key_index) { Label done(this); NameDictionaryLookup<NameDictionary>(dictionary, key, nullptr, var_key_index, &done, 0, kFindInsertionIndex); Bind(&done); } template <class Dictionary> void CodeStubAssembler::InsertEntry(Node* dictionary, Node* key, Node* value, Node* index, Node* enum_index) { UNREACHABLE(); // Use specializations instead. } template <> void CodeStubAssembler::InsertEntry<NameDictionary>(Node* dictionary, Node* name, Node* value, Node* index, Node* enum_index) { // Store name and value. StoreFixedArrayElement(dictionary, index, name); StoreValueByKeyIndex<NameDictionary>(dictionary, index, value); // Prepare details of the new property. const int kInitialIndex = 0; PropertyDetails d(kData, NONE, kInitialIndex, PropertyCellType::kNoCell); enum_index = SmiShl(enum_index, PropertyDetails::DictionaryStorageField::kShift); STATIC_ASSERT(kInitialIndex == 0); Variable var_details(this, MachineRepresentation::kTaggedSigned, SmiOr(SmiConstant(d.AsSmi()), enum_index)); // Private names must be marked non-enumerable. Label not_private(this, &var_details); GotoIfNot(IsSymbolMap(LoadMap(name)), ¬_private); Node* flags = SmiToWord32(LoadObjectField(name, Symbol::kFlagsOffset)); const int kPrivateMask = 1 << Symbol::kPrivateBit; GotoIfNot(IsSetWord32(flags, kPrivateMask), ¬_private); Node* dont_enum = SmiShl(SmiConstant(DONT_ENUM), PropertyDetails::AttributesField::kShift); var_details.Bind(SmiOr(var_details.value(), dont_enum)); Goto(¬_private); Bind(¬_private); // Finally, store the details. StoreDetailsByKeyIndex<NameDictionary>(dictionary, index, var_details.value()); } template <> void CodeStubAssembler::InsertEntry<GlobalDictionary>(Node* dictionary, Node* key, Node* value, Node* index, Node* enum_index) { UNIMPLEMENTED(); } template <class Dictionary> void CodeStubAssembler::Add(Node* dictionary, Node* key, Node* value, Label* bailout) { Node* capacity = GetCapacity<Dictionary>(dictionary); Node* nof = GetNumberOfElements<Dictionary>(dictionary); Node* new_nof = SmiAdd(nof, SmiConstant(1)); // Require 33% to still be free after adding additional_elements. // Computing "x + (x >> 1)" on a Smi x does not return a valid Smi! // But that's OK here because it's only used for a comparison. Node* required_capacity_pseudo_smi = SmiAdd(new_nof, SmiShr(new_nof, 1)); GotoIf(SmiBelow(capacity, required_capacity_pseudo_smi), bailout); // Require rehashing if more than 50% of free elements are deleted elements. Node* deleted = GetNumberOfDeletedElements<Dictionary>(dictionary); CSA_ASSERT(this, SmiAbove(capacity, new_nof)); Node* half_of_free_elements = SmiShr(SmiSub(capacity, new_nof), 1); GotoIf(SmiAbove(deleted, half_of_free_elements), bailout); Node* enum_index = nullptr; if (Dictionary::kIsEnumerable) { enum_index = GetNextEnumerationIndex<Dictionary>(dictionary); Node* new_enum_index = SmiAdd(enum_index, SmiConstant(1)); Node* max_enum_index = SmiConstant(PropertyDetails::DictionaryStorageField::kMax); GotoIf(SmiAbove(new_enum_index, max_enum_index), bailout); // No more bailouts after this point. // Operations from here on can have side effects. SetNextEnumerationIndex<Dictionary>(dictionary, new_enum_index); } else { USE(enum_index); } SetNumberOfElements<Dictionary>(dictionary, new_nof); Variable var_key_index(this, MachineType::PointerRepresentation()); FindInsertionEntry<Dictionary>(dictionary, key, &var_key_index); InsertEntry<Dictionary>(dictionary, key, value, var_key_index.value(), enum_index); } template void CodeStubAssembler::Add<NameDictionary>(Node*, Node*, Node*, Label*); void CodeStubAssembler::DescriptorLookupLinear(Node* unique_name, Node* descriptors, Node* nof, Label* if_found, Variable* var_name_index, Label* if_not_found) { Comment("DescriptorLookupLinear"); Node* first_inclusive = IntPtrConstant(DescriptorArray::ToKeyIndex(0)); Node* factor = IntPtrConstant(DescriptorArray::kEntrySize); Node* last_exclusive = IntPtrAdd(first_inclusive, IntPtrMul(nof, factor)); BuildFastLoop(last_exclusive, first_inclusive, [this, descriptors, unique_name, if_found, var_name_index](Node* name_index) { Node* candidate_name = LoadFixedArrayElement(descriptors, name_index); var_name_index->Bind(name_index); GotoIf(WordEqual(candidate_name, unique_name), if_found); }, -DescriptorArray::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPre); Goto(if_not_found); } Node* CodeStubAssembler::DescriptorArrayNumberOfEntries(Node* descriptors) { return LoadAndUntagToWord32FixedArrayElement( descriptors, IntPtrConstant(DescriptorArray::kDescriptorLengthIndex)); } namespace { Node* DescriptorNumberToIndex(CodeStubAssembler* a, Node* descriptor_number) { Node* descriptor_size = a->Int32Constant(DescriptorArray::kEntrySize); Node* index = a->Int32Mul(descriptor_number, descriptor_size); return a->ChangeInt32ToIntPtr(index); } } // namespace Node* CodeStubAssembler::DescriptorArrayToKeyIndex(Node* descriptor_number) { return IntPtrAdd(IntPtrConstant(DescriptorArray::ToKeyIndex(0)), DescriptorNumberToIndex(this, descriptor_number)); } Node* CodeStubAssembler::DescriptorArrayGetSortedKeyIndex( Node* descriptors, Node* descriptor_number) { const int details_offset = DescriptorArray::ToDetailsIndex(0) * kPointerSize; Node* details = LoadAndUntagToWord32FixedArrayElement( descriptors, DescriptorNumberToIndex(this, descriptor_number), details_offset); return DecodeWord32<PropertyDetails::DescriptorPointer>(details); } Node* CodeStubAssembler::DescriptorArrayGetKey(Node* descriptors, Node* descriptor_number) { const int key_offset = DescriptorArray::ToKeyIndex(0) * kPointerSize; return LoadFixedArrayElement(descriptors, DescriptorNumberToIndex(this, descriptor_number), key_offset); } void CodeStubAssembler::DescriptorLookupBinary(Node* unique_name, Node* descriptors, Node* nof, Label* if_found, Variable* var_name_index, Label* if_not_found) { Comment("DescriptorLookupBinary"); Variable var_low(this, MachineRepresentation::kWord32, Int32Constant(0)); Node* limit = Int32Sub(DescriptorArrayNumberOfEntries(descriptors), Int32Constant(1)); Variable var_high(this, MachineRepresentation::kWord32, limit); Node* hash = LoadNameHashField(unique_name); CSA_ASSERT(this, Word32NotEqual(hash, Int32Constant(0))); // Assume non-empty array. CSA_ASSERT(this, Uint32LessThanOrEqual(var_low.value(), var_high.value())); Variable* loop_vars[] = {&var_high, &var_low}; Label binary_loop(this, 2, loop_vars); Goto(&binary_loop); Bind(&binary_loop); { // mid = low + (high - low) / 2 (to avoid overflow in "(low + high) / 2"). Node* mid = Int32Add(var_low.value(), Word32Shr(Int32Sub(var_high.value(), var_low.value()), 1)); // mid_name = descriptors->GetSortedKey(mid). Node* sorted_key_index = DescriptorArrayGetSortedKeyIndex(descriptors, mid); Node* mid_name = DescriptorArrayGetKey(descriptors, sorted_key_index); Node* mid_hash = LoadNameHashField(mid_name); Label mid_greater(this), mid_less(this), merge(this); Branch(Uint32GreaterThanOrEqual(mid_hash, hash), &mid_greater, &mid_less); Bind(&mid_greater); { var_high.Bind(mid); Goto(&merge); } Bind(&mid_less); { var_low.Bind(Int32Add(mid, Int32Constant(1))); Goto(&merge); } Bind(&merge); GotoIf(Word32NotEqual(var_low.value(), var_high.value()), &binary_loop); } Label scan_loop(this, &var_low); Goto(&scan_loop); Bind(&scan_loop); { GotoIf(Int32GreaterThan(var_low.value(), limit), if_not_found); Node* sort_index = DescriptorArrayGetSortedKeyIndex(descriptors, var_low.value()); Node* current_name = DescriptorArrayGetKey(descriptors, sort_index); Node* current_hash = LoadNameHashField(current_name); GotoIf(Word32NotEqual(current_hash, hash), if_not_found); Label next(this); GotoIf(WordNotEqual(current_name, unique_name), &next); GotoIf(Int32GreaterThanOrEqual(sort_index, nof), if_not_found); var_name_index->Bind(DescriptorArrayToKeyIndex(sort_index)); Goto(if_found); Bind(&next); var_low.Bind(Int32Add(var_low.value(), Int32Constant(1))); Goto(&scan_loop); } } void CodeStubAssembler::DescriptorLookup(Node* unique_name, Node* descriptors, Node* bitfield3, Label* if_found, Variable* var_name_index, Label* if_not_found) { Comment("DescriptorArrayLookup"); Node* nof = DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3); GotoIf(Word32Equal(nof, Int32Constant(0)), if_not_found); Label linear_search(this), binary_search(this); const int kMaxElementsForLinearSearch = 32; Branch(Int32LessThanOrEqual(nof, Int32Constant(kMaxElementsForLinearSearch)), &linear_search, &binary_search); Bind(&linear_search); { DescriptorLookupLinear(unique_name, descriptors, ChangeInt32ToIntPtr(nof), if_found, var_name_index, if_not_found); } Bind(&binary_search); { DescriptorLookupBinary(unique_name, descriptors, nof, if_found, var_name_index, if_not_found); } } void CodeStubAssembler::TryLookupProperty( Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_fast, Label* if_found_dict, Label* if_found_global, Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kTagged, var_meta_storage->rep()); DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep()); Label if_objectisspecial(this); STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); GotoIf(Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)), &if_objectisspecial); uint32_t mask = 1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded; CSA_ASSERT(this, Word32BinaryNot(IsSetWord32(LoadMapBitField(map), mask))); USE(mask); Node* bit_field3 = LoadMapBitField3(map); Label if_isfastmap(this), if_isslowmap(this); Branch(IsSetWord32<Map::DictionaryMap>(bit_field3), &if_isslowmap, &if_isfastmap); Bind(&if_isfastmap); { Node* descriptors = LoadMapDescriptors(map); var_meta_storage->Bind(descriptors); DescriptorLookup(unique_name, descriptors, bit_field3, if_found_fast, var_name_index, if_not_found); } Bind(&if_isslowmap); { Node* dictionary = LoadProperties(object); var_meta_storage->Bind(dictionary); NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict, var_name_index, if_not_found); } Bind(&if_objectisspecial); { // Handle global object here and other special objects in runtime. GotoIfNot(Word32Equal(instance_type, Int32Constant(JS_GLOBAL_OBJECT_TYPE)), if_bailout); // Handle interceptors and access checks in runtime. Node* bit_field = LoadMapBitField(map); Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded); GotoIf(Word32NotEqual(Word32And(bit_field, mask), Int32Constant(0)), if_bailout); Node* dictionary = LoadProperties(object); var_meta_storage->Bind(dictionary); NameDictionaryLookup<GlobalDictionary>( dictionary, unique_name, if_found_global, var_name_index, if_not_found); } } void CodeStubAssembler::TryHasOwnProperty(Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found, Label* if_not_found, Label* if_bailout) { Comment("TryHasOwnProperty"); Variable var_meta_storage(this, MachineRepresentation::kTagged); Variable var_name_index(this, MachineType::PointerRepresentation()); Label if_found_global(this); TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found, &if_found_global, &var_meta_storage, &var_name_index, if_not_found, if_bailout); Bind(&if_found_global); { Variable var_value(this, MachineRepresentation::kTagged); Variable var_details(this, MachineRepresentation::kWord32); // Check if the property cell is not deleted. LoadPropertyFromGlobalDictionary(var_meta_storage.value(), var_name_index.value(), &var_value, &var_details, if_not_found); Goto(if_found); } } void CodeStubAssembler::LoadPropertyFromFastObject(Node* object, Node* map, Node* descriptors, Node* name_index, Variable* var_details, Variable* var_value) { DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep()); DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("[ LoadPropertyFromFastObject"); Node* details = LoadDetailsByKeyIndex<DescriptorArray>(descriptors, name_index); var_details->Bind(details); Node* location = DecodeWord32<PropertyDetails::LocationField>(details); Label if_in_field(this), if_in_descriptor(this), done(this); Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field, &if_in_descriptor); Bind(&if_in_field); { Node* field_index = DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details); Node* representation = DecodeWord32<PropertyDetails::RepresentationField>(details); Node* inobject_properties = LoadMapInobjectProperties(map); Label if_inobject(this), if_backing_store(this); Variable var_double_value(this, MachineRepresentation::kFloat64); Label rebox_double(this, &var_double_value); Branch(UintPtrLessThan(field_index, inobject_properties), &if_inobject, &if_backing_store); Bind(&if_inobject); { Comment("if_inobject"); Node* field_offset = IntPtrMul(IntPtrSub(LoadMapInstanceSize(map), IntPtrSub(inobject_properties, field_index)), IntPtrConstant(kPointerSize)); Label if_double(this), if_tagged(this); Branch(Word32NotEqual(representation, Int32Constant(Representation::kDouble)), &if_tagged, &if_double); Bind(&if_tagged); { var_value->Bind(LoadObjectField(object, field_offset)); Goto(&done); } Bind(&if_double); { if (FLAG_unbox_double_fields) { var_double_value.Bind( LoadObjectField(object, field_offset, MachineType::Float64())); } else { Node* mutable_heap_number = LoadObjectField(object, field_offset); var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number)); } Goto(&rebox_double); } } Bind(&if_backing_store); { Comment("if_backing_store"); Node* properties = LoadProperties(object); field_index = IntPtrSub(field_index, inobject_properties); Node* value = LoadFixedArrayElement(properties, field_index); Label if_double(this), if_tagged(this); Branch(Word32NotEqual(representation, Int32Constant(Representation::kDouble)), &if_tagged, &if_double); Bind(&if_tagged); { var_value->Bind(value); Goto(&done); } Bind(&if_double); { var_double_value.Bind(LoadHeapNumberValue(value)); Goto(&rebox_double); } } Bind(&rebox_double); { Comment("rebox_double"); Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value()); var_value->Bind(heap_number); Goto(&done); } } Bind(&if_in_descriptor); { var_value->Bind( LoadValueByKeyIndex<DescriptorArray>(descriptors, name_index)); Goto(&done); } Bind(&done); Comment("] LoadPropertyFromFastObject"); } void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value) { Comment("LoadPropertyFromNameDictionary"); CSA_ASSERT(this, IsDictionary(dictionary)); var_details->Bind( LoadDetailsByKeyIndex<NameDictionary>(dictionary, name_index)); var_value->Bind(LoadValueByKeyIndex<NameDictionary>(dictionary, name_index)); Comment("] LoadPropertyFromNameDictionary"); } void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary, Node* name_index, Variable* var_details, Variable* var_value, Label* if_deleted) { Comment("[ LoadPropertyFromGlobalDictionary"); CSA_ASSERT(this, IsDictionary(dictionary)); Node* property_cell = LoadValueByKeyIndex<GlobalDictionary>(dictionary, name_index); Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset); GotoIf(WordEqual(value, TheHoleConstant()), if_deleted); var_value->Bind(value); Node* details = LoadAndUntagToWord32ObjectField(property_cell, PropertyCell::kDetailsOffset); var_details->Bind(details); Comment("] LoadPropertyFromGlobalDictionary"); } // |value| is the property backing store's contents, which is either a value // or an accessor pair, as specified by |details|. // Returns either the original value, or the result of the getter call. Node* CodeStubAssembler::CallGetterIfAccessor(Node* value, Node* details, Node* context, Node* receiver, Label* if_bailout) { Variable var_value(this, MachineRepresentation::kTagged, value); Label done(this); Node* kind = DecodeWord32<PropertyDetails::KindField>(details); GotoIf(Word32Equal(kind, Int32Constant(kData)), &done); // Accessor case. { Node* accessor_pair = value; GotoIf(Word32Equal(LoadInstanceType(accessor_pair), Int32Constant(ACCESSOR_INFO_TYPE)), if_bailout); CSA_ASSERT(this, HasInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE)); Node* getter = LoadObjectField(accessor_pair, AccessorPair::kGetterOffset); Node* getter_map = LoadMap(getter); Node* instance_type = LoadMapInstanceType(getter_map); // FunctionTemplateInfo getters are not supported yet. GotoIf( Word32Equal(instance_type, Int32Constant(FUNCTION_TEMPLATE_INFO_TYPE)), if_bailout); // Return undefined if the {getter} is not callable. var_value.Bind(UndefinedConstant()); GotoIfNot(IsCallableMap(getter_map), &done); // Call the accessor. Callable callable = CodeFactory::Call(isolate()); Node* result = CallJS(callable, context, getter, receiver); var_value.Bind(result); Goto(&done); } Bind(&done); return var_value.value(); } void CodeStubAssembler::TryGetOwnProperty( Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, Node* unique_name, Label* if_found_value, Variable* var_value, Label* if_not_found, Label* if_bailout) { DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); Comment("TryGetOwnProperty"); Variable var_meta_storage(this, MachineRepresentation::kTagged); Variable var_entry(this, MachineType::PointerRepresentation()); Label if_found_fast(this), if_found_dict(this), if_found_global(this); Variable var_details(this, MachineRepresentation::kWord32); Variable* vars[] = {var_value, &var_details}; Label if_found(this, 2, vars); TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast, &if_found_dict, &if_found_global, &var_meta_storage, &var_entry, if_not_found, if_bailout); Bind(&if_found_fast); { Node* descriptors = var_meta_storage.value(); Node* name_index = var_entry.value(); LoadPropertyFromFastObject(object, map, descriptors, name_index, &var_details, var_value); Goto(&if_found); } Bind(&if_found_dict); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromNameDictionary(dictionary, entry, &var_details, var_value); Goto(&if_found); } Bind(&if_found_global); { Node* dictionary = var_meta_storage.value(); Node* entry = var_entry.value(); LoadPropertyFromGlobalDictionary(dictionary, entry, &var_details, var_value, if_not_found); Goto(&if_found); } // Here we have details and value which could be an accessor. Bind(&if_found); { Node* value = CallGetterIfAccessor(var_value->value(), var_details.value(), context, receiver, if_bailout); var_value->Bind(value); Goto(if_found_value); } } void CodeStubAssembler::TryLookupElement(Node* object, Node* map, Node* instance_type, Node* intptr_index, Label* if_found, Label* if_not_found, Label* if_bailout) { // Handle special objects in runtime. GotoIf(Int32LessThanOrEqual(instance_type, Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)), if_bailout); Node* elements_kind = LoadMapElementsKind(map); // TODO(verwaest): Support other elements kinds as well. Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this), if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this); // clang-format off int32_t values[] = { // Handled by {if_isobjectorsmi}. FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, // Handled by {if_isdouble}. FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, // Handled by {if_isdictionary}. DICTIONARY_ELEMENTS, // Handled by {if_isfaststringwrapper}. FAST_STRING_WRAPPER_ELEMENTS, // Handled by {if_isslowstringwrapper}. SLOW_STRING_WRAPPER_ELEMENTS, // Handled by {if_not_found}. NO_ELEMENTS, }; Label* labels[] = { &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, &if_isdouble, &if_isdouble, &if_isdictionary, &if_isfaststringwrapper, &if_isslowstringwrapper, if_not_found, }; // clang-format on STATIC_ASSERT(arraysize(values) == arraysize(labels)); Switch(elements_kind, if_bailout, values, labels, arraysize(values)); Bind(&if_isobjectorsmi); { Node* elements = LoadElements(object); Node* length = LoadAndUntagFixedArrayBaseLength(elements); GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob); Node* element = LoadFixedArrayElement(elements, intptr_index); Node* the_hole = TheHoleConstant(); Branch(WordEqual(element, the_hole), if_not_found, if_found); } Bind(&if_isdouble); { Node* elements = LoadElements(object); Node* length = LoadAndUntagFixedArrayBaseLength(elements); GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob); // Check if the element is a double hole, but don't load it. LoadFixedDoubleArrayElement(elements, intptr_index, MachineType::None(), 0, INTPTR_PARAMETERS, if_not_found); Goto(if_found); } Bind(&if_isdictionary); { // Negative keys must be converted to property names. GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); Variable var_entry(this, MachineType::PointerRepresentation()); Node* elements = LoadElements(object); NumberDictionaryLookup<SeededNumberDictionary>( elements, intptr_index, if_found, &var_entry, if_not_found); } Bind(&if_isfaststringwrapper); { CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); Node* string = LoadJSValueValue(object); CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string))); Node* length = LoadStringLength(string); GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found); Goto(&if_isobjectorsmi); } Bind(&if_isslowstringwrapper); { CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); Node* string = LoadJSValueValue(object); CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string))); Node* length = LoadStringLength(string); GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found); Goto(&if_isdictionary); } Bind(&if_oob); { // Positive OOB indices mean "not found", negative indices must be // converted to property names. GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); Goto(if_not_found); } } // Instantiate template methods to workaround GCC compilation issue. template void CodeStubAssembler::NumberDictionaryLookup<SeededNumberDictionary>( Node*, Node*, Label*, Variable*, Label*); template void CodeStubAssembler::NumberDictionaryLookup< UnseededNumberDictionary>(Node*, Node*, Label*, Variable*, Label*); void CodeStubAssembler::TryPrototypeChainLookup( Node* receiver, Node* key, const LookupInHolder& lookup_property_in_holder, const LookupInHolder& lookup_element_in_holder, Label* if_end, Label* if_bailout) { // Ensure receiver is JSReceiver, otherwise bailout. Label if_objectisnotsmi(this); Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi); Bind(&if_objectisnotsmi); Node* map = LoadMap(receiver); Node* instance_type = LoadMapInstanceType(map); { Label if_objectisreceiver(this); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE); Branch( Int32GreaterThan(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)), &if_objectisreceiver, if_bailout); Bind(&if_objectisreceiver); } Variable var_index(this, MachineType::PointerRepresentation()); Variable var_unique(this, MachineRepresentation::kTagged); Label if_keyisindex(this), if_iskeyunique(this); TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, &var_unique, if_bailout); Bind(&if_iskeyunique); { Variable var_holder(this, MachineRepresentation::kTagged, receiver); Variable var_holder_map(this, MachineRepresentation::kTagged, map); Variable var_holder_instance_type(this, MachineRepresentation::kWord32, instance_type); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); Goto(&loop); Bind(&loop); { Node* holder_map = var_holder_map.value(); Node* holder_instance_type = var_holder_instance_type.value(); Label next_proto(this); lookup_property_in_holder(receiver, var_holder.value(), holder_map, holder_instance_type, var_unique.value(), &next_proto, if_bailout); Bind(&next_proto); // Bailout if it can be an integer indexed exotic case. GotoIf( Word32Equal(holder_instance_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), if_bailout); Node* proto = LoadMapPrototype(holder_map); Label if_not_null(this); Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null); Bind(&if_not_null); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } Bind(&if_keyisindex); { Variable var_holder(this, MachineRepresentation::kTagged, receiver); Variable var_holder_map(this, MachineRepresentation::kTagged, map); Variable var_holder_instance_type(this, MachineRepresentation::kWord32, instance_type); Variable* merged_variables[] = {&var_holder, &var_holder_map, &var_holder_instance_type}; Label loop(this, arraysize(merged_variables), merged_variables); Goto(&loop); Bind(&loop); { Label next_proto(this); lookup_element_in_holder(receiver, var_holder.value(), var_holder_map.value(), var_holder_instance_type.value(), var_index.value(), &next_proto, if_bailout); Bind(&next_proto); Node* proto = LoadMapPrototype(var_holder_map.value()); Label if_not_null(this); Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null); Bind(&if_not_null); Node* map = LoadMap(proto); Node* instance_type = LoadMapInstanceType(map); var_holder.Bind(proto); var_holder_map.Bind(map); var_holder_instance_type.Bind(instance_type); Goto(&loop); } } } Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable, Node* object) { Variable var_result(this, MachineRepresentation::kTagged); Label return_false(this), return_true(this), return_runtime(this, Label::kDeferred), return_result(this); // Goto runtime if {object} is a Smi. GotoIf(TaggedIsSmi(object), &return_runtime); // Load map of {object}. Node* object_map = LoadMap(object); // Lookup the {callable} and {object} map in the global instanceof cache. // Note: This is safe because we clear the global instanceof cache whenever // we change the prototype of any object. Node* instanceof_cache_function = LoadRoot(Heap::kInstanceofCacheFunctionRootIndex); Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex); { Label instanceof_cache_miss(this); GotoIfNot(WordEqual(instanceof_cache_function, callable), &instanceof_cache_miss); GotoIfNot(WordEqual(instanceof_cache_map, object_map), &instanceof_cache_miss); var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex)); Goto(&return_result); Bind(&instanceof_cache_miss); } // Goto runtime if {callable} is a Smi. GotoIf(TaggedIsSmi(callable), &return_runtime); // Load map of {callable}. Node* callable_map = LoadMap(callable); // Goto runtime if {callable} is not a JSFunction. Node* callable_instance_type = LoadMapInstanceType(callable_map); GotoIfNot( Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)), &return_runtime); // Goto runtime if {callable} is not a constructor or has // a non-instance "prototype". Node* callable_bitfield = LoadMapBitField(callable_map); GotoIfNot( Word32Equal(Word32And(callable_bitfield, Int32Constant((1 << Map::kHasNonInstancePrototype) | (1 << Map::kIsConstructor))), Int32Constant(1 << Map::kIsConstructor)), &return_runtime); // Get the "prototype" (or initial map) of the {callable}. Node* callable_prototype = LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset); { Label callable_prototype_valid(this); Variable var_callable_prototype(this, MachineRepresentation::kTagged, callable_prototype); // Resolve the "prototype" if the {callable} has an initial map. Afterwards // the {callable_prototype} will be either the JSReceiver prototype object // or the hole value, which means that no instances of the {callable} were // created so far and hence we should return false. Node* callable_prototype_instance_type = LoadInstanceType(callable_prototype); GotoIfNot( Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)), &callable_prototype_valid); var_callable_prototype.Bind( LoadObjectField(callable_prototype, Map::kPrototypeOffset)); Goto(&callable_prototype_valid); Bind(&callable_prototype_valid); callable_prototype = var_callable_prototype.value(); } // Update the global instanceof cache with the current {object} map and // {callable}. The cached answer will be set when it is known below. StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable); StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map); // Loop through the prototype chain looking for the {callable} prototype. Variable var_object_map(this, MachineRepresentation::kTagged, object_map); Label loop(this, &var_object_map); Goto(&loop); Bind(&loop); { Node* object_map = var_object_map.value(); // Check if the current {object} needs to be access checked. Node* object_bitfield = LoadMapBitField(object_map); GotoIfNot( Word32Equal(Word32And(object_bitfield, Int32Constant(1 << Map::kIsAccessCheckNeeded)), Int32Constant(0)), &return_runtime); // Check if the current {object} is a proxy. Node* object_instance_type = LoadMapInstanceType(object_map); GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)), &return_runtime); // Check the current {object} prototype. Node* object_prototype = LoadMapPrototype(object_map); GotoIf(WordEqual(object_prototype, NullConstant()), &return_false); GotoIf(WordEqual(object_prototype, callable_prototype), &return_true); // Continue with the prototype. var_object_map.Bind(LoadMap(object_prototype)); Goto(&loop); } Bind(&return_true); StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true)); var_result.Bind(BooleanConstant(true)); Goto(&return_result); Bind(&return_false); StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false)); var_result.Bind(BooleanConstant(false)); Goto(&return_result); Bind(&return_runtime); { // Invalidate the global instanceof cache. StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0)); // Fallback to the runtime implementation. var_result.Bind( CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object)); } Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node, ElementsKind kind, ParameterMode mode, int base_size) { int element_size_shift = ElementsKindToShiftSize(kind); int element_size = 1 << element_size_shift; int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; intptr_t index = 0; bool constant_index = false; if (mode == SMI_PARAMETERS) { element_size_shift -= kSmiShiftBits; Smi* smi_index; constant_index = ToSmiConstant(index_node, smi_index); if (constant_index) index = smi_index->value(); index_node = BitcastTaggedToWord(index_node); } else { DCHECK(mode == INTPTR_PARAMETERS); constant_index = ToIntPtrConstant(index_node, index); } if (constant_index) { return IntPtrConstant(base_size + element_size * index); } Node* shifted_index = (element_size_shift == 0) ? index_node : ((element_size_shift > 0) ? WordShl(index_node, IntPtrConstant(element_size_shift)) : WordShr(index_node, IntPtrConstant(-element_size_shift))); return IntPtrAdd(IntPtrConstant(base_size), shifted_index); } Node* CodeStubAssembler::LoadFeedbackVectorForStub() { Node* function = LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset); Node* cell = LoadObjectField(function, JSFunction::kFeedbackVectorOffset); return LoadObjectField(cell, Cell::kValueOffset); } void CodeStubAssembler::UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id) { // This method is used for binary op and compare feedback. These // vector nodes are initialized with a smi 0, so we can simply OR // our new feedback in place. Node* previous_feedback = LoadFixedArrayElement(feedback_vector, slot_id); Node* combined_feedback = SmiOr(previous_feedback, feedback); StoreFixedArrayElement(feedback_vector, slot_id, combined_feedback, SKIP_WRITE_BARRIER); } Node* CodeStubAssembler::LoadReceiverMap(Node* receiver) { Variable var_receiver_map(this, MachineRepresentation::kTagged); Label load_smi_map(this, Label::kDeferred), load_receiver_map(this), if_result(this); Branch(TaggedIsSmi(receiver), &load_smi_map, &load_receiver_map); Bind(&load_smi_map); { var_receiver_map.Bind(LoadRoot(Heap::kHeapNumberMapRootIndex)); Goto(&if_result); } Bind(&load_receiver_map); { var_receiver_map.Bind(LoadMap(receiver)); Goto(&if_result); } Bind(&if_result); return var_receiver_map.value(); } Node* CodeStubAssembler::TryToIntptr(Node* key, Label* miss) { Variable var_intptr_key(this, MachineType::PointerRepresentation()); Label done(this, &var_intptr_key), key_is_smi(this); GotoIf(TaggedIsSmi(key), &key_is_smi); // Try to convert a heap number to a Smi. GotoIfNot(IsHeapNumberMap(LoadMap(key)), miss); { Node* value = LoadHeapNumberValue(key); Node* int_value = RoundFloat64ToInt32(value); GotoIfNot(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss); var_intptr_key.Bind(ChangeInt32ToIntPtr(int_value)); Goto(&done); } Bind(&key_is_smi); { var_intptr_key.Bind(SmiUntag(key)); Goto(&done); } Bind(&done); return var_intptr_key.value(); } Node* CodeStubAssembler::EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value, Label* bailout) { // Mapped arguments are actual arguments. Unmapped arguments are values added // to the arguments object after it was created for the call. Mapped arguments // are stored in the context at indexes given by elements[key + 2]. Unmapped // arguments are stored as regular indexed properties in the arguments array, // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed // look at argument object construction. // // The sloppy arguments elements array has a special format: // // 0: context // 1: unmapped arguments array // 2: mapped_index0, // 3: mapped_index1, // ... // // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments). // If key + 2 >= elements.length then attempt to look in the unmapped // arguments array (given by elements[1]) and return the value at key, missing // to the runtime if the unmapped arguments array is not a fixed array or if // key >= unmapped_arguments_array.length. // // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value // in the unmapped arguments array, as described above. Otherwise, t is a Smi // index into the context array given at elements[0]. Return the value at // context[t]. bool is_load = value == nullptr; GotoIfNot(TaggedIsSmi(key), bailout); key = SmiUntag(key); GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout); Node* elements = LoadElements(receiver); Node* elements_length = LoadAndUntagFixedArrayBaseLength(elements); Variable var_result(this, MachineRepresentation::kTagged); if (!is_load) { var_result.Bind(value); } Label if_mapped(this), if_unmapped(this), end(this, &var_result); Node* intptr_two = IntPtrConstant(2); Node* adjusted_length = IntPtrSub(elements_length, intptr_two); GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped); Node* mapped_index = LoadFixedArrayElement(elements, IntPtrAdd(key, intptr_two)); Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped); Bind(&if_mapped); { CSA_ASSERT(this, TaggedIsSmi(mapped_index)); mapped_index = SmiUntag(mapped_index); Node* the_context = LoadFixedArrayElement(elements, 0); // Assert that we can use LoadFixedArrayElement/StoreFixedArrayElement // methods for accessing Context. STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize); DCHECK_EQ(Context::SlotOffset(0) + kHeapObjectTag, FixedArray::OffsetOfElementAt(0)); if (is_load) { Node* result = LoadFixedArrayElement(the_context, mapped_index); CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant())); var_result.Bind(result); } else { StoreFixedArrayElement(the_context, mapped_index, value); } Goto(&end); } Bind(&if_unmapped); { Node* backing_store = LoadFixedArrayElement(elements, 1); GotoIf(WordNotEqual(LoadMap(backing_store), FixedArrayMapConstant()), bailout); Node* backing_store_length = LoadAndUntagFixedArrayBaseLength(backing_store); GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout); // The key falls into unmapped range. if (is_load) { Node* result = LoadFixedArrayElement(backing_store, key); GotoIf(WordEqual(result, TheHoleConstant()), bailout); var_result.Bind(result); } else { StoreFixedArrayElement(backing_store, key, value); } Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::LoadScriptContext(Node* context, int context_index) { Node* native_context = LoadNativeContext(context); Node* script_context_table = LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX); int offset = ScriptContextTable::GetContextOffset(context_index) - kHeapObjectTag; return Load(MachineType::AnyTagged(), script_context_table, IntPtrConstant(offset)); } namespace { // Converts typed array elements kind to a machine representations. MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) { switch (kind) { case UINT8_CLAMPED_ELEMENTS: case UINT8_ELEMENTS: case INT8_ELEMENTS: return MachineRepresentation::kWord8; case UINT16_ELEMENTS: case INT16_ELEMENTS: return MachineRepresentation::kWord16; case UINT32_ELEMENTS: case INT32_ELEMENTS: return MachineRepresentation::kWord32; case FLOAT32_ELEMENTS: return MachineRepresentation::kFloat32; case FLOAT64_ELEMENTS: return MachineRepresentation::kFloat64; default: UNREACHABLE(); return MachineRepresentation::kNone; } } } // namespace void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value, ParameterMode mode) { if (IsFixedTypedArrayElementsKind(kind)) { if (kind == UINT8_CLAMPED_ELEMENTS) { CSA_ASSERT(this, Word32Equal(value, Word32And(Int32Constant(0xff), value))); } Node* offset = ElementOffsetFromIndex(index, kind, mode, 0); MachineRepresentation rep = ElementsKindToMachineRepresentation(kind); StoreNoWriteBarrier(rep, elements, offset, value); return; } WriteBarrierMode barrier_mode = IsFastSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; if (IsFastDoubleElementsKind(kind)) { // Make sure we do not store signalling NaNs into double arrays. value = Float64SilenceNaN(value); StoreFixedDoubleArrayElement(elements, index, value, mode); } else { StoreFixedArrayElement(elements, index, value, barrier_mode, 0, mode); } } Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) { Label done(this); Node* int32_zero = Int32Constant(0); Node* int32_255 = Int32Constant(255); Variable var_value(this, MachineRepresentation::kWord32, int32_value); GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done); var_value.Bind(int32_zero); GotoIf(Int32LessThan(int32_value, int32_zero), &done); var_value.Bind(int32_255); Goto(&done); Bind(&done); return var_value.value(); } Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) { Label done(this); Variable var_value(this, MachineRepresentation::kWord32, Int32Constant(0)); GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done); var_value.Bind(Int32Constant(255)); GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done); { Node* rounded_value = Float64RoundToEven(float64_value); var_value.Bind(TruncateFloat64ToWord32(rounded_value)); Goto(&done); } Bind(&done); return var_value.value(); } Node* CodeStubAssembler::PrepareValueForWriteToTypedArray( Node* input, ElementsKind elements_kind, Label* bailout) { DCHECK(IsFixedTypedArrayElementsKind(elements_kind)); MachineRepresentation rep; switch (elements_kind) { case UINT8_ELEMENTS: case INT8_ELEMENTS: case UINT16_ELEMENTS: case INT16_ELEMENTS: case UINT32_ELEMENTS: case INT32_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: rep = MachineRepresentation::kWord32; break; case FLOAT32_ELEMENTS: rep = MachineRepresentation::kFloat32; break; case FLOAT64_ELEMENTS: rep = MachineRepresentation::kFloat64; break; default: UNREACHABLE(); return nullptr; } Variable var_result(this, rep); Label done(this, &var_result), if_smi(this); GotoIf(TaggedIsSmi(input), &if_smi); // Try to convert a heap number to a Smi. GotoIfNot(IsHeapNumberMap(LoadMap(input)), bailout); { Node* value = LoadHeapNumberValue(input); if (rep == MachineRepresentation::kWord32) { if (elements_kind == UINT8_CLAMPED_ELEMENTS) { value = Float64ToUint8Clamped(value); } else { value = TruncateFloat64ToWord32(value); } } else if (rep == MachineRepresentation::kFloat32) { value = TruncateFloat64ToFloat32(value); } else { DCHECK_EQ(MachineRepresentation::kFloat64, rep); } var_result.Bind(value); Goto(&done); } Bind(&if_smi); { Node* value = SmiToWord32(input); if (rep == MachineRepresentation::kFloat32) { value = RoundInt32ToFloat32(value); } else if (rep == MachineRepresentation::kFloat64) { value = ChangeInt32ToFloat64(value); } else { DCHECK_EQ(MachineRepresentation::kWord32, rep); if (elements_kind == UINT8_CLAMPED_ELEMENTS) { value = Int32ToUint8Clamped(value); } } var_result.Bind(value); Goto(&done); } Bind(&done); return var_result.value(); } void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value, bool is_jsarray, ElementsKind elements_kind, KeyedAccessStoreMode store_mode, Label* bailout) { Node* elements = LoadElements(object); if (IsFastSmiOrObjectElementsKind(elements_kind) && store_mode != STORE_NO_TRANSITION_HANDLE_COW) { // Bailout in case of COW elements. GotoIf(WordNotEqual(LoadMap(elements), LoadRoot(Heap::kFixedArrayMapRootIndex)), bailout); } // TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode(). ParameterMode parameter_mode = INTPTR_PARAMETERS; key = TryToIntptr(key, bailout); if (IsFixedTypedArrayElementsKind(elements_kind)) { Label done(this); // TODO(ishell): call ToNumber() on value and don't bailout but be careful // to call it only once if we decide to bailout because of bounds checks. value = PrepareValueForWriteToTypedArray(value, elements_kind, bailout); // There must be no allocations between the buffer load and // and the actual store to backing store, because GC may decide that // the buffer is not alive or move the elements. // TODO(ishell): introduce DisallowHeapAllocationCode scope here. // Check if buffer has been neutered. Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); GotoIf(IsDetachedBuffer(buffer), bailout); // Bounds check. Node* length = TaggedToParameter( LoadObjectField(object, JSTypedArray::kLengthOffset), parameter_mode); if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { // Skip the store if we write beyond the length. GotoIfNot(IntPtrLessThan(key, length), &done); // ... but bailout if the key is negative. } else { DCHECK_EQ(STANDARD_STORE, store_mode); } GotoIfNot(UintPtrLessThan(key, length), bailout); // Backing store = external_pointer + base_pointer. Node* external_pointer = LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset, MachineType::Pointer()); Node* base_pointer = LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset); Node* backing_store = IntPtrAdd(external_pointer, BitcastTaggedToWord(base_pointer)); StoreElement(backing_store, elements_kind, key, value, parameter_mode); Goto(&done); Bind(&done); return; } DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) || IsFastDoubleElementsKind(elements_kind)); Node* length = is_jsarray ? LoadObjectField(object, JSArray::kLengthOffset) : LoadFixedArrayBaseLength(elements); length = TaggedToParameter(length, parameter_mode); // In case value is stored into a fast smi array, assure that the value is // a smi before manipulating the backing store. Otherwise the backing store // may be left in an invalid state. if (IsFastSmiElementsKind(elements_kind)) { GotoIfNot(TaggedIsSmi(value), bailout); } else if (IsFastDoubleElementsKind(elements_kind)) { value = TryTaggedToFloat64(value, bailout); } if (IsGrowStoreMode(store_mode)) { elements = CheckForCapacityGrow(object, elements, elements_kind, length, key, parameter_mode, is_jsarray, bailout); } else { GotoIfNot(UintPtrLessThan(key, length), bailout); if ((store_mode == STORE_NO_TRANSITION_HANDLE_COW) && IsFastSmiOrObjectElementsKind(elements_kind)) { elements = CopyElementsOnWrite(object, elements, elements_kind, length, parameter_mode, bailout); } } StoreElement(elements, elements_kind, key, value, parameter_mode); } Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind, Node* length, Node* key, ParameterMode mode, bool is_js_array, Label* bailout) { Variable checked_elements(this, MachineRepresentation::kTagged); Label grow_case(this), no_grow_case(this), done(this); Node* condition; if (IsHoleyElementsKind(kind)) { condition = UintPtrGreaterThanOrEqual(key, length); } else { condition = WordEqual(key, length); } Branch(condition, &grow_case, &no_grow_case); Bind(&grow_case); { Node* current_capacity = TaggedToParameter(LoadFixedArrayBaseLength(elements), mode); checked_elements.Bind(elements); Label fits_capacity(this); GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity); { Node* new_elements = TryGrowElementsCapacity( object, elements, kind, key, current_capacity, mode, bailout); checked_elements.Bind(new_elements); Goto(&fits_capacity); } Bind(&fits_capacity); if (is_js_array) { Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)); StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset, ParameterToTagged(new_length, mode)); } Goto(&done); } Bind(&no_grow_case); { GotoIfNot(UintPtrLessThan(key, length), bailout); checked_elements.Bind(elements); Goto(&done); } Bind(&done); return checked_elements.value(); } Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind, Node* length, ParameterMode mode, Label* bailout) { Variable new_elements_var(this, MachineRepresentation::kTagged, elements); Label done(this); GotoIfNot( WordEqual(LoadMap(elements), LoadRoot(Heap::kFixedCOWArrayMapRootIndex)), &done); { Node* capacity = TaggedToParameter(LoadFixedArrayBaseLength(elements), mode); Node* new_elements = GrowElementsCapacity(object, elements, kind, kind, length, capacity, mode, bailout); new_elements_var.Bind(new_elements); Goto(&done); } Bind(&done); return new_elements_var.value(); } void CodeStubAssembler::TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind, ElementsKind to_kind, bool is_jsarray, Label* bailout) { DCHECK(!IsFastHoleyElementsKind(from_kind) || IsFastHoleyElementsKind(to_kind)); if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) { TrapAllocationMemento(object, bailout); } if (!IsSimpleMapChangeTransition(from_kind, to_kind)) { Comment("Non-simple map transition"); Node* elements = LoadElements(object); Node* empty_fixed_array = HeapConstant(isolate()->factory()->empty_fixed_array()); Label done(this); GotoIf(WordEqual(elements, empty_fixed_array), &done); // TODO(ishell): Use OptimalParameterMode(). ParameterMode mode = INTPTR_PARAMETERS; Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements)); Node* array_length = is_jsarray ? SmiUntag(LoadObjectField(object, JSArray::kLengthOffset)) : elements_length; GrowElementsCapacity(object, elements, from_kind, to_kind, array_length, elements_length, mode, bailout); Goto(&done); Bind(&done); } StoreMap(object, map); } void CodeStubAssembler::TrapAllocationMemento(Node* object, Label* memento_found) { Comment("[ TrapAllocationMemento"); Label no_memento_found(this); Label top_check(this), map_check(this); Node* new_space_top_address = ExternalConstant( ExternalReference::new_space_allocation_top_address(isolate())); const int kMementoMapOffset = JSArray::kSize; const int kMementoLastWordOffset = kMementoMapOffset + AllocationMemento::kSize - kPointerSize; // Bail out if the object is not in new space. Node* object_word = BitcastTaggedToWord(object); Node* object_page = PageFromAddress(object_word); { Node* page_flags = Load(MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset)); GotoIf(WordEqual(WordAnd(page_flags, IntPtrConstant(MemoryChunk::kIsInNewSpaceMask)), IntPtrConstant(0)), &no_memento_found); } Node* memento_last_word = IntPtrAdd( object_word, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag)); Node* memento_last_word_page = PageFromAddress(memento_last_word); Node* new_space_top = Load(MachineType::Pointer(), new_space_top_address); Node* new_space_top_page = PageFromAddress(new_space_top); // If the object is in new space, we need to check whether respective // potential memento object is on the same page as the current top. GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check); // The object is on a different page than allocation top. Bail out if the // object sits on the page boundary as no memento can follow and we cannot // touch the memory following it. Branch(WordEqual(object_page, memento_last_word_page), &map_check, &no_memento_found); // If top is on the same page as the current object, we need to check whether // we are below top. Bind(&top_check); { Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top), &no_memento_found, &map_check); } // Memento map check. Bind(&map_check); { Node* memento_map = LoadObjectField(object, kMementoMapOffset); Branch( WordEqual(memento_map, LoadRoot(Heap::kAllocationMementoMapRootIndex)), memento_found, &no_memento_found); } Bind(&no_memento_found); Comment("] TrapAllocationMemento"); } Node* CodeStubAssembler::PageFromAddress(Node* address) { return WordAnd(address, IntPtrConstant(~Page::kPageAlignmentMask)); } Node* CodeStubAssembler::EnumLength(Node* map) { CSA_ASSERT(this, IsMap(map)); Node* bitfield_3 = LoadMapBitField3(map); Node* enum_length = DecodeWordFromWord32<Map::EnumLengthBits>(bitfield_3); return SmiTag(enum_length); } void CodeStubAssembler::CheckEnumCache(Node* receiver, Label* use_cache, Label* use_runtime) { Variable current_js_object(this, MachineRepresentation::kTagged, receiver); Variable current_map(this, MachineRepresentation::kTagged, LoadMap(current_js_object.value())); // These variables are updated in the loop below. Variable* loop_vars[2] = {¤t_js_object, ¤t_map}; Label loop(this, 2, loop_vars), next(this); // Check if the enum length field is properly initialized, indicating that // there is an enum cache. { Node* invalid_enum_cache_sentinel = SmiConstant(Smi::FromInt(kInvalidEnumCacheSentinel)); Node* enum_length = EnumLength(current_map.value()); Branch(WordEqual(enum_length, invalid_enum_cache_sentinel), use_runtime, &loop); } // Check that there are no elements. |current_js_object| contains // the current JS object we've reached through the prototype chain. Bind(&loop); { Label if_elements(this), if_no_elements(this); Node* elements = LoadElements(current_js_object.value()); Node* empty_fixed_array = LoadRoot(Heap::kEmptyFixedArrayRootIndex); // Check that there are no elements. Branch(WordEqual(elements, empty_fixed_array), &if_no_elements, &if_elements); Bind(&if_elements); { // Second chance, the object may be using the empty slow element // dictionary. Node* slow_empty_dictionary = LoadRoot(Heap::kEmptySlowElementDictionaryRootIndex); Branch(WordNotEqual(elements, slow_empty_dictionary), use_runtime, &if_no_elements); } Bind(&if_no_elements); { // Update map prototype. current_js_object.Bind(LoadMapPrototype(current_map.value())); Branch(WordEqual(current_js_object.value(), NullConstant()), use_cache, &next); } } Bind(&next); { // For all objects but the receiver, check that the cache is empty. current_map.Bind(LoadMap(current_js_object.value())); Node* enum_length = EnumLength(current_map.value()); Node* zero_constant = SmiConstant(Smi::kZero); Branch(WordEqual(enum_length, zero_constant), &loop, use_runtime); } } Node* CodeStubAssembler::CreateAllocationSiteInFeedbackVector( Node* feedback_vector, Node* slot) { Node* size = IntPtrConstant(AllocationSite::kSize); Node* site = Allocate(size, CodeStubAssembler::kPretenured); StoreMap(site, AllocationSiteMapConstant()); Node* kind = SmiConstant(GetInitialFastElementsKind()); StoreObjectFieldNoWriteBarrier(site, AllocationSite::kTransitionInfoOffset, kind); // Unlike literals, constructed arrays don't have nested sites Node* zero = SmiConstant(0); StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero); // Pretenuring calculation field. StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset, zero); // Pretenuring memento creation count field. StoreObjectFieldNoWriteBarrier( site, AllocationSite::kPretenureCreateCountOffset, zero); // Store an empty fixed array for the code dependency. StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset, Heap::kEmptyFixedArrayRootIndex); // Link the object to the allocation site list Node* site_list = ExternalConstant( ExternalReference::allocation_sites_list_address(isolate())); Node* next_site = LoadBufferObject(site_list, 0); // TODO(mvstanton): This is a store to a weak pointer, which we may want to // mark as such in order to skip the write barrier, once we have a unified // system for weakness. For now we decided to keep it like this because having // an initial write barrier backed store makes this pointer strong until the // next GC, and allocation sites are designed to survive several GCs anyway. StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site); StoreNoWriteBarrier(MachineRepresentation::kTagged, site_list, site); StoreFixedArrayElement(feedback_vector, slot, site, UPDATE_WRITE_BARRIER, 0, CodeStubAssembler::SMI_PARAMETERS); return site; } Node* CodeStubAssembler::CreateWeakCellInFeedbackVector(Node* feedback_vector, Node* slot, Node* value) { Node* size = IntPtrConstant(WeakCell::kSize); Node* cell = Allocate(size, CodeStubAssembler::kPretenured); // Initialize the WeakCell. DCHECK(Heap::RootIsImmortalImmovable(Heap::kWeakCellMapRootIndex)); StoreMapNoWriteBarrier(cell, Heap::kWeakCellMapRootIndex); StoreObjectField(cell, WeakCell::kValueOffset, value); StoreObjectFieldRoot(cell, WeakCell::kNextOffset, Heap::kTheHoleValueRootIndex); // Store the WeakCell in the feedback vector. StoreFixedArrayElement(feedback_vector, slot, cell, UPDATE_WRITE_BARRIER, 0, CodeStubAssembler::SMI_PARAMETERS); return cell; } Node* CodeStubAssembler::BuildFastLoop( const CodeStubAssembler::VariableList& vars, Node* start_index, Node* end_index, const FastLoopBody& body, int increment, ParameterMode parameter_mode, IndexAdvanceMode advance_mode) { MachineRepresentation index_rep = (parameter_mode == INTPTR_PARAMETERS) ? MachineType::PointerRepresentation() : MachineRepresentation::kTaggedSigned; Variable var(this, index_rep, start_index); VariableList vars_copy(vars, zone()); vars_copy.Add(&var, zone()); Label loop(this, vars_copy); Label after_loop(this); // Introduce an explicit second check of the termination condition before the // loop that helps turbofan generate better code. If there's only a single // check, then the CodeStubAssembler forces it to be at the beginning of the // loop requiring a backwards branch at the end of the loop (it's not possible // to force the loop header check at the end of the loop and branch forward to // it from the pre-header). The extra branch is slower in the case that the // loop actually iterates. Branch(WordEqual(var.value(), end_index), &after_loop, &loop); Bind(&loop); { if (advance_mode == IndexAdvanceMode::kPre) { Increment(var, increment, parameter_mode); } body(var.value()); if (advance_mode == IndexAdvanceMode::kPost) { Increment(var, increment, parameter_mode); } Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop); } Bind(&after_loop); return var.value(); } void CodeStubAssembler::BuildFastFixedArrayForEach( const CodeStubAssembler::VariableList& vars, Node* fixed_array, ElementsKind kind, Node* first_element_inclusive, Node* last_element_exclusive, const FastFixedArrayForEachBody& body, ParameterMode mode, ForEachDirection direction) { STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); int32_t first_val; bool constant_first = ToInt32Constant(first_element_inclusive, first_val); int32_t last_val; bool constent_last = ToInt32Constant(last_element_exclusive, last_val); if (constant_first && constent_last) { int delta = last_val - first_val; DCHECK(delta >= 0); if (delta <= kElementLoopUnrollThreshold) { if (direction == ForEachDirection::kForward) { for (int i = first_val; i < last_val; ++i) { Node* index = IntPtrConstant(i); Node* offset = ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, FixedArray::kHeaderSize - kHeapObjectTag); body(fixed_array, offset); } } else { for (int i = last_val - 1; i >= first_val; --i) { Node* index = IntPtrConstant(i); Node* offset = ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, FixedArray::kHeaderSize - kHeapObjectTag); body(fixed_array, offset); } } return; } } Node* start = ElementOffsetFromIndex(first_element_inclusive, kind, mode, FixedArray::kHeaderSize - kHeapObjectTag); Node* limit = ElementOffsetFromIndex(last_element_exclusive, kind, mode, FixedArray::kHeaderSize - kHeapObjectTag); if (direction == ForEachDirection::kReverse) std::swap(start, limit); int increment = IsFastDoubleElementsKind(kind) ? kDoubleSize : kPointerSize; BuildFastLoop( vars, start, limit, [fixed_array, &body](Node* offset) { body(fixed_array, offset); }, direction == ForEachDirection::kReverse ? -increment : increment, INTPTR_PARAMETERS, direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre : IndexAdvanceMode::kPost); } void CodeStubAssembler::GotoIfFixedArraySizeDoesntFitInNewSpace( Node* element_count, Label* doesnt_fit, int base_size, ParameterMode mode) { int max_newspace_parameters = (kMaxRegularHeapObjectSize - base_size) / kPointerSize; GotoIf(IntPtrOrSmiGreaterThan( element_count, IntPtrOrSmiConstant(max_newspace_parameters, mode), mode), doesnt_fit); } void CodeStubAssembler::InitializeFieldsWithRoot( Node* object, Node* start_offset, Node* end_offset, Heap::RootListIndex root_index) { start_offset = IntPtrAdd(start_offset, IntPtrConstant(-kHeapObjectTag)); end_offset = IntPtrAdd(end_offset, IntPtrConstant(-kHeapObjectTag)); Node* root_value = LoadRoot(root_index); BuildFastLoop(end_offset, start_offset, [this, object, root_value](Node* current) { StoreNoWriteBarrier(MachineRepresentation::kTagged, object, current, root_value); }, -kPointerSize, INTPTR_PARAMETERS, CodeStubAssembler::IndexAdvanceMode::kPre); } void CodeStubAssembler::BranchIfNumericRelationalComparison( RelationalComparisonMode mode, Node* lhs, Node* rhs, Label* if_true, Label* if_false) { Label end(this); Variable result(this, MachineRepresentation::kTagged); // Shared entry for floating point comparison. Label do_fcmp(this); Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64), var_fcmp_rhs(this, MachineRepresentation::kFloat64); // Check if the {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison. switch (mode) { case kLessThan: BranchIfSmiLessThan(lhs, rhs, if_true, if_false); break; case kLessThanOrEqual: BranchIfSmiLessThanOrEqual(lhs, rhs, if_true, if_false); break; case kGreaterThan: BranchIfSmiLessThan(rhs, lhs, if_true, if_false); break; case kGreaterThanOrEqual: BranchIfSmiLessThanOrEqual(rhs, lhs, if_true, if_false); break; } } Bind(&if_rhsisnotsmi); { CSA_ASSERT(this, IsHeapNumberMap(LoadMap(rhs))); // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(SmiToFloat64(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } } Bind(&if_lhsisnotsmi); { CSA_ASSERT(this, IsHeapNumberMap(LoadMap(lhs))); // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotsmi); { CSA_ASSERT(this, IsHeapNumberMap(LoadMap(rhs))); // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } } Bind(&do_fcmp); { // Load the {lhs} and {rhs} floating point values. Node* lhs = var_fcmp_lhs.value(); Node* rhs = var_fcmp_rhs.value(); // Perform a fast floating point comparison. switch (mode) { case kLessThan: Branch(Float64LessThan(lhs, rhs), if_true, if_false); break; case kLessThanOrEqual: Branch(Float64LessThanOrEqual(lhs, rhs), if_true, if_false); break; case kGreaterThan: Branch(Float64GreaterThan(lhs, rhs), if_true, if_false); break; case kGreaterThanOrEqual: Branch(Float64GreaterThanOrEqual(lhs, rhs), if_true, if_false); break; } } } void CodeStubAssembler::GotoUnlessNumberLessThan(Node* lhs, Node* rhs, Label* if_false) { Label if_true(this); BranchIfNumericRelationalComparison(kLessThan, lhs, rhs, &if_true, if_false); Bind(&if_true); } Node* CodeStubAssembler::RelationalComparison(RelationalComparisonMode mode, Node* lhs, Node* rhs, Node* context) { Label return_true(this), return_false(this), end(this); Variable result(this, MachineRepresentation::kTagged); // Shared entry for floating point comparison. Label do_fcmp(this); Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64), var_fcmp_rhs(this, MachineRepresentation::kFloat64); // We might need to loop several times due to ToPrimitive and/or ToNumber // conversions. Variable var_lhs(this, MachineRepresentation::kTagged, lhs), var_rhs(this, MachineRepresentation::kTagged, rhs); Variable* loop_vars[2] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_vars); Goto(&loop); Bind(&loop); { // Load the current {lhs} and {rhs} values. lhs = var_lhs.value(); rhs = var_rhs.value(); // Check if the {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison. switch (mode) { case kLessThan: BranchIfSmiLessThan(lhs, rhs, &return_true, &return_false); break; case kLessThanOrEqual: BranchIfSmiLessThanOrEqual(lhs, rhs, &return_true, &return_false); break; case kGreaterThan: BranchIfSmiLessThan(rhs, lhs, &return_true, &return_false); break; case kGreaterThanOrEqual: BranchIfSmiLessThanOrEqual(rhs, lhs, &return_true, &return_false); break; } } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if the {rhs} is a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(SmiToFloat64(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // Convert the {rhs} to a Number; we don't need to perform the // dedicated ToPrimitive(rhs, hint Number) operation, as the // ToNumber(rhs) will by itself already invoke ToPrimitive with // a Number hint. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotsmi); { // Load the map of {lhs}. Node* lhs_map = LoadMap(lhs); // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Check if the {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fcmp); } Bind(&if_lhsisnotnumber); { // Convert the {lhs} to a Number; we don't need to perform the // dedicated ToPrimitive(lhs, hint Number) operation, as the // ToNumber(lhs) will by itself already invoke ToPrimitive with // a Number hint. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this); Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(WordEqual(lhs_map, rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert the {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // Convert the {rhs} to a Number; we don't need to perform // dedicated ToPrimitive(rhs, hint Number) operation, as the // ToNumber(rhs) will by itself already invoke ToPrimitive with // a Number hint. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } Bind(&if_lhsisnotnumber); { // Load the instance type of {lhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); // Check if {lhs} is a String. Label if_lhsisstring(this), if_lhsisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, &if_lhsisnotstring); Bind(&if_lhsisstring); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // Both {lhs} and {rhs} are strings. switch (mode) { case kLessThan: result.Bind(CallStub(CodeFactory::StringLessThan(isolate()), context, lhs, rhs)); Goto(&end); break; case kLessThanOrEqual: result.Bind( CallStub(CodeFactory::StringLessThanOrEqual(isolate()), context, lhs, rhs)); Goto(&end); break; case kGreaterThan: result.Bind( CallStub(CodeFactory::StringGreaterThan(isolate()), context, lhs, rhs)); Goto(&end); break; case kGreaterThanOrEqual: result.Bind( CallStub(CodeFactory::StringGreaterThanOrEqual(isolate()), context, lhs, rhs)); Goto(&end); break; } } Bind(&if_rhsisnotstring); { // The {lhs} is a String, while {rhs} is neither a Number nor a // String, so we need to call ToPrimitive(rhs, hint Number) if // {rhs} is a receiver or ToNumber(lhs) and ToNumber(rhs) in the // other cases. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Convert both {lhs} and {rhs} to Number. Callable callable = CodeFactory::ToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotstring); { // The {lhs} is neither a Number nor a String, so we need to call // ToPrimitive(lhs, hint Number) if {lhs} is a receiver or // ToNumber(lhs) and ToNumber(rhs) in the other cases. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_lhsisreceiver(this, Label::kDeferred), if_lhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(lhs_instance_type), &if_lhsisreceiver, &if_lhsisnotreceiver); Bind(&if_lhsisreceiver); { // Convert {lhs} to a primitive first passing Number hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive( isolate(), ToPrimitiveHint::kNumber); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } Bind(&if_lhsisnotreceiver); { // Convert both {lhs} and {rhs} to Number. Callable callable = CodeFactory::ToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } } } } Bind(&do_fcmp); { // Load the {lhs} and {rhs} floating point values. Node* lhs = var_fcmp_lhs.value(); Node* rhs = var_fcmp_rhs.value(); // Perform a fast floating point comparison. switch (mode) { case kLessThan: Branch(Float64LessThan(lhs, rhs), &return_true, &return_false); break; case kLessThanOrEqual: Branch(Float64LessThanOrEqual(lhs, rhs), &return_true, &return_false); break; case kGreaterThan: Branch(Float64GreaterThan(lhs, rhs), &return_true, &return_false); break; case kGreaterThanOrEqual: Branch(Float64GreaterThanOrEqual(lhs, rhs), &return_true, &return_false); break; } } Bind(&return_true); { result.Bind(BooleanConstant(true)); Goto(&end); } Bind(&return_false); { result.Bind(BooleanConstant(false)); Goto(&end); } Bind(&end); return result.value(); } namespace { void GenerateEqual_Same(CodeStubAssembler* assembler, Node* value, CodeStubAssembler::Label* if_equal, CodeStubAssembler::Label* if_notequal) { // In case of abstract or strict equality checks, we need additional checks // for NaN values because they are not considered equal, even if both the // left and the right hand side reference exactly the same value. typedef CodeStubAssembler::Label Label; // Check if {value} is a Smi or a HeapObject. Label if_valueissmi(assembler), if_valueisnotsmi(assembler); assembler->Branch(assembler->TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); assembler->Bind(&if_valueisnotsmi); { // Load the map of {value}. Node* value_map = assembler->LoadMap(value); // Check if {value} (and therefore {rhs}) is a HeapNumber. Label if_valueisnumber(assembler), if_valueisnotnumber(assembler); assembler->Branch(assembler->IsHeapNumberMap(value_map), &if_valueisnumber, &if_valueisnotnumber); assembler->Bind(&if_valueisnumber); { // Convert {value} (and therefore {rhs}) to floating point value. Node* value_value = assembler->LoadHeapNumberValue(value); // Check if the HeapNumber value is a NaN. assembler->BranchIfFloat64IsNaN(value_value, if_notequal, if_equal); } assembler->Bind(&if_valueisnotnumber); assembler->Goto(if_equal); } assembler->Bind(&if_valueissmi); assembler->Goto(if_equal); } } // namespace // ES6 section 7.2.12 Abstract Equality Comparison Node* CodeStubAssembler::Equal(ResultMode mode, Node* lhs, Node* rhs, Node* context) { // This is a slightly optimized version of Object::Equals represented as // scheduled TurboFan graph utilizing the CodeStubAssembler. Whenever you // change something functionality wise in here, remember to update the // Object::Equals method as well. Label if_equal(this), if_notequal(this), do_rhsstringtonumber(this, Label::kDeferred), end(this); Variable result(this, MachineRepresentation::kTagged); // Shared entry for floating point comparison. Label do_fcmp(this); Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64), var_fcmp_rhs(this, MachineRepresentation::kFloat64); // We might need to loop several times due to ToPrimitive and/or ToNumber // conversions. Variable var_lhs(this, MachineRepresentation::kTagged, lhs), var_rhs(this, MachineRepresentation::kTagged, rhs); Variable* loop_vars[2] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_vars); Goto(&loop); Bind(&loop); { // Load the current {lhs} and {rhs} values. lhs = var_lhs.value(); rhs = var_rhs.value(); // Check if {lhs} and {rhs} refer to the same object. Label if_same(this), if_notsame(this); Branch(WordEqual(lhs, rhs), &if_same, &if_notsame); Bind(&if_same); { // The {lhs} and {rhs} reference the exact same value, yet we need special // treatment for HeapNumber, as NaN is not equal to NaN. GenerateEqual_Same(this, lhs, &if_equal, &if_notequal); } Bind(&if_notsame); { // Check if {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); // We have already checked for {lhs} and {rhs} being the same value, so // if both are Smis when we get here they must not be equal. Goto(&if_notequal); Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(SmiToFloat64(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // Load the instance type of the {rhs}. Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Check if the {rhs} is a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // The {rhs} is a String and the {lhs} is a Smi; we need // to convert the {rhs} to a Number and compare the output to // the Number on the {lhs}. Goto(&do_rhsstringtonumber); } Bind(&if_rhsisnotstring); { // Check if the {rhs} is a Boolean. Label if_rhsisboolean(this), if_rhsisnotboolean(this); Branch(IsBooleanMap(rhs_map), &if_rhsisboolean, &if_rhsisnotboolean); Bind(&if_rhsisboolean); { // The {rhs} is a Boolean, load its number value. var_rhs.Bind(LoadObjectField(rhs, Oddball::kToNumberOffset)); Goto(&loop); } Bind(&if_rhsisnotboolean); { // Check if the {rhs} is a Receiver. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first (passing no hint). Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); Goto(&if_notequal); } } } } } Bind(&if_lhsisnotsmi); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // The {lhs} is a HeapObject and the {rhs} is a Smi; swapping {lhs} // and {rhs} is not observable and doesn't matter for the result, so // we can just swap them and use the Smi handling above (for {lhs} // being a Smi). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotsmi); { Label if_lhsisstring(this), if_lhsisnumber(this), if_lhsissymbol(this), if_lhsisoddball(this), if_lhsisreceiver(this); // Both {lhs} and {rhs} are HeapObjects, load their maps // and their instance types. Node* lhs_map = LoadMap(lhs); Node* rhs_map = LoadMap(rhs); // Load the instance types of {lhs} and {rhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Dispatch based on the instance type of {lhs}. size_t const kNumCases = FIRST_NONSTRING_TYPE + 3; Label* case_labels[kNumCases]; int32_t case_values[kNumCases]; for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) { case_labels[i] = new Label(this); case_values[i] = i; } case_labels[FIRST_NONSTRING_TYPE + 0] = &if_lhsisnumber; case_values[FIRST_NONSTRING_TYPE + 0] = HEAP_NUMBER_TYPE; case_labels[FIRST_NONSTRING_TYPE + 1] = &if_lhsissymbol; case_values[FIRST_NONSTRING_TYPE + 1] = SYMBOL_TYPE; case_labels[FIRST_NONSTRING_TYPE + 2] = &if_lhsisoddball; case_values[FIRST_NONSTRING_TYPE + 2] = ODDBALL_TYPE; Switch(lhs_instance_type, &if_lhsisreceiver, case_values, case_labels, arraysize(case_values)); for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) { Bind(case_labels[i]); Goto(&if_lhsisstring); delete case_labels[i]; } Bind(&if_lhsisstring); { // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // Both {lhs} and {rhs} are of type String, just do the // string comparison then. Callable callable = (mode == kDontNegateResult) ? CodeFactory::StringEqual(isolate()) : CodeFactory::StringNotEqual(isolate()); result.Bind(CallStub(callable, context, lhs, rhs)); Goto(&end); } Bind(&if_rhsisnotstring); { // The {lhs} is a String and the {rhs} is some other HeapObject. // Swapping {lhs} and {rhs} is not observable and doesn't matter // for the result, so we can just swap them and use the String // handling below (for {rhs} being a String). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } } Bind(&if_lhsisnumber); { // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(Word32Equal(lhs_instance_type, rhs_instance_type), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values, and // perform a floating point comparison. var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs)); var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fcmp); } Bind(&if_rhsisnotnumber); { // The {lhs} is a Number, the {rhs} is some other HeapObject. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { // The {rhs} is a String and the {lhs} is a HeapNumber; we need // to convert the {rhs} to a Number and compare the output to // the Number on the {lhs}. Goto(&do_rhsstringtonumber); } Bind(&if_rhsisnotstring); { // Check if the {rhs} is a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // The {lhs} is a Primitive and the {rhs} is a JSReceiver. // Swapping {lhs} and {rhs} is not observable and doesn't // matter for the result, so we can just swap them and use // the JSReceiver handling below (for {lhs} being a // JSReceiver). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Check if {rhs} is a Boolean. Label if_rhsisboolean(this), if_rhsisnotboolean(this); Branch(IsBooleanMap(rhs_map), &if_rhsisboolean, &if_rhsisnotboolean); Bind(&if_rhsisboolean); { // The {rhs} is a Boolean, convert it to a Smi first. var_rhs.Bind( LoadObjectField(rhs, Oddball::kToNumberOffset)); Goto(&loop); } Bind(&if_rhsisnotboolean); Goto(&if_notequal); } } } } Bind(&if_lhsisoddball); { // The {lhs} is an Oddball and {rhs} is some other HeapObject. Label if_lhsisboolean(this), if_lhsisnotboolean(this); Node* boolean_map = BooleanMapConstant(); Branch(WordEqual(lhs_map, boolean_map), &if_lhsisboolean, &if_lhsisnotboolean); Bind(&if_lhsisboolean); { // The {lhs} is a Boolean, check if {rhs} is also a Boolean. Label if_rhsisboolean(this), if_rhsisnotboolean(this); Branch(WordEqual(rhs_map, boolean_map), &if_rhsisboolean, &if_rhsisnotboolean); Bind(&if_rhsisboolean); { // Both {lhs} and {rhs} are distinct Boolean values. Goto(&if_notequal); } Bind(&if_rhsisnotboolean); { // Convert the {lhs} to a Number first. var_lhs.Bind(LoadObjectField(lhs, Oddball::kToNumberOffset)); Goto(&loop); } } Bind(&if_lhsisnotboolean); { // The {lhs} is either Null or Undefined; check if the {rhs} is // undetectable (i.e. either also Null or Undefined or some // undetectable JSReceiver). Node* rhs_bitfield = LoadMapBitField(rhs_map); Branch(Word32Equal( Word32And(rhs_bitfield, Int32Constant(1 << Map::kIsUndetectable)), Int32Constant(0)), &if_notequal, &if_equal); } } Bind(&if_lhsissymbol); { // Check if the {rhs} is a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // The {lhs} is a Primitive and the {rhs} is a JSReceiver. // Swapping {lhs} and {rhs} is not observable and doesn't // matter for the result, so we can just swap them and use // the JSReceiver handling below (for {lhs} being a JSReceiver). var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // The {rhs} is not a JSReceiver and also not the same Symbol // as the {lhs}, so this is equality check is considered false. Goto(&if_notequal); } } Bind(&if_lhsisreceiver); { // Check if the {rhs} is also a JSReceiver. Label if_rhsisreceiver(this), if_rhsisnotreceiver(this); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Both {lhs} and {rhs} are different JSReceiver references, so // this cannot be considered equal. Goto(&if_notequal); } Bind(&if_rhsisnotreceiver); { // Check if {rhs} is Null or Undefined (an undetectable check // is sufficient here, since we already know that {rhs} is not // a JSReceiver). Label if_rhsisundetectable(this), if_rhsisnotundetectable(this, Label::kDeferred); Node* rhs_bitfield = LoadMapBitField(rhs_map); Branch(Word32Equal( Word32And(rhs_bitfield, Int32Constant(1 << Map::kIsUndetectable)), Int32Constant(0)), &if_rhsisnotundetectable, &if_rhsisundetectable); Bind(&if_rhsisundetectable); { // Check if {lhs} is an undetectable JSReceiver. Node* lhs_bitfield = LoadMapBitField(lhs_map); Branch(Word32Equal( Word32And(lhs_bitfield, Int32Constant(1 << Map::kIsUndetectable)), Int32Constant(0)), &if_notequal, &if_equal); } Bind(&if_rhsisnotundetectable); { // The {rhs} is some Primitive different from Null and // Undefined, need to convert {lhs} to Primitive first. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } } } } } Bind(&do_rhsstringtonumber); { Callable callable = CodeFactory::StringToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } Bind(&do_fcmp); { // Load the {lhs} and {rhs} floating point values. Node* lhs = var_fcmp_lhs.value(); Node* rhs = var_fcmp_rhs.value(); // Perform a fast floating point comparison. Branch(Float64Equal(lhs, rhs), &if_equal, &if_notequal); } Bind(&if_equal); { result.Bind(BooleanConstant(mode == kDontNegateResult)); Goto(&end); } Bind(&if_notequal); { result.Bind(BooleanConstant(mode == kNegateResult)); Goto(&end); } Bind(&end); return result.value(); } Node* CodeStubAssembler::StrictEqual(ResultMode mode, Node* lhs, Node* rhs, Node* context) { // Here's pseudo-code for the algorithm below in case of kDontNegateResult // mode; for kNegateResult mode we properly negate the result. // // if (lhs == rhs) { // if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN; // return true; // } // if (!lhs->IsSmi()) { // if (lhs->IsHeapNumber()) { // if (rhs->IsSmi()) { // return Smi::cast(rhs)->value() == HeapNumber::cast(lhs)->value(); // } else if (rhs->IsHeapNumber()) { // return HeapNumber::cast(rhs)->value() == // HeapNumber::cast(lhs)->value(); // } else { // return false; // } // } else { // if (rhs->IsSmi()) { // return false; // } else { // if (lhs->IsString()) { // if (rhs->IsString()) { // return %StringEqual(lhs, rhs); // } else { // return false; // } // } else { // return false; // } // } // } // } else { // if (rhs->IsSmi()) { // return false; // } else { // if (rhs->IsHeapNumber()) { // return Smi::cast(lhs)->value() == HeapNumber::cast(rhs)->value(); // } else { // return false; // } // } // } Label if_equal(this), if_notequal(this), end(this); Variable result(this, MachineRepresentation::kTagged); // Check if {lhs} and {rhs} refer to the same object. Label if_same(this), if_notsame(this); Branch(WordEqual(lhs, rhs), &if_same, &if_notsame); Bind(&if_same); { // The {lhs} and {rhs} reference the exact same value, yet we need special // treatment for HeapNumber, as NaN is not equal to NaN. GenerateEqual_Same(this, lhs, &if_equal, &if_notequal); } Bind(&if_notsame); { // The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber // and String they can still be considered equal. // Check if {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsisnotsmi); { // Load the map of {lhs}. Node* lhs_map = LoadMap(lhs); // Check if {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this); Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = LoadHeapNumberValue(lhs); Node* rhs_value = SmiToFloat64(rhs); // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = LoadHeapNumberValue(lhs); Node* rhs_value = LoadHeapNumberValue(rhs); // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } Bind(&if_rhsisnotnumber); Goto(&if_notequal); } } Bind(&if_lhsisnotnumber); { // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); Goto(&if_notequal); Bind(&if_rhsisnotsmi); { // Load the instance type of {lhs}. Node* lhs_instance_type = LoadMapInstanceType(lhs_map); // Check if {lhs} is a String. Label if_lhsisstring(this), if_lhsisnotstring(this); Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, &if_lhsisnotstring); Bind(&if_lhsisstring); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadInstanceType(rhs); // Check if {rhs} is also a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { Callable callable = (mode == kDontNegateResult) ? CodeFactory::StringEqual(isolate()) : CodeFactory::StringNotEqual(isolate()); result.Bind(CallStub(callable, context, lhs, rhs)); Goto(&end); } Bind(&if_rhsisnotstring); Goto(&if_notequal); } Bind(&if_lhsisnotstring); Goto(&if_notequal); } } } Bind(&if_lhsissmi); { // We already know that {lhs} and {rhs} are not reference equal, and {lhs} // is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a // HeapNumber with an equal floating point value. // Check if {rhs} is a Smi or a HeapObject. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); Goto(&if_notequal); Bind(&if_rhsisnotsmi); { // Load the map of the {rhs}. Node* rhs_map = LoadMap(rhs); // The {rhs} could be a HeapNumber with the same value as {lhs}. Label if_rhsisnumber(this), if_rhsisnotnumber(this); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Convert {lhs} and {rhs} to floating point values. Node* lhs_value = SmiToFloat64(lhs); Node* rhs_value = LoadHeapNumberValue(rhs); // Perform a floating point comparison of {lhs} and {rhs}. Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); } Bind(&if_rhsisnotnumber); Goto(&if_notequal); } } } Bind(&if_equal); { result.Bind(BooleanConstant(mode == kDontNegateResult)); Goto(&end); } Bind(&if_notequal); { result.Bind(BooleanConstant(mode == kNegateResult)); Goto(&end); } Bind(&end); return result.value(); } // ECMA#sec-samevalue // This algorithm differs from the Strict Equality Comparison Algorithm in its // treatment of signed zeroes and NaNs. Node* CodeStubAssembler::SameValue(Node* lhs, Node* rhs, Node* context) { Variable var_result(this, MachineRepresentation::kWord32); Label strict_equal(this), out(this); Node* const int_false = Int32Constant(0); Node* const int_true = Int32Constant(1); Label if_equal(this), if_notequal(this); Branch(WordEqual(lhs, rhs), &if_equal, &if_notequal); Bind(&if_equal); { // This covers the case when {lhs} == {rhs}. We can simply return true // because SameValue considers two NaNs to be equal. var_result.Bind(int_true); Goto(&out); } Bind(&if_notequal); { // This covers the case when {lhs} != {rhs}. We only handle numbers here // and defer to StrictEqual for the rest. Node* const lhs_float = TryTaggedToFloat64(lhs, &strict_equal); Node* const rhs_float = TryTaggedToFloat64(rhs, &strict_equal); Label if_lhsisnan(this), if_lhsnotnan(this); BranchIfFloat64IsNaN(lhs_float, &if_lhsisnan, &if_lhsnotnan); Bind(&if_lhsisnan); { // Return true iff {rhs} is NaN. Node* const result = SelectConstant(Float64Equal(rhs_float, rhs_float), int_false, int_true, MachineRepresentation::kWord32); var_result.Bind(result); Goto(&out); } Bind(&if_lhsnotnan); { Label if_floatisequal(this), if_floatnotequal(this); Branch(Float64Equal(lhs_float, rhs_float), &if_floatisequal, &if_floatnotequal); Bind(&if_floatisequal); { // We still need to handle the case when {lhs} and {rhs} are -0.0 and // 0.0 (or vice versa). Compare the high word to // distinguish between the two. Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_float); Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_float); // If x is +0 and y is -0, return false. // If x is -0 and y is +0, return false. Node* const result = Word32Equal(lhs_hi_word, rhs_hi_word); var_result.Bind(result); Goto(&out); } Bind(&if_floatnotequal); { var_result.Bind(int_false); Goto(&out); } } } Bind(&strict_equal); { Node* const is_equal = StrictEqual(kDontNegateResult, lhs, rhs, context); Node* const result = WordEqual(is_equal, TrueConstant()); var_result.Bind(result); Goto(&out); } Bind(&out); return var_result.value(); } Node* CodeStubAssembler::ForInFilter(Node* key, Node* object, Node* context) { Label return_undefined(this, Label::kDeferred), return_to_name(this), end(this); Variable var_result(this, MachineRepresentation::kTagged); Node* has_property = HasProperty(object, key, context, Runtime::kForInHasProperty); Branch(WordEqual(has_property, BooleanConstant(true)), &return_to_name, &return_undefined); Bind(&return_to_name); { var_result.Bind(ToName(context, key)); Goto(&end); } Bind(&return_undefined); { var_result.Bind(UndefinedConstant()); Goto(&end); } Bind(&end); return var_result.value(); } Node* CodeStubAssembler::HasProperty( Node* object, Node* key, Node* context, Runtime::FunctionId fallback_runtime_function_id) { Label call_runtime(this, Label::kDeferred), return_true(this), return_false(this), end(this); CodeStubAssembler::LookupInHolder lookup_property_in_holder = [this, &return_true](Node* receiver, Node* holder, Node* holder_map, Node* holder_instance_type, Node* unique_name, Label* next_holder, Label* if_bailout) { TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name, &return_true, next_holder, if_bailout); }; CodeStubAssembler::LookupInHolder lookup_element_in_holder = [this, &return_true](Node* receiver, Node* holder, Node* holder_map, Node* holder_instance_type, Node* index, Label* next_holder, Label* if_bailout) { TryLookupElement(holder, holder_map, holder_instance_type, index, &return_true, next_holder, if_bailout); }; TryPrototypeChainLookup(object, key, lookup_property_in_holder, lookup_element_in_holder, &return_false, &call_runtime); Variable result(this, MachineRepresentation::kTagged); Bind(&return_true); { result.Bind(BooleanConstant(true)); Goto(&end); } Bind(&return_false); { result.Bind(BooleanConstant(false)); Goto(&end); } Bind(&call_runtime); { result.Bind( CallRuntime(fallback_runtime_function_id, context, object, key)); Goto(&end); } Bind(&end); return result.value(); } Node* CodeStubAssembler::ClassOf(Node* value) { Variable var_result(this, MachineRepresentation::kTaggedPointer); Label if_function(this, Label::kDeferred), if_object(this, Label::kDeferred), if_primitive(this, Label::kDeferred), return_result(this); // Check if {value} is a Smi. GotoIf(TaggedIsSmi(value), &if_primitive); Node* value_map = LoadMap(value); Node* value_instance_type = LoadMapInstanceType(value_map); // Check if {value} is a JSFunction or JSBoundFunction. STATIC_ASSERT(LAST_TYPE == LAST_FUNCTION_TYPE); GotoIf(Uint32LessThanOrEqual(Int32Constant(FIRST_FUNCTION_TYPE), value_instance_type), &if_function); // Check if {value} is a primitive HeapObject. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); GotoIf(Uint32LessThan(value_instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)), &if_primitive); // Load the {value}s constructor, and check that it's a JSFunction. Node* constructor = LoadMapConstructor(value_map); GotoIfNot(IsJSFunction(constructor), &if_object); // Return the instance class name for the {constructor}. Node* shared_info = LoadObjectField(constructor, JSFunction::kSharedFunctionInfoOffset); Node* instance_class_name = LoadObjectField( shared_info, SharedFunctionInfo::kInstanceClassNameOffset); var_result.Bind(instance_class_name); Goto(&return_result); Bind(&if_function); var_result.Bind(LoadRoot(Heap::kFunction_stringRootIndex)); Goto(&return_result); Bind(&if_object); var_result.Bind(LoadRoot(Heap::kObject_stringRootIndex)); Goto(&return_result); Bind(&if_primitive); var_result.Bind(NullConstant()); Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::Typeof(Node* value, Node* context) { Variable result_var(this, MachineRepresentation::kTagged); Label return_number(this, Label::kDeferred), if_oddball(this), return_function(this), return_undefined(this), return_object(this), return_string(this), return_result(this); GotoIf(TaggedIsSmi(value), &return_number); Node* map = LoadMap(value); GotoIf(IsHeapNumberMap(map), &return_number); Node* instance_type = LoadMapInstanceType(map); GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball); Node* callable_or_undetectable_mask = Word32And( LoadMapBitField(map), Int32Constant(1 << Map::kIsCallable | 1 << Map::kIsUndetectable)); GotoIf(Word32Equal(callable_or_undetectable_mask, Int32Constant(1 << Map::kIsCallable)), &return_function); GotoIfNot(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)), &return_undefined); GotoIf(IsJSReceiverInstanceType(instance_type), &return_object); GotoIf(IsStringInstanceType(instance_type), &return_string); CSA_ASSERT(this, Word32Equal(instance_type, Int32Constant(SYMBOL_TYPE))); result_var.Bind(HeapConstant(isolate()->factory()->symbol_string())); Goto(&return_result); Bind(&return_number); { result_var.Bind(HeapConstant(isolate()->factory()->number_string())); Goto(&return_result); } Bind(&if_oddball); { Node* type = LoadObjectField(value, Oddball::kTypeOfOffset); result_var.Bind(type); Goto(&return_result); } Bind(&return_function); { result_var.Bind(HeapConstant(isolate()->factory()->function_string())); Goto(&return_result); } Bind(&return_undefined); { result_var.Bind(HeapConstant(isolate()->factory()->undefined_string())); Goto(&return_result); } Bind(&return_object); { result_var.Bind(HeapConstant(isolate()->factory()->object_string())); Goto(&return_result); } Bind(&return_string); { result_var.Bind(HeapConstant(isolate()->factory()->string_string())); Goto(&return_result); } Bind(&return_result); return result_var.value(); } Node* CodeStubAssembler::GetSuperConstructor(Node* active_function, Node* context) { CSA_ASSERT(this, IsJSFunction(active_function)); Label is_not_constructor(this, Label::kDeferred), out(this); Variable result(this, MachineRepresentation::kTagged); Node* map = LoadMap(active_function); Node* prototype = LoadMapPrototype(map); Node* prototype_map = LoadMap(prototype); GotoIfNot(IsConstructorMap(prototype_map), &is_not_constructor); result.Bind(prototype); Goto(&out); Bind(&is_not_constructor); { CallRuntime(Runtime::kThrowNotSuperConstructor, context, prototype, active_function); Unreachable(); } Bind(&out); return result.value(); } Node* CodeStubAssembler::InstanceOf(Node* object, Node* callable, Node* context) { Variable var_result(this, MachineRepresentation::kTagged); Label if_notcallable(this, Label::kDeferred), if_notreceiver(this, Label::kDeferred), if_otherhandler(this), if_nohandler(this, Label::kDeferred), return_true(this), return_false(this), return_result(this, &var_result); // Ensure that the {callable} is actually a JSReceiver. GotoIf(TaggedIsSmi(callable), &if_notreceiver); GotoIfNot(IsJSReceiver(callable), &if_notreceiver); // Load the @@hasInstance property from {callable}. Node* inst_of_handler = CallStub(CodeFactory::GetProperty(isolate()), context, callable, HasInstanceSymbolConstant()); // Optimize for the likely case where {inst_of_handler} is the builtin // Function.prototype[@@hasInstance] method, and emit a direct call in // that case without any additional checking. Node* native_context = LoadNativeContext(context); Node* function_has_instance = LoadContextElement(native_context, Context::FUNCTION_HAS_INSTANCE_INDEX); GotoIfNot(WordEqual(inst_of_handler, function_has_instance), &if_otherhandler); { // Call to Function.prototype[@@hasInstance] directly. Callable builtin(isolate()->builtins()->FunctionPrototypeHasInstance(), CallTrampolineDescriptor(isolate())); Node* result = CallJS(builtin, context, inst_of_handler, callable, object); var_result.Bind(result); Goto(&return_result); } Bind(&if_otherhandler); { // Check if there's actually an {inst_of_handler}. GotoIf(IsNull(inst_of_handler), &if_nohandler); GotoIf(IsUndefined(inst_of_handler), &if_nohandler); // Call the {inst_of_handler} for {callable} and {object}. Node* result = CallJS( CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined), context, inst_of_handler, callable, object); // Convert the {result} to a Boolean. BranchIfToBooleanIsTrue(result, &return_true, &return_false); } Bind(&if_nohandler); { // Ensure that the {callable} is actually Callable. GotoIfNot(IsCallable(callable), &if_notcallable); // Use the OrdinaryHasInstance algorithm. Node* result = CallStub(CodeFactory::OrdinaryHasInstance(isolate()), context, callable, object); var_result.Bind(result); Goto(&return_result); } Bind(&if_notcallable); { CallRuntime(Runtime::kThrowNonCallableInInstanceOfCheck, context); Unreachable(); } Bind(&if_notreceiver); { CallRuntime(Runtime::kThrowNonObjectInInstanceOfCheck, context); Unreachable(); } Bind(&return_true); var_result.Bind(TrueConstant()); Goto(&return_result); Bind(&return_false); var_result.Bind(FalseConstant()); Goto(&return_result); Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::NumberInc(Node* value) { Variable var_result(this, MachineRepresentation::kTagged), var_finc_value(this, MachineRepresentation::kFloat64); Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this); Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi); Bind(&if_issmi); { // Try fast Smi addition first. Node* one = SmiConstant(Smi::FromInt(1)); Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(value), BitcastTaggedToWord(one)); Node* overflow = Projection(1, pair); // Check if the Smi addition overflowed. Label if_overflow(this), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_notoverflow); var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair))); Goto(&end); Bind(&if_overflow); { var_finc_value.Bind(SmiToFloat64(value)); Goto(&do_finc); } } Bind(&if_isnotsmi); { // Check if the value is a HeapNumber. CSA_ASSERT(this, IsHeapNumberMap(LoadMap(value))); // Load the HeapNumber value. var_finc_value.Bind(LoadHeapNumberValue(value)); Goto(&do_finc); } Bind(&do_finc); { Node* finc_value = var_finc_value.value(); Node* one = Float64Constant(1.0); Node* finc_result = Float64Add(finc_value, one); var_result.Bind(AllocateHeapNumberWithValue(finc_result)); Goto(&end); } Bind(&end); return var_result.value(); } void CodeStubAssembler::GotoIfNotNumber(Node* input, Label* is_not_number) { Label is_number(this); GotoIf(TaggedIsSmi(input), &is_number); Node* input_map = LoadMap(input); Branch(IsHeapNumberMap(input_map), &is_number, is_not_number); Bind(&is_number); } void CodeStubAssembler::GotoIfNumber(Node* input, Label* is_number) { GotoIf(TaggedIsSmi(input), is_number); Node* input_map = LoadMap(input); GotoIf(IsHeapNumberMap(input_map), is_number); } Node* CodeStubAssembler::CreateArrayIterator(Node* array, Node* array_map, Node* array_type, Node* context, IterationKind mode) { int kBaseMapIndex = 0; switch (mode) { case IterationKind::kKeys: kBaseMapIndex = Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX; break; case IterationKind::kValues: kBaseMapIndex = Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX; break; case IterationKind::kEntries: kBaseMapIndex = Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX; break; } // Fast Array iterator map index: // (kBaseIndex + kFastIteratorOffset) + ElementsKind (for JSArrays) // kBaseIndex + (ElementsKind - UINT8_ELEMENTS) (for JSTypedArrays) const int kFastIteratorOffset = Context::FAST_SMI_ARRAY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX; STATIC_ASSERT(kFastIteratorOffset == (Context::FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX)); // Slow Array iterator map index: (kBaseIndex + kSlowIteratorOffset) const int kSlowIteratorOffset = Context::GENERIC_ARRAY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX; STATIC_ASSERT(kSlowIteratorOffset == (Context::GENERIC_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX - Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX)); // Assert: Type(array) is Object CSA_ASSERT(this, IsJSReceiverInstanceType(array_type)); Variable var_result(this, MachineRepresentation::kTagged); Variable var_map_index(this, MachineType::PointerRepresentation()); Variable var_array_map(this, MachineRepresentation::kTagged); Label return_result(this); Label allocate_iterator(this); if (mode == IterationKind::kKeys) { // There are only two key iterator maps, branch depending on whether or not // the receiver is a TypedArray or not. Label if_istypedarray(this), if_isgeneric(this); Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), &if_istypedarray, &if_isgeneric); Bind(&if_isgeneric); { Label if_isfast(this), if_isslow(this); BranchIfFastJSArray(array, context, FastJSArrayAccessMode::INBOUNDS_READ, &if_isfast, &if_isslow); Bind(&if_isfast); { var_map_index.Bind( IntPtrConstant(Context::FAST_ARRAY_KEY_ITERATOR_MAP_INDEX)); var_array_map.Bind(array_map); Goto(&allocate_iterator); } Bind(&if_isslow); { var_map_index.Bind( IntPtrConstant(Context::GENERIC_ARRAY_KEY_ITERATOR_MAP_INDEX)); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } Bind(&if_istypedarray); { var_map_index.Bind( IntPtrConstant(Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX)); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } else { Label if_istypedarray(this), if_isgeneric(this); Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)), &if_istypedarray, &if_isgeneric); Bind(&if_isgeneric); { Label if_isfast(this), if_isslow(this); BranchIfFastJSArray(array, context, FastJSArrayAccessMode::INBOUNDS_READ, &if_isfast, &if_isslow); Bind(&if_isfast); { Label if_ispacked(this), if_isholey(this); Node* elements_kind = LoadMapElementsKind(array_map); Branch(IsHoleyFastElementsKind(elements_kind), &if_isholey, &if_ispacked); Bind(&if_isholey); { // Fast holey JSArrays can treat the hole as undefined if the // protector cell is valid, and the prototype chain is unchanged from // its initial state (because the protector cell is only tracked for // initial the Array and Object prototypes). Check these conditions // here, and take the slow path if any fail. Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex); DCHECK(isolate()->heap()->array_protector()->IsPropertyCell()); GotoIfNot( WordEqual( LoadObjectField(protector_cell, PropertyCell::kValueOffset), SmiConstant(Smi::FromInt(Isolate::kProtectorValid))), &if_isslow); Node* native_context = LoadNativeContext(context); Node* prototype = LoadMapPrototype(array_map); Node* array_prototype = LoadContextElement( native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX); GotoIfNot(WordEqual(prototype, array_prototype), &if_isslow); Node* map = LoadMap(prototype); prototype = LoadMapPrototype(map); Node* object_prototype = LoadContextElement( native_context, Context::INITIAL_OBJECT_PROTOTYPE_INDEX); GotoIfNot(WordEqual(prototype, object_prototype), &if_isslow); map = LoadMap(prototype); prototype = LoadMapPrototype(map); Branch(IsNull(prototype), &if_ispacked, &if_isslow); } Bind(&if_ispacked); { Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex + kFastIteratorOffset), ChangeUint32ToWord(LoadMapElementsKind(array_map))); CSA_ASSERT(this, IntPtrGreaterThanOrEqual( map_index, IntPtrConstant(kBaseMapIndex + kFastIteratorOffset))); CSA_ASSERT(this, IntPtrLessThan(map_index, IntPtrConstant(kBaseMapIndex + kSlowIteratorOffset))); var_map_index.Bind(map_index); var_array_map.Bind(array_map); Goto(&allocate_iterator); } } Bind(&if_isslow); { Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex), IntPtrConstant(kSlowIteratorOffset)); var_map_index.Bind(map_index); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } Bind(&if_istypedarray); { Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex - UINT8_ELEMENTS), ChangeUint32ToWord(LoadMapElementsKind(array_map))); CSA_ASSERT( this, IntPtrLessThan(map_index, IntPtrConstant(kBaseMapIndex + kFastIteratorOffset))); CSA_ASSERT(this, IntPtrGreaterThanOrEqual(map_index, IntPtrConstant(kBaseMapIndex))); var_map_index.Bind(map_index); var_array_map.Bind(UndefinedConstant()); Goto(&allocate_iterator); } } Bind(&allocate_iterator); { Node* map = LoadFixedArrayElement(LoadNativeContext(context), var_map_index.value()); var_result.Bind(AllocateJSArrayIterator(array, var_array_map.value(), map)); Goto(&return_result); } Bind(&return_result); return var_result.value(); } Node* CodeStubAssembler::AllocateJSArrayIterator(Node* array, Node* array_map, Node* map) { Node* iterator = Allocate(JSArrayIterator::kSize); StoreMapNoWriteBarrier(iterator, map); StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kIteratedObjectOffset, array); StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset, SmiConstant(Smi::FromInt(0))); StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectMapOffset, array_map); return iterator; } Node* CodeStubAssembler::IsDetachedBuffer(Node* buffer) { CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE)); Node* buffer_bit_field = LoadObjectField( buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32()); return IsSetWord32<JSArrayBuffer::WasNeutered>(buffer_bit_field); } CodeStubArguments::CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp, CodeStubAssembler::ParameterMode mode) : assembler_(assembler), argc_mode_(mode), argc_(argc), arguments_(nullptr), fp_(fp != nullptr ? fp : assembler->LoadFramePointer()) { Node* offset = assembler->ElementOffsetFromIndex( argc_, FAST_ELEMENTS, mode, (StandardFrameConstants::kFixedSlotCountAboveFp - 1) * kPointerSize); arguments_ = assembler_->IntPtrAdd(fp_, offset); } Node* CodeStubArguments::GetReceiver() const { return assembler_->Load(MachineType::AnyTagged(), arguments_, assembler_->IntPtrConstant(kPointerSize)); } Node* CodeStubArguments::AtIndexPtr( Node* index, CodeStubAssembler::ParameterMode mode) const { typedef compiler::Node Node; Node* negated_index = assembler_->IntPtrOrSmiSub( assembler_->IntPtrOrSmiConstant(0, mode), index, mode); Node* offset = assembler_->ElementOffsetFromIndex(negated_index, FAST_ELEMENTS, mode, 0); return assembler_->IntPtrAdd(arguments_, offset); } Node* CodeStubArguments::AtIndex(Node* index, CodeStubAssembler::ParameterMode mode) const { DCHECK_EQ(argc_mode_, mode); CSA_ASSERT(assembler_, assembler_->UintPtrOrSmiLessThan(index, GetLength(), mode)); return assembler_->Load(MachineType::AnyTagged(), AtIndexPtr(index, mode)); } Node* CodeStubArguments::AtIndex(int index) const { return AtIndex(assembler_->IntPtrConstant(index)); } void CodeStubArguments::ForEach( const CodeStubAssembler::VariableList& vars, const CodeStubArguments::ForEachBodyFunction& body, Node* first, Node* last, CodeStubAssembler::ParameterMode mode) { assembler_->Comment("CodeStubArguments::ForEach"); if (first == nullptr) { first = assembler_->IntPtrOrSmiConstant(0, mode); } if (last == nullptr) { DCHECK_EQ(mode, argc_mode_); last = argc_; } Node* start = assembler_->IntPtrSub( arguments_, assembler_->ElementOffsetFromIndex(first, FAST_ELEMENTS, mode)); Node* end = assembler_->IntPtrSub( arguments_, assembler_->ElementOffsetFromIndex(last, FAST_ELEMENTS, mode)); assembler_->BuildFastLoop(vars, start, end, [this, &body](Node* current) { Node* arg = assembler_->Load( MachineType::AnyTagged(), current); body(arg); }, -kPointerSize, CodeStubAssembler::INTPTR_PARAMETERS, CodeStubAssembler::IndexAdvanceMode::kPost); } void CodeStubArguments::PopAndReturn(Node* value) { assembler_->PopAndReturn( assembler_->IntPtrAdd(argc_, assembler_->IntPtrConstant(1)), value); } Node* CodeStubAssembler::IsFastElementsKind(Node* elements_kind) { return Uint32LessThanOrEqual(elements_kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)); } Node* CodeStubAssembler::IsHoleyFastElementsKind(Node* elements_kind) { CSA_ASSERT(this, IsFastElementsKind(elements_kind)); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == (FAST_SMI_ELEMENTS | 1)); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == (FAST_ELEMENTS | 1)); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == (FAST_DOUBLE_ELEMENTS | 1)); // Check prototype chain if receiver does not have packed elements. Node* holey_elements = Word32And(elements_kind, Int32Constant(1)); return Word32Equal(holey_elements, Int32Constant(1)); } Node* CodeStubAssembler::IsDebugActive() { Node* is_debug_active = Load( MachineType::Uint8(), ExternalConstant(ExternalReference::debug_is_active_address(isolate()))); return Word32NotEqual(is_debug_active, Int32Constant(0)); } Node* CodeStubAssembler::IsPromiseHookEnabledOrDebugIsActive() { Node* const promise_hook_or_debug_is_active = Load(MachineType::Uint8(), ExternalConstant( ExternalReference::promise_hook_or_debug_is_active_address( isolate()))); return Word32NotEqual(promise_hook_or_debug_is_active, Int32Constant(0)); } Node* CodeStubAssembler::AllocateFunctionWithMapAndContext(Node* map, Node* shared_info, Node* context) { Node* const code = BitcastTaggedToWord( LoadObjectField(shared_info, SharedFunctionInfo::kCodeOffset)); Node* const code_entry = IntPtrAdd(code, IntPtrConstant(Code::kHeaderSize - kHeapObjectTag)); Node* const fun = Allocate(JSFunction::kSize); StoreMapNoWriteBarrier(fun, map); StoreObjectFieldRoot(fun, JSObject::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldRoot(fun, JSObject::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); StoreObjectFieldRoot(fun, JSFunction::kFeedbackVectorOffset, Heap::kUndefinedCellRootIndex); StoreObjectFieldRoot(fun, JSFunction::kPrototypeOrInitialMapOffset, Heap::kTheHoleValueRootIndex); StoreObjectFieldNoWriteBarrier(fun, JSFunction::kSharedFunctionInfoOffset, shared_info); StoreObjectFieldNoWriteBarrier(fun, JSFunction::kContextOffset, context); StoreObjectFieldNoWriteBarrier(fun, JSFunction::kCodeEntryOffset, code_entry, MachineType::PointerRepresentation()); StoreObjectFieldRoot(fun, JSFunction::kNextFunctionLinkOffset, Heap::kUndefinedValueRootIndex); return fun; } Node* CodeStubAssembler::AllocatePromiseReactionJobInfo( Node* value, Node* tasks, Node* deferred_promise, Node* deferred_on_resolve, Node* deferred_on_reject, Node* context) { Node* const result = Allocate(PromiseReactionJobInfo::kSize); StoreMapNoWriteBarrier(result, Heap::kPromiseReactionJobInfoMapRootIndex); StoreObjectFieldNoWriteBarrier(result, PromiseReactionJobInfo::kValueOffset, value); StoreObjectFieldNoWriteBarrier(result, PromiseReactionJobInfo::kTasksOffset, tasks); StoreObjectFieldNoWriteBarrier( result, PromiseReactionJobInfo::kDeferredPromiseOffset, deferred_promise); StoreObjectFieldNoWriteBarrier( result, PromiseReactionJobInfo::kDeferredOnResolveOffset, deferred_on_resolve); StoreObjectFieldNoWriteBarrier( result, PromiseReactionJobInfo::kDeferredOnRejectOffset, deferred_on_reject); StoreObjectFieldNoWriteBarrier(result, PromiseReactionJobInfo::kContextOffset, context); return result; } Node* CodeStubAssembler::MarkerIsFrameType(Node* marker_or_function, StackFrame::Type frame_type) { return WordEqual( marker_or_function, IntPtrConstant(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); } Node* CodeStubAssembler::MarkerIsNotFrameType(Node* marker_or_function, StackFrame::Type frame_type) { return WordNotEqual( marker_or_function, IntPtrConstant(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); } void CodeStubAssembler::Print(const char* s) { #ifdef DEBUG std::string formatted(s); formatted += "\n"; Handle<String> string = isolate()->factory()->NewStringFromAsciiChecked( formatted.c_str(), TENURED); CallRuntime(Runtime::kGlobalPrint, NoContextConstant(), HeapConstant(string)); #endif } void CodeStubAssembler::Print(const char* prefix, Node* tagged_value) { #ifdef DEBUG if (prefix != nullptr) { std::string formatted(prefix); formatted += ": "; Handle<String> string = isolate()->factory()->NewStringFromAsciiChecked( formatted.c_str(), TENURED); CallRuntime(Runtime::kGlobalPrint, NoContextConstant(), HeapConstant(string)); } CallRuntime(Runtime::kDebugPrint, NoContextConstant(), tagged_value); #endif } } // namespace internal } // namespace v8