// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins-utils.h" #include "src/builtins/builtins.h" #include "src/code-factory.h" #include "src/code-stub-assembler.h" #include "src/counters.h" #include "src/objects-inl.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // ES6 section 20.2.2 Function Properties of the Math Object class MathBuiltinsAssembler : public CodeStubAssembler { public: explicit MathBuiltinsAssembler(compiler::CodeAssemblerState* state) : CodeStubAssembler(state) {} protected: void MathRoundingOperation(Node* (CodeStubAssembler::*float64op)(Node*)); void MathUnaryOperation(Node* (CodeStubAssembler::*float64op)(Node*)); }; // ES6 section - 20.2.2.1 Math.abs ( x ) TF_BUILTIN(MathAbs, CodeStubAssembler) { Node* context = Parameter(4); // We might need to loop once for ToNumber conversion. Variable var_x(this, MachineRepresentation::kTagged); Label loop(this, &var_x); var_x.Bind(Parameter(1)); Goto(&loop); Bind(&loop); { // Load the current {x} value. Node* x = var_x.value(); // Check if {x} is a Smi or a HeapObject. Label if_xissmi(this), if_xisnotsmi(this); Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); Bind(&if_xissmi); { // Check if {x} is already positive. Label if_xispositive(this), if_xisnotpositive(this); BranchIfSmiLessThanOrEqual(SmiConstant(Smi::FromInt(0)), x, &if_xispositive, &if_xisnotpositive); Bind(&if_xispositive); { // Just return the input {x}. Return(x); } Bind(&if_xisnotpositive); { // Try to negate the {x} value. Node* pair = IntPtrSubWithOverflow(IntPtrConstant(0), BitcastTaggedToWord(x)); Node* overflow = Projection(1, pair); Label if_overflow(this, Label::kDeferred), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_notoverflow); { // There is a Smi representation for negated {x}. Node* result = Projection(0, pair); Return(BitcastWordToTagged(result)); } Bind(&if_overflow); { Return(NumberConstant(0.0 - Smi::kMinValue)); } } } Bind(&if_xisnotsmi); { // Check if {x} is a HeapNumber. Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, &if_xisnotheapnumber); Bind(&if_xisheapnumber); { Node* x_value = LoadHeapNumberValue(x); Node* value = Float64Abs(x_value); Node* result = AllocateHeapNumberWithValue(value); Return(result); } Bind(&if_xisnotheapnumber); { // Need to convert {x} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_x.Bind(CallStub(callable, context, x)); Goto(&loop); } } } } void MathBuiltinsAssembler::MathRoundingOperation( Node* (CodeStubAssembler::*float64op)(Node*)) { Node* context = Parameter(4); // We might need to loop once for ToNumber conversion. Variable var_x(this, MachineRepresentation::kTagged); Label loop(this, &var_x); var_x.Bind(Parameter(1)); Goto(&loop); Bind(&loop); { // Load the current {x} value. Node* x = var_x.value(); // Check if {x} is a Smi or a HeapObject. Label if_xissmi(this), if_xisnotsmi(this); Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); Bind(&if_xissmi); { // Nothing to do when {x} is a Smi. Return(x); } Bind(&if_xisnotsmi); { // Check if {x} is a HeapNumber. Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, &if_xisnotheapnumber); Bind(&if_xisheapnumber); { Node* x_value = LoadHeapNumberValue(x); Node* value = (this->*float64op)(x_value); Node* result = ChangeFloat64ToTagged(value); Return(result); } Bind(&if_xisnotheapnumber); { // Need to convert {x} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_x.Bind(CallStub(callable, context, x)); Goto(&loop); } } } } void MathBuiltinsAssembler::MathUnaryOperation( Node* (CodeStubAssembler::*float64op)(Node*)) { Node* x = Parameter(1); Node* context = Parameter(4); Node* x_value = TruncateTaggedToFloat64(context, x); Node* value = (this->*float64op)(x_value); Node* result = AllocateHeapNumberWithValue(value); Return(result); } // ES6 section 20.2.2.2 Math.acos ( x ) TF_BUILTIN(MathAcos, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Acos); } // ES6 section 20.2.2.3 Math.acosh ( x ) TF_BUILTIN(MathAcosh, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Acosh); } // ES6 section 20.2.2.4 Math.asin ( x ) TF_BUILTIN(MathAsin, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Asin); } // ES6 section 20.2.2.5 Math.asinh ( x ) TF_BUILTIN(MathAsinh, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Asinh); } // ES6 section 20.2.2.6 Math.atan ( x ) TF_BUILTIN(MathAtan, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Atan); } // ES6 section 20.2.2.7 Math.atanh ( x ) TF_BUILTIN(MathAtanh, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Atanh); } // ES6 section 20.2.2.8 Math.atan2 ( y, x ) TF_BUILTIN(MathAtan2, CodeStubAssembler) { Node* y = Parameter(1); Node* x = Parameter(2); Node* context = Parameter(5); Node* y_value = TruncateTaggedToFloat64(context, y); Node* x_value = TruncateTaggedToFloat64(context, x); Node* value = Float64Atan2(y_value, x_value); Node* result = AllocateHeapNumberWithValue(value); Return(result); } // ES6 section 20.2.2.10 Math.ceil ( x ) TF_BUILTIN(MathCeil, MathBuiltinsAssembler) { MathRoundingOperation(&CodeStubAssembler::Float64Ceil); } // ES6 section 20.2.2.9 Math.cbrt ( x ) TF_BUILTIN(MathCbrt, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Cbrt); } // ES6 section 20.2.2.11 Math.clz32 ( x ) TF_BUILTIN(MathClz32, CodeStubAssembler) { Node* context = Parameter(4); // Shared entry point for the clz32 operation. Variable var_clz32_x(this, MachineRepresentation::kWord32); Label do_clz32(this); // We might need to loop once for ToNumber conversion. Variable var_x(this, MachineRepresentation::kTagged); Label loop(this, &var_x); var_x.Bind(Parameter(1)); Goto(&loop); Bind(&loop); { // Load the current {x} value. Node* x = var_x.value(); // Check if {x} is a Smi or a HeapObject. Label if_xissmi(this), if_xisnotsmi(this); Branch(TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); Bind(&if_xissmi); { var_clz32_x.Bind(SmiToWord32(x)); Goto(&do_clz32); } Bind(&if_xisnotsmi); { // Check if {x} is a HeapNumber. Label if_xisheapnumber(this), if_xisnotheapnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(LoadMap(x)), &if_xisheapnumber, &if_xisnotheapnumber); Bind(&if_xisheapnumber); { var_clz32_x.Bind(TruncateHeapNumberValueToWord32(x)); Goto(&do_clz32); } Bind(&if_xisnotheapnumber); { // Need to convert {x} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_x.Bind(CallStub(callable, context, x)); Goto(&loop); } } } Bind(&do_clz32); { Node* x_value = var_clz32_x.value(); Node* value = Word32Clz(x_value); Node* result = ChangeInt32ToTagged(value); Return(result); } } // ES6 section 20.2.2.12 Math.cos ( x ) TF_BUILTIN(MathCos, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Cos); } // ES6 section 20.2.2.13 Math.cosh ( x ) TF_BUILTIN(MathCosh, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Cosh); } // ES6 section 20.2.2.14 Math.exp ( x ) TF_BUILTIN(MathExp, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Exp); } // ES6 section 20.2.2.15 Math.expm1 ( x ) TF_BUILTIN(MathExpm1, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Expm1); } // ES6 section 20.2.2.16 Math.floor ( x ) TF_BUILTIN(MathFloor, MathBuiltinsAssembler) { MathRoundingOperation(&CodeStubAssembler::Float64Floor); } // ES6 section 20.2.2.17 Math.fround ( x ) TF_BUILTIN(MathFround, CodeStubAssembler) { Node* x = Parameter(1); Node* context = Parameter(4); Node* x_value = TruncateTaggedToFloat64(context, x); Node* value32 = TruncateFloat64ToFloat32(x_value); Node* value = ChangeFloat32ToFloat64(value32); Node* result = AllocateHeapNumberWithValue(value); Return(result); } // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) BUILTIN(MathHypot) { HandleScope scope(isolate); int const length = args.length() - 1; if (length == 0) return Smi::kZero; DCHECK_LT(0, length); double max = 0; bool one_arg_is_nan = false; List<double> abs_values(length); for (int i = 0; i < length; i++) { Handle<Object> x = args.at(i + 1); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x)); double abs_value = std::abs(x->Number()); if (std::isnan(abs_value)) { one_arg_is_nan = true; } else { abs_values.Add(abs_value); if (max < abs_value) { max = abs_value; } } } if (max == V8_INFINITY) { return *isolate->factory()->NewNumber(V8_INFINITY); } if (one_arg_is_nan) { return isolate->heap()->nan_value(); } if (max == 0) { return Smi::kZero; } DCHECK_GT(max, 0); // Kahan summation to avoid rounding errors. // Normalize the numbers to the largest one to avoid overflow. double sum = 0; double compensation = 0; for (int i = 0; i < length; i++) { double n = abs_values.at(i) / max; double summand = n * n - compensation; double preliminary = sum + summand; compensation = (preliminary - sum) - summand; sum = preliminary; } return *isolate->factory()->NewNumber(std::sqrt(sum) * max); } // ES6 section 20.2.2.19 Math.imul ( x, y ) TF_BUILTIN(MathImul, CodeStubAssembler) { Node* x = Parameter(1); Node* y = Parameter(2); Node* context = Parameter(5); Node* x_value = TruncateTaggedToWord32(context, x); Node* y_value = TruncateTaggedToWord32(context, y); Node* value = Int32Mul(x_value, y_value); Node* result = ChangeInt32ToTagged(value); Return(result); } // ES6 section 20.2.2.20 Math.log ( x ) TF_BUILTIN(MathLog, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Log); } // ES6 section 20.2.2.21 Math.log1p ( x ) TF_BUILTIN(MathLog1p, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Log1p); } // ES6 section 20.2.2.22 Math.log10 ( x ) TF_BUILTIN(MathLog10, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Log10); } // ES6 section 20.2.2.23 Math.log2 ( x ) TF_BUILTIN(MathLog2, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Log2); } // ES6 section 20.2.2.26 Math.pow ( x, y ) TF_BUILTIN(MathPow, CodeStubAssembler) { Node* x = Parameter(1); Node* y = Parameter(2); Node* context = Parameter(5); Node* x_value = TruncateTaggedToFloat64(context, x); Node* y_value = TruncateTaggedToFloat64(context, y); Node* value = Float64Pow(x_value, y_value); Node* result = ChangeFloat64ToTagged(value); Return(result); } // ES6 section 20.2.2.27 Math.random ( ) TF_BUILTIN(MathRandom, CodeStubAssembler) { Node* context = Parameter(3); Node* native_context = LoadNativeContext(context); // Load cache index. Variable smi_index(this, MachineRepresentation::kTagged); smi_index.Bind( LoadContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX)); // Cached random numbers are exhausted if index is 0. Go to slow path. Label if_cached(this); GotoIf(SmiAbove(smi_index.value(), SmiConstant(Smi::kZero)), &if_cached); // Cache exhausted, populate the cache. Return value is the new index. smi_index.Bind(CallRuntime(Runtime::kGenerateRandomNumbers, context)); Goto(&if_cached); // Compute next index by decrement. Bind(&if_cached); Node* new_smi_index = SmiSub(smi_index.value(), SmiConstant(Smi::FromInt(1))); StoreContextElement(native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); // Load and return next cached random number. Node* array = LoadContextElement(native_context, Context::MATH_RANDOM_CACHE_INDEX); Node* random = LoadFixedDoubleArrayElement( array, new_smi_index, MachineType::Float64(), 0, SMI_PARAMETERS); Return(AllocateHeapNumberWithValue(random)); } // ES6 section 20.2.2.28 Math.round ( x ) TF_BUILTIN(MathRound, MathBuiltinsAssembler) { MathRoundingOperation(&CodeStubAssembler::Float64Round); } // ES6 section 20.2.2.29 Math.sign ( x ) TF_BUILTIN(MathSign, CodeStubAssembler) { // Convert the {x} value to a Number. Node* x = Parameter(1); Node* context = Parameter(4); Node* x_value = TruncateTaggedToFloat64(context, x); // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. Label if_xisnegative(this), if_xispositive(this); GotoIf(Float64LessThan(x_value, Float64Constant(0.0)), &if_xisnegative); GotoIf(Float64LessThan(Float64Constant(0.0), x_value), &if_xispositive); Return(ChangeFloat64ToTagged(x_value)); Bind(&if_xisnegative); Return(SmiConstant(Smi::FromInt(-1))); Bind(&if_xispositive); Return(SmiConstant(Smi::FromInt(1))); } // ES6 section 20.2.2.30 Math.sin ( x ) TF_BUILTIN(MathSin, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Sin); } // ES6 section 20.2.2.31 Math.sinh ( x ) TF_BUILTIN(MathSinh, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Sinh); } // ES6 section 20.2.2.32 Math.sqrt ( x ) TF_BUILTIN(MathSqrt, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Sqrt); } // ES6 section 20.2.2.33 Math.tan ( x ) TF_BUILTIN(MathTan, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Tan); } // ES6 section 20.2.2.34 Math.tanh ( x ) TF_BUILTIN(MathTanh, MathBuiltinsAssembler) { MathUnaryOperation(&CodeStubAssembler::Float64Tanh); } // ES6 section 20.2.2.35 Math.trunc ( x ) TF_BUILTIN(MathTrunc, MathBuiltinsAssembler) { MathRoundingOperation(&CodeStubAssembler::Float64Trunc); } void Builtins::Generate_MathMax(MacroAssembler* masm) { Generate_MathMaxMin(masm, MathMaxMinKind::kMax); } void Builtins::Generate_MathMin(MacroAssembler* masm) { Generate_MathMaxMin(masm, MathMaxMinKind::kMin); } } // namespace internal } // namespace v8