// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins.h" #include "src/builtins/builtins-utils.h" #include "src/code-factory.h" #include "src/code-stub-assembler.h" #include "src/contexts.h" #include "src/counters.h" #include "src/elements.h" #include "src/isolate.h" #include "src/lookup.h" #include "src/objects-inl.h" #include "src/prototype.h" namespace v8 { namespace internal { namespace { inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { // This is an extended version of ECMA-262 7.1.11 handling signed values // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] if (object->IsSmi()) { *out = Smi::cast(object)->value(); return true; } else if (object->IsHeapNumber()) { double value = HeapNumber::cast(object)->value(); if (std::isnan(value)) { *out = 0; } else if (value > kMaxInt) { *out = kMaxInt; } else if (value < kMinInt) { *out = kMinInt; } else { *out = static_cast<int>(value); } return true; } else if (object->IsNullOrUndefined(isolate)) { *out = 0; return true; } else if (object->IsBoolean()) { *out = object->IsTrue(isolate); return true; } return false; } inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object, int* out) { Context* context = *isolate->native_context(); Map* map = object->map(); if (map != context->sloppy_arguments_map() && map != context->strict_arguments_map() && map != context->fast_aliased_arguments_map()) { return false; } DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); if (!len_obj->IsSmi()) return false; *out = Max(0, Smi::cast(len_obj)->value()); FixedArray* parameters = FixedArray::cast(object->elements()); if (object->HasSloppyArgumentsElements()) { FixedArray* arguments = FixedArray::cast(parameters->get(1)); return *out <= arguments->length(); } return *out <= parameters->length(); } inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, JSArray* receiver) { return JSObject::PrototypeHasNoElements(isolate, receiver); } inline bool HasSimpleElements(JSObject* current) { return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && !current->GetElementsAccessor()->HasAccessors(current); } inline bool HasOnlySimpleReceiverElements(Isolate* isolate, JSObject* receiver) { // Check that we have no accessors on the receiver's elements. if (!HasSimpleElements(receiver)) return false; return JSObject::PrototypeHasNoElements(isolate, receiver); } inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { DisallowHeapAllocation no_gc; PrototypeIterator iter(isolate, receiver, kStartAtReceiver); for (; !iter.IsAtEnd(); iter.Advance()) { if (iter.GetCurrent()->IsJSProxy()) return false; JSObject* current = iter.GetCurrent<JSObject>(); if (!HasSimpleElements(current)) return false; } return true; } // Returns |false| if not applicable. MUST_USE_RESULT inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, Handle<Object> receiver, BuiltinArguments* args, int first_added_arg) { if (!receiver->IsJSArray()) return false; Handle<JSArray> array = Handle<JSArray>::cast(receiver); ElementsKind origin_kind = array->GetElementsKind(); if (IsDictionaryElementsKind(origin_kind)) return false; if (!array->map()->is_extensible()) return false; if (args == nullptr) return true; // If there may be elements accessors in the prototype chain, the fast path // cannot be used if there arguments to add to the array. if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; // Adding elements to the array prototype would break code that makes sure // it has no elements. Handle that elsewhere. if (isolate->IsAnyInitialArrayPrototype(array)) return false; // Need to ensure that the arguments passed in args can be contained in // the array. int args_length = args->length(); if (first_added_arg >= args_length) return true; if (IsFastObjectElementsKind(origin_kind)) return true; ElementsKind target_kind = origin_kind; { DisallowHeapAllocation no_gc; for (int i = first_added_arg; i < args_length; i++) { Object* arg = (*args)[i]; if (arg->IsHeapObject()) { if (arg->IsHeapNumber()) { target_kind = FAST_DOUBLE_ELEMENTS; } else { target_kind = FAST_ELEMENTS; break; } } } } if (target_kind != origin_kind) { // Use a short-lived HandleScope to avoid creating several copies of the // elements handle which would cause issues when left-trimming later-on. HandleScope scope(isolate); JSObject::TransitionElementsKind(array, target_kind); } return true; } MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, Handle<JSFunction> function, BuiltinArguments args) { HandleScope handleScope(isolate); int argc = args.length() - 1; ScopedVector<Handle<Object>> argv(argc); for (int i = 0; i < argc; ++i) { argv[i] = args.at(i + 1); } RETURN_RESULT_OR_FAILURE( isolate, Execution::Call(isolate, function, args.receiver(), argc, argv.start())); } } // namespace BUILTIN(ArrayPush) { HandleScope scope(isolate); Handle<Object> receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { return CallJsIntrinsic(isolate, isolate->array_push(), args); } // Fast Elements Path int to_add = args.length() - 1; Handle<JSArray> array = Handle<JSArray>::cast(receiver); int len = Smi::cast(array->length())->value(); if (to_add == 0) return Smi::FromInt(len); // Currently fixed arrays cannot grow too big, so we should never hit this. DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_push(), args); } ElementsAccessor* accessor = array->GetElementsAccessor(); int new_length = accessor->Push(array, &args, to_add); return Smi::FromInt(new_length); } void Builtins::Generate_FastArrayPush(compiler::CodeAssemblerState* state) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; CodeStubAssembler assembler(state); Variable arg_index(&assembler, MachineType::PointerRepresentation()); Label default_label(&assembler, &arg_index); Label smi_transition(&assembler); Label object_push_pre(&assembler); Label object_push(&assembler, &arg_index); Label double_push(&assembler, &arg_index); Label double_transition(&assembler); Label runtime(&assembler, Label::kDeferred); Node* argc = assembler.Parameter(BuiltinDescriptor::kArgumentsCount); Node* context = assembler.Parameter(BuiltinDescriptor::kContext); Node* new_target = assembler.Parameter(BuiltinDescriptor::kNewTarget); CodeStubArguments args(&assembler, assembler.ChangeInt32ToIntPtr(argc)); Node* receiver = args.GetReceiver(); Node* kind = nullptr; Label fast(&assembler); { assembler.BranchIfFastJSArray( receiver, context, CodeStubAssembler::FastJSArrayAccessMode::ANY_ACCESS, &fast, &runtime); } assembler.Bind(&fast); { // Disallow pushing onto prototypes. It might be the JSArray prototype. // Disallow pushing onto non-extensible objects. assembler.Comment("Disallow pushing onto prototypes"); Node* map = assembler.LoadMap(receiver); Node* bit_field2 = assembler.LoadMapBitField2(map); int mask = static_cast<int>(Map::IsPrototypeMapBits::kMask) | (1 << Map::kIsExtensible); Node* test = assembler.Word32And(bit_field2, assembler.Int32Constant(mask)); assembler.GotoIf( assembler.Word32NotEqual( test, assembler.Int32Constant(1 << Map::kIsExtensible)), &runtime); // Disallow pushing onto arrays in dictionary named property mode. We need // to figure out whether the length property is still writable. assembler.Comment( "Disallow pushing onto arrays in dictionary named property mode"); assembler.GotoIf(assembler.IsDictionaryMap(map), &runtime); // Check whether the length property is writable. The length property is the // only default named property on arrays. It's nonconfigurable, hence is // guaranteed to stay the first property. Node* descriptors = assembler.LoadMapDescriptors(map); Node* details = assembler.LoadFixedArrayElement( descriptors, DescriptorArray::ToDetailsIndex(0)); assembler.GotoIf( assembler.IsSetSmi(details, PropertyDetails::kAttributesReadOnlyMask), &runtime); arg_index.Bind(assembler.IntPtrConstant(0)); kind = assembler.DecodeWord32<Map::ElementsKindBits>(bit_field2); assembler.GotoIf( assembler.Int32GreaterThan( kind, assembler.Int32Constant(FAST_HOLEY_SMI_ELEMENTS)), &object_push_pre); Node* new_length = assembler.BuildAppendJSArray( FAST_SMI_ELEMENTS, context, receiver, args, arg_index, &smi_transition); args.PopAndReturn(new_length); } // If the argument is not a smi, then use a heavyweight SetProperty to // transition the array for only the single next element. If the argument is // a smi, the failure is due to some other reason and we should fall back on // the most generic implementation for the rest of the array. assembler.Bind(&smi_transition); { Node* arg = args.AtIndex(arg_index.value()); assembler.GotoIf(assembler.TaggedIsSmi(arg), &default_label); Node* length = assembler.LoadJSArrayLength(receiver); // TODO(danno): Use the KeyedStoreGeneric stub here when possible, // calling into the runtime to do the elements transition is overkill. assembler.CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, assembler.SmiConstant(STRICT)); assembler.Increment(arg_index); // The runtime SetProperty call could have converted the array to dictionary // mode, which must be detected to abort the fast-path. Node* map = assembler.LoadMap(receiver); Node* bit_field2 = assembler.LoadMapBitField2(map); Node* kind = assembler.DecodeWord32<Map::ElementsKindBits>(bit_field2); assembler.GotoIf(assembler.Word32Equal( kind, assembler.Int32Constant(DICTIONARY_ELEMENTS)), &default_label); assembler.GotoIfNotNumber(arg, &object_push); assembler.Goto(&double_push); } assembler.Bind(&object_push_pre); { assembler.Branch(assembler.Int32GreaterThan( kind, assembler.Int32Constant(FAST_HOLEY_ELEMENTS)), &double_push, &object_push); } assembler.Bind(&object_push); { Node* new_length = assembler.BuildAppendJSArray( FAST_ELEMENTS, context, receiver, args, arg_index, &default_label); args.PopAndReturn(new_length); } assembler.Bind(&double_push); { Node* new_length = assembler.BuildAppendJSArray(FAST_DOUBLE_ELEMENTS, context, receiver, args, arg_index, &double_transition); args.PopAndReturn(new_length); } // If the argument is not a double, then use a heavyweight SetProperty to // transition the array for only the single next element. If the argument is // a double, the failure is due to some other reason and we should fall back // on the most generic implementation for the rest of the array. assembler.Bind(&double_transition); { Node* arg = args.AtIndex(arg_index.value()); assembler.GotoIfNumber(arg, &default_label); Node* length = assembler.LoadJSArrayLength(receiver); // TODO(danno): Use the KeyedStoreGeneric stub here when possible, // calling into the runtime to do the elements transition is overkill. assembler.CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, assembler.SmiConstant(STRICT)); assembler.Increment(arg_index); // The runtime SetProperty call could have converted the array to dictionary // mode, which must be detected to abort the fast-path. Node* map = assembler.LoadMap(receiver); Node* bit_field2 = assembler.LoadMapBitField2(map); Node* kind = assembler.DecodeWord32<Map::ElementsKindBits>(bit_field2); assembler.GotoIf(assembler.Word32Equal( kind, assembler.Int32Constant(DICTIONARY_ELEMENTS)), &default_label); assembler.Goto(&object_push); } // Fallback that stores un-processed arguments using the full, heavyweight // SetProperty machinery. assembler.Bind(&default_label); { args.ForEach( [&assembler, receiver, context](Node* arg) { Node* length = assembler.LoadJSArrayLength(receiver); assembler.CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, assembler.SmiConstant(STRICT)); }, arg_index.value()); args.PopAndReturn(assembler.LoadJSArrayLength(receiver)); } assembler.Bind(&runtime); { Node* target = assembler.LoadFromFrame( StandardFrameConstants::kFunctionOffset, MachineType::TaggedPointer()); assembler.TailCallStub(CodeFactory::ArrayPush(assembler.isolate()), context, target, new_target, argc); } } BUILTIN(ArrayPop) { HandleScope scope(isolate); Handle<Object> receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { return CallJsIntrinsic(isolate, isolate->array_pop(), args); } Handle<JSArray> array = Handle<JSArray>::cast(receiver); uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value()); if (len == 0) return isolate->heap()->undefined_value(); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_pop(), args); } Handle<Object> result; if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { // Fast Elements Path result = array->GetElementsAccessor()->Pop(array); } else { // Use Slow Lookup otherwise uint32_t new_length = len - 1; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSReceiver::GetElement(isolate, array, new_length)); JSArray::SetLength(array, new_length); } return *result; } BUILTIN(ArrayShift) { HandleScope scope(isolate); Heap* heap = isolate->heap(); Handle<Object> receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { return CallJsIntrinsic(isolate, isolate->array_shift(), args); } Handle<JSArray> array = Handle<JSArray>::cast(receiver); int len = Smi::cast(array->length())->value(); if (len == 0) return heap->undefined_value(); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_shift(), args); } Handle<Object> first = array->GetElementsAccessor()->Shift(array); return *first; } BUILTIN(ArrayUnshift) { HandleScope scope(isolate); Handle<Object> receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { return CallJsIntrinsic(isolate, isolate->array_unshift(), args); } Handle<JSArray> array = Handle<JSArray>::cast(receiver); int to_add = args.length() - 1; if (to_add == 0) return array->length(); // Currently fixed arrays cannot grow too big, so we should never hit this. DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_unshift(), args); } ElementsAccessor* accessor = array->GetElementsAccessor(); int new_length = accessor->Unshift(array, &args, to_add); return Smi::FromInt(new_length); } class ForEachCodeStubAssembler : public CodeStubAssembler { public: explicit ForEachCodeStubAssembler(compiler::CodeAssemblerState* state) : CodeStubAssembler(state) {} void VisitOneElement(Node* context, Node* this_arg, Node* o, Node* k, Node* callbackfn) { Comment("begin VisitOneElement"); // a. Let Pk be ToString(k). Node* p_k = ToString(context, k); // b. Let kPresent be HasProperty(O, Pk). // c. ReturnIfAbrupt(kPresent). Node* k_present = CallStub(CodeFactory::HasProperty(isolate()), context, p_k, o); // d. If kPresent is true, then Label not_present(this); GotoIf(WordNotEqual(k_present, TrueConstant()), ¬_present); // i. Let kValue be Get(O, Pk). // ii. ReturnIfAbrupt(kValue). Node* k_value = CallStub(CodeFactory::GetProperty(isolate()), context, o, k); // iii. Let funcResult be Call(callbackfn, T, «kValue, k, O»). // iv. ReturnIfAbrupt(funcResult). CallJS(CodeFactory::Call(isolate()), context, callbackfn, this_arg, k_value, k, o); Goto(¬_present); Bind(¬_present); Comment("end VisitOneElement"); } void VisitAllFastElements(Node* context, ElementsKind kind, Node* this_arg, Node* o, Node* len, Node* callbackfn, ParameterMode mode) { Comment("begin VisitAllFastElements"); Variable original_map(this, MachineRepresentation::kTagged); original_map.Bind(LoadMap(o)); VariableList list({&original_map}, zone()); BuildFastLoop( list, IntPtrOrSmiConstant(0, mode), TaggedToParameter(len, mode), [context, kind, this, o, &original_map, callbackfn, this_arg, mode](Node* index) { Label one_element_done(this), array_changed(this, Label::kDeferred), hole_element(this); // Check if o's map has changed during the callback. If so, we have to // fall back to the slower spec implementation for the rest of the // iteration. Node* o_map = LoadMap(o); GotoIf(WordNotEqual(o_map, original_map.value()), &array_changed); // Check if o's length has changed during the callback and if the // index is now out of range of the new length. Node* tagged_index = ParameterToTagged(index, mode); GotoIf(SmiGreaterThanOrEqual(tagged_index, LoadJSArrayLength(o)), &array_changed); // Re-load the elements array. If may have been resized. Node* elements = LoadElements(o); // Fast case: load the element directly from the elements FixedArray // and call the callback if the element is not the hole. DCHECK(kind == FAST_ELEMENTS || kind == FAST_DOUBLE_ELEMENTS); int base_size = kind == FAST_ELEMENTS ? FixedArray::kHeaderSize : (FixedArray::kHeaderSize - kHeapObjectTag); Node* offset = ElementOffsetFromIndex(index, kind, mode, base_size); Node* value = nullptr; if (kind == FAST_ELEMENTS) { value = LoadObjectField(elements, offset); GotoIf(WordEqual(value, TheHoleConstant()), &hole_element); } else { Node* double_value = LoadDoubleWithHoleCheck(elements, offset, &hole_element); value = AllocateHeapNumberWithValue(double_value); } CallJS(CodeFactory::Call(isolate()), context, callbackfn, this_arg, value, tagged_index, o); Goto(&one_element_done); Bind(&hole_element); BranchIfPrototypesHaveNoElements(o_map, &one_element_done, &array_changed); // O's changed during the forEach. Use the implementation precisely // specified in the spec for the rest of the iteration, also making // the failed original_map sticky in case of a subseuent change that // goes back to the original map. Bind(&array_changed); VisitOneElement(context, this_arg, o, ParameterToTagged(index, mode), callbackfn); original_map.Bind(UndefinedConstant()); Goto(&one_element_done); Bind(&one_element_done); }, 1, mode, IndexAdvanceMode::kPost); Comment("end VisitAllFastElements"); } }; TF_BUILTIN(ArrayForEach, ForEachCodeStubAssembler) { Label non_array(this), examine_elements(this), fast_elements(this), slow(this), maybe_double_elements(this), fast_double_elements(this); Node* receiver = Parameter(ForEachDescriptor::kReceiver); Node* callbackfn = Parameter(ForEachDescriptor::kCallback); Node* this_arg = Parameter(ForEachDescriptor::kThisArg); Node* context = Parameter(ForEachDescriptor::kContext); // TODO(danno): Seriously? Do we really need to throw the exact error message // on null and undefined so that the webkit tests pass? Label throw_null_undefined_exception(this, Label::kDeferred); GotoIf(WordEqual(receiver, NullConstant()), &throw_null_undefined_exception); GotoIf(WordEqual(receiver, UndefinedConstant()), &throw_null_undefined_exception); // By the book: taken directly from the ECMAScript 2015 specification // 1. Let O be ToObject(this value). // 2. ReturnIfAbrupt(O) Node* o = CallStub(CodeFactory::ToObject(isolate()), context, receiver); // 3. Let len be ToLength(Get(O, "length")). // 4. ReturnIfAbrupt(len). Variable merged_length(this, MachineRepresentation::kTagged); Label has_length(this, &merged_length), not_js_array(this); GotoIf(DoesntHaveInstanceType(o, JS_ARRAY_TYPE), ¬_js_array); merged_length.Bind(LoadJSArrayLength(o)); Goto(&has_length); Bind(¬_js_array); Node* len_property = CallStub(CodeFactory::GetProperty(isolate()), context, o, HeapConstant(isolate()->factory()->length_string())); merged_length.Bind( CallStub(CodeFactory::ToLength(isolate()), context, len_property)); Goto(&has_length); Bind(&has_length); Node* len = merged_length.value(); // 5. If IsCallable(callbackfn) is false, throw a TypeError exception. Label type_exception(this, Label::kDeferred); GotoIf(TaggedIsSmi(callbackfn), &type_exception); GotoIfNot(IsCallableMap(LoadMap(callbackfn)), &type_exception); // 6. If thisArg was supplied, let T be thisArg; else let T be undefined. // [Already done by the arguments adapter] // Non-smi lengths must use the slow path. GotoIf(TaggedIsNotSmi(len), &slow); BranchIfFastJSArray(o, context, CodeStubAssembler::FastJSArrayAccessMode::INBOUNDS_READ, &examine_elements, &slow); Bind(&examine_elements); ParameterMode mode = OptimalParameterMode(); // Select by ElementsKind Node* o_map = LoadMap(o); Node* bit_field2 = LoadMapBitField2(o_map); Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); Branch(Int32GreaterThan(kind, Int32Constant(FAST_HOLEY_ELEMENTS)), &maybe_double_elements, &fast_elements); Bind(&fast_elements); { VisitAllFastElements(context, FAST_ELEMENTS, this_arg, o, len, callbackfn, mode); // No exception, return success Return(UndefinedConstant()); } Bind(&maybe_double_elements); Branch(Int32GreaterThan(kind, Int32Constant(FAST_HOLEY_DOUBLE_ELEMENTS)), &slow, &fast_double_elements); Bind(&fast_double_elements); { VisitAllFastElements(context, FAST_DOUBLE_ELEMENTS, this_arg, o, len, callbackfn, mode); // No exception, return success Return(UndefinedConstant()); } Bind(&slow); { // By the book: taken from the ECMAScript 2015 specification (cont.) // 7. Let k be 0. Variable k(this, MachineRepresentation::kTagged); k.Bind(SmiConstant(0)); // 8. Repeat, while k < len Label loop(this, &k); Label after_loop(this); Goto(&loop); Bind(&loop); { GotoUnlessNumberLessThan(k.value(), len, &after_loop); VisitOneElement(context, this_arg, o, k.value(), callbackfn); // e. Increase k by 1. k.Bind(NumberInc(k.value())); Goto(&loop); } Bind(&after_loop); Return(UndefinedConstant()); } Bind(&throw_null_undefined_exception); { CallRuntime(Runtime::kThrowTypeError, context, SmiConstant(MessageTemplate::kCalledOnNullOrUndefined), HeapConstant(isolate()->factory()->NewStringFromAsciiChecked( "Array.prototype.forEach"))); Unreachable(); } Bind(&type_exception); { CallRuntime(Runtime::kThrowTypeError, context, SmiConstant(MessageTemplate::kCalledNonCallable), callbackfn); Unreachable(); } } BUILTIN(ArraySlice) { HandleScope scope(isolate); Handle<Object> receiver = args.receiver(); int len = -1; int relative_start = 0; int relative_end = 0; if (receiver->IsJSArray()) { DisallowHeapAllocation no_gc; JSArray* array = JSArray::cast(*receiver); if (V8_UNLIKELY(!array->HasFastElements() || !IsJSArrayFastElementMovingAllowed(isolate, array) || !isolate->IsArraySpeciesLookupChainIntact() || // If this is a subclass of Array, then call out to JS !array->HasArrayPrototype(isolate))) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } len = Smi::cast(array->length())->value(); } else if (receiver->IsJSObject() && GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver), &len)) { // Array.prototype.slice.call(arguments, ...) is quite a common idiom // (notably more than 50% of invocations in Web apps). // Treat it in C++ as well. DCHECK(JSObject::cast(*receiver)->HasFastElements() || JSObject::cast(*receiver)->HasFastArgumentsElements()); } else { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } DCHECK_LE(0, len); int argument_count = args.length() - 1; // Note carefully chosen defaults---if argument is missing, // it's undefined which gets converted to 0 for relative_start // and to len for relative_end. relative_start = 0; relative_end = len; if (argument_count > 0) { DisallowHeapAllocation no_gc; if (!ClampedToInteger(isolate, args[1], &relative_start)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } if (argument_count > 1) { Object* end_arg = args[2]; // slice handles the end_arg specially if (end_arg->IsUndefined(isolate)) { relative_end = len; } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } } } // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) : Min(relative_start, len); // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. uint32_t actual_end = (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); Handle<JSObject> object = Handle<JSObject>::cast(receiver); ElementsAccessor* accessor = object->GetElementsAccessor(); return *accessor->Slice(object, actual_start, actual_end); } BUILTIN(ArraySplice) { HandleScope scope(isolate); Handle<Object> receiver = args.receiver(); if (V8_UNLIKELY( !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || // If this is a subclass of Array, then call out to JS. !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) || // If anything with @@species has been messed with, call out to JS. !isolate->IsArraySpeciesLookupChainIntact())) { return CallJsIntrinsic(isolate, isolate->array_splice(), args); } Handle<JSArray> array = Handle<JSArray>::cast(receiver); int argument_count = args.length() - 1; int relative_start = 0; if (argument_count > 0) { DisallowHeapAllocation no_gc; if (!ClampedToInteger(isolate, args[1], &relative_start)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_splice(), args); } } int len = Smi::cast(array->length())->value(); // clip relative start to [0, len] int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) : Min(relative_start, len); int actual_delete_count; if (argument_count == 1) { // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is // given as a request to delete all the elements from the start. // And it differs from the case of undefined delete count. // This does not follow ECMA-262, but we do the same for compatibility. DCHECK(len - actual_start >= 0); actual_delete_count = len - actual_start; } else { int delete_count = 0; DisallowHeapAllocation no_gc; if (argument_count > 1) { if (!ClampedToInteger(isolate, args[2], &delete_count)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_splice(), args); } } actual_delete_count = Min(Max(delete_count, 0), len - actual_start); } int add_count = (argument_count > 1) ? (argument_count - 2) : 0; int new_length = len - actual_delete_count + add_count; if (new_length != len && JSArray::HasReadOnlyLength(array)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_splice(), args); } ElementsAccessor* accessor = array->GetElementsAccessor(); Handle<JSArray> result_array = accessor->Splice( array, actual_start, actual_delete_count, &args, add_count); return *result_array; } // Array Concat ------------------------------------------------------------- namespace { /** * A simple visitor visits every element of Array's. * The backend storage can be a fixed array for fast elements case, * or a dictionary for sparse array. Since Dictionary is a subtype * of FixedArray, the class can be used by both fast and slow cases. * The second parameter of the constructor, fast_elements, specifies * whether the storage is a FixedArray or Dictionary. * * An index limit is used to deal with the situation that a result array * length overflows 32-bit non-negative integer. */ class ArrayConcatVisitor { public: ArrayConcatVisitor(Isolate* isolate, Handle<HeapObject> storage, bool fast_elements) : isolate_(isolate), storage_(isolate->global_handles()->Create(*storage)), index_offset_(0u), bit_field_( FastElementsField::encode(fast_elements) | ExceedsLimitField::encode(false) | IsFixedArrayField::encode(storage->IsFixedArray()) | HasSimpleElementsField::encode(storage->IsFixedArray() || storage->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER)) { DCHECK(!(this->fast_elements() && !is_fixed_array())); } ~ArrayConcatVisitor() { clear_storage(); } MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) { uint32_t index = index_offset_ + i; if (i >= JSObject::kMaxElementCount - index_offset_) { set_exceeds_array_limit(true); // Exception hasn't been thrown at this point. Return true to // break out, and caller will throw. !visit would imply that // there is already a pending exception. return true; } if (!is_fixed_array()) { LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); MAYBE_RETURN( JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), false); return true; } if (fast_elements()) { if (index < static_cast<uint32_t>(storage_fixed_array()->length())) { storage_fixed_array()->set(index, *elm); return true; } // Our initial estimate of length was foiled, possibly by // getters on the arrays increasing the length of later arrays // during iteration. // This shouldn't happen in anything but pathological cases. SetDictionaryMode(); // Fall-through to dictionary mode. } DCHECK(!fast_elements()); Handle<SeededNumberDictionary> dict( SeededNumberDictionary::cast(*storage_)); // The object holding this backing store has just been allocated, so // it cannot yet be used as a prototype. Handle<JSObject> not_a_prototype_holder; Handle<SeededNumberDictionary> result = SeededNumberDictionary::AtNumberPut( dict, index, elm, not_a_prototype_holder); if (!result.is_identical_to(dict)) { // Dictionary needed to grow. clear_storage(); set_storage(*result); } return true; } void increase_index_offset(uint32_t delta) { if (JSObject::kMaxElementCount - index_offset_ < delta) { index_offset_ = JSObject::kMaxElementCount; } else { index_offset_ += delta; } // If the initial length estimate was off (see special case in visit()), // but the array blowing the limit didn't contain elements beyond the // provided-for index range, go to dictionary mode now. if (fast_elements() && index_offset_ > static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { SetDictionaryMode(); } } bool exceeds_array_limit() const { return ExceedsLimitField::decode(bit_field_); } Handle<JSArray> ToArray() { DCHECK(is_fixed_array()); Handle<JSArray> array = isolate_->factory()->NewJSArray(0); Handle<Object> length = isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); Handle<Map> map = JSObject::GetElementsTransitionMap( array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); array->set_map(*map); array->set_length(*length); array->set_elements(*storage_fixed_array()); return array; } // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever // (otherwise) Handle<FixedArray> storage_fixed_array() { DCHECK(is_fixed_array()); DCHECK(has_simple_elements()); return Handle<FixedArray>::cast(storage_); } Handle<JSReceiver> storage_jsreceiver() { DCHECK(!is_fixed_array()); return Handle<JSReceiver>::cast(storage_); } bool has_simple_elements() const { return HasSimpleElementsField::decode(bit_field_); } private: // Convert storage to dictionary mode. void SetDictionaryMode() { DCHECK(fast_elements() && is_fixed_array()); Handle<FixedArray> current_storage = storage_fixed_array(); Handle<SeededNumberDictionary> slow_storage( SeededNumberDictionary::New(isolate_, current_storage->length())); uint32_t current_length = static_cast<uint32_t>(current_storage->length()); FOR_WITH_HANDLE_SCOPE( isolate_, uint32_t, i = 0, i, i < current_length, i++, { Handle<Object> element(current_storage->get(i), isolate_); if (!element->IsTheHole(isolate_)) { // The object holding this backing store has just been allocated, so // it cannot yet be used as a prototype. Handle<JSObject> not_a_prototype_holder; Handle<SeededNumberDictionary> new_storage = SeededNumberDictionary::AtNumberPut(slow_storage, i, element, not_a_prototype_holder); if (!new_storage.is_identical_to(slow_storage)) { slow_storage = loop_scope.CloseAndEscape(new_storage); } } }); clear_storage(); set_storage(*slow_storage); set_fast_elements(false); } inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } inline void set_storage(FixedArray* storage) { DCHECK(is_fixed_array()); DCHECK(has_simple_elements()); storage_ = isolate_->global_handles()->Create(storage); } class FastElementsField : public BitField<bool, 0, 1> {}; class ExceedsLimitField : public BitField<bool, 1, 1> {}; class IsFixedArrayField : public BitField<bool, 2, 1> {}; class HasSimpleElementsField : public BitField<bool, 3, 1> {}; bool fast_elements() const { return FastElementsField::decode(bit_field_); } void set_fast_elements(bool fast) { bit_field_ = FastElementsField::update(bit_field_, fast); } void set_exceeds_array_limit(bool exceeds) { bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); } bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } Isolate* isolate_; Handle<Object> storage_; // Always a global handle. // Index after last seen index. Always less than or equal to // JSObject::kMaxElementCount. uint32_t index_offset_; uint32_t bit_field_; }; uint32_t EstimateElementCount(Handle<JSArray> array) { DisallowHeapAllocation no_gc; uint32_t length = static_cast<uint32_t>(array->length()->Number()); int element_count = 0; switch (array->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); Isolate* isolate = array->GetIsolate(); FixedArray* elements = FixedArray::cast(array->elements()); for (int i = 0; i < fast_length; i++) { if (!elements->get(i)->IsTheHole(isolate)) element_count++; } break; } case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); if (array->elements()->IsFixedArray()) { DCHECK(FixedArray::cast(array->elements())->length() == 0); break; } FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); for (int i = 0; i < fast_length; i++) { if (!elements->is_the_hole(i)) element_count++; } break; } case DICTIONARY_ELEMENTS: { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(array->elements()); Isolate* isolate = dictionary->GetIsolate(); int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* key = dictionary->KeyAt(i); if (dictionary->IsKey(isolate, key)) { element_count++; } } break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE // External arrays are always dense. return length; case NO_ELEMENTS: return 0; case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: UNREACHABLE(); return 0; } // As an estimate, we assume that the prototype doesn't contain any // inherited elements. return element_count; } // Used for sorting indices in a List<uint32_t>. int compareUInt32(const uint32_t* ap, const uint32_t* bp) { uint32_t a = *ap; uint32_t b = *bp; return (a == b) ? 0 : (a < b) ? -1 : 1; } void CollectElementIndices(Handle<JSObject> object, uint32_t range, List<uint32_t>* indices) { Isolate* isolate = object->GetIsolate(); ElementsKind kind = object->GetElementsKind(); switch (kind) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { DisallowHeapAllocation no_gc; FixedArray* elements = FixedArray::cast(object->elements()); uint32_t length = static_cast<uint32_t>(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->get(i)->IsTheHole(isolate)) { indices->Add(i); } } break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { if (object->elements()->IsFixedArray()) { DCHECK(object->elements()->length() == 0); break; } Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(object->elements())); uint32_t length = static_cast<uint32_t>(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->is_the_hole(i)) { indices->Add(i); } } break; } case DICTIONARY_ELEMENTS: { DisallowHeapAllocation no_gc; SeededNumberDictionary* dict = SeededNumberDictionary::cast(object->elements()); uint32_t capacity = dict->Capacity(); FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { Object* k = dict->KeyAt(j); if (!dict->IsKey(isolate, k)) continue; DCHECK(k->IsNumber()); uint32_t index = static_cast<uint32_t>(k->Number()); if (index < range) { indices->Add(index); } }); break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { uint32_t length = static_cast<uint32_t>( FixedArrayBase::cast(object->elements())->length()); if (range <= length) { length = range; // We will add all indices, so we might as well clear it first // and avoid duplicates. indices->Clear(); } for (uint32_t i = 0; i < length; i++) { indices->Add(i); } if (length == range) return; // All indices accounted for already. break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { ElementsAccessor* accessor = object->GetElementsAccessor(); for (uint32_t i = 0; i < range; i++) { if (accessor->HasElement(object, i)) { indices->Add(i); } } break; } case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: { DCHECK(object->IsJSValue()); Handle<JSValue> js_value = Handle<JSValue>::cast(object); DCHECK(js_value->value()->IsString()); Handle<String> string(String::cast(js_value->value()), isolate); uint32_t length = static_cast<uint32_t>(string->length()); uint32_t i = 0; uint32_t limit = Min(length, range); for (; i < limit; i++) { indices->Add(i); } ElementsAccessor* accessor = object->GetElementsAccessor(); for (; i < range; i++) { if (accessor->HasElement(object, i)) { indices->Add(i); } } break; } case NO_ELEMENTS: break; } PrototypeIterator iter(isolate, object); if (!iter.IsAtEnd()) { // The prototype will usually have no inherited element indices, // but we have to check. CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range, indices); } } bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver, uint32_t length, ArrayConcatVisitor* visitor) { FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { Maybe<bool> maybe = JSReceiver::HasElement(receiver, i); if (!maybe.IsJust()) return false; if (maybe.FromJust()) { Handle<Object> element_value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), false); if (!visitor->visit(i, element_value)) return false; } }); visitor->increase_index_offset(length); return true; } /** * A helper function that visits "array" elements of a JSReceiver in numerical * order. * * The visitor argument called for each existing element in the array * with the element index and the element's value. * Afterwards it increments the base-index of the visitor by the array * length. * Returns false if any access threw an exception, otherwise true. */ bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver, ArrayConcatVisitor* visitor) { uint32_t length = 0; if (receiver->IsJSArray()) { Handle<JSArray> array = Handle<JSArray>::cast(receiver); length = static_cast<uint32_t>(array->length()->Number()); } else { Handle<Object> val; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); // TODO(caitp): Support larger element indexes (up to 2^53-1). if (!val->ToUint32(&length)) { length = 0; } // TODO(cbruni): handle other element kind as well return IterateElementsSlow(isolate, receiver, length, visitor); } if (!HasOnlySimpleElements(isolate, *receiver) || !visitor->has_simple_elements()) { return IterateElementsSlow(isolate, receiver, length, visitor); } Handle<JSObject> array = Handle<JSObject>::cast(receiver); switch (array->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. Handle<FixedArray> elements(FixedArray::cast(array->elements())); int fast_length = static_cast<int>(length); DCHECK(fast_length <= elements->length()); FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { Handle<Object> element_value(elements->get(j), isolate); if (!element_value->IsTheHole(isolate)) { if (!visitor->visit(j, element_value)) return false; } else { Maybe<bool> maybe = JSReceiver::HasElement(array, j); if (!maybe.IsJust()) return false; if (maybe.FromJust()) { // Call GetElement on array, not its prototype, or getters won't // have the correct receiver. ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, JSReceiver::GetElement(isolate, array, j), false); if (!visitor->visit(j, element_value)) return false; } } }); break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty array is FixedArray but not FixedDoubleArray. if (length == 0) break; // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. if (array->elements()->IsFixedArray()) { DCHECK(array->elements()->length() == 0); break; } Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(array->elements())); int fast_length = static_cast<int>(length); DCHECK(fast_length <= elements->length()); FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { if (!elements->is_the_hole(j)) { double double_value = elements->get_scalar(j); Handle<Object> element_value = isolate->factory()->NewNumber(double_value); if (!visitor->visit(j, element_value)) return false; } else { Maybe<bool> maybe = JSReceiver::HasElement(array, j); if (!maybe.IsJust()) return false; if (maybe.FromJust()) { // Call GetElement on array, not its prototype, or getters won't // have the correct receiver. Handle<Object> element_value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, JSReceiver::GetElement(isolate, array, j), false); if (!visitor->visit(j, element_value)) return false; } } }); break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dict(array->element_dictionary()); List<uint32_t> indices(dict->Capacity() / 2); // Collect all indices in the object and the prototypes less // than length. This might introduce duplicates in the indices list. CollectElementIndices(array, length, &indices); indices.Sort(&compareUInt32); int n = indices.length(); FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { uint32_t index = indices[j]; Handle<Object> element; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element, JSReceiver::GetElement(isolate, array, index), false); if (!visitor->visit(index, element)) return false; // Skip to next different index (i.e., omit duplicates). do { j++; } while (j < n && indices[j] == index); }); break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { FOR_WITH_HANDLE_SCOPE( isolate, uint32_t, index = 0, index, index < length, index++, { Handle<Object> element; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element, JSReceiver::GetElement(isolate, array, index), false); if (!visitor->visit(index, element)) return false; }); break; } case NO_ELEMENTS: break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE return IterateElementsSlow(isolate, receiver, length, visitor); case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: // |array| is guaranteed to be an array or typed array. UNREACHABLE(); break; } visitor->increase_index_offset(length); return true; } static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) { HandleScope handle_scope(isolate); if (!obj->IsJSReceiver()) return Just(false); if (!isolate->IsIsConcatSpreadableLookupChainIntact(JSReceiver::cast(*obj))) { // Slow path if @@isConcatSpreadable has been used. Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol()); Handle<Object> value; MaybeHandle<Object> maybeValue = i::Runtime::GetObjectProperty(isolate, obj, key); if (!maybeValue.ToHandle(&value)) return Nothing<bool>(); if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); } return Object::IsArray(obj); } Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, Isolate* isolate) { int argument_count = args->length(); bool is_array_species = *species == isolate->context()->array_function(); // Pass 1: estimate the length and number of elements of the result. // The actual length can be larger if any of the arguments have getters // that mutate other arguments (but will otherwise be precise). // The number of elements is precise if there are no inherited elements. ElementsKind kind = FAST_SMI_ELEMENTS; uint32_t estimate_result_length = 0; uint32_t estimate_nof_elements = 0; FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { Handle<Object> obj((*args)[i], isolate); uint32_t length_estimate; uint32_t element_estimate; if (obj->IsJSArray()) { Handle<JSArray> array(Handle<JSArray>::cast(obj)); length_estimate = static_cast<uint32_t>(array->length()->Number()); if (length_estimate != 0) { ElementsKind array_kind = GetPackedElementsKind(array->GetElementsKind()); kind = GetMoreGeneralElementsKind(kind, array_kind); } element_estimate = EstimateElementCount(array); } else { if (obj->IsHeapObject()) { kind = GetMoreGeneralElementsKind( kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); } length_estimate = 1; element_estimate = 1; } // Avoid overflows by capping at kMaxElementCount. if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { estimate_result_length = JSObject::kMaxElementCount; } else { estimate_result_length += length_estimate; } if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { estimate_nof_elements = JSObject::kMaxElementCount; } else { estimate_nof_elements += element_estimate; } }); // If estimated number of elements is more than half of length, a // fixed array (fast case) is more time and space-efficient than a // dictionary. bool fast_case = is_array_species && (estimate_nof_elements * 2) >= estimate_result_length && isolate->IsIsConcatSpreadableLookupChainIntact(); if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { Handle<FixedArrayBase> storage = isolate->factory()->NewFixedDoubleArray(estimate_result_length); int j = 0; bool failure = false; if (estimate_result_length > 0) { Handle<FixedDoubleArray> double_storage = Handle<FixedDoubleArray>::cast(storage); for (int i = 0; i < argument_count; i++) { Handle<Object> obj((*args)[i], isolate); if (obj->IsSmi()) { double_storage->set(j, Smi::cast(*obj)->value()); j++; } else if (obj->IsNumber()) { double_storage->set(j, obj->Number()); j++; } else { DisallowHeapAllocation no_gc; JSArray* array = JSArray::cast(*obj); uint32_t length = static_cast<uint32_t>(array->length()->Number()); switch (array->GetElementsKind()) { case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty array is FixedArray but not FixedDoubleArray. if (length == 0) break; FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); for (uint32_t i = 0; i < length; i++) { if (elements->is_the_hole(i)) { // TODO(jkummerow/verwaest): We could be a bit more clever // here: Check if there are no elements/getters on the // prototype chain, and if so, allow creation of a holey // result array. // Same thing below (holey smi case). failure = true; break; } double double_value = elements->get_scalar(i); double_storage->set(j, double_value); j++; } break; } case FAST_HOLEY_SMI_ELEMENTS: case FAST_SMI_ELEMENTS: { Object* the_hole = isolate->heap()->the_hole_value(); FixedArray* elements(FixedArray::cast(array->elements())); for (uint32_t i = 0; i < length; i++) { Object* element = elements->get(i); if (element == the_hole) { failure = true; break; } int32_t int_value = Smi::cast(element)->value(); double_storage->set(j, int_value); j++; } break; } case FAST_HOLEY_ELEMENTS: case FAST_ELEMENTS: case DICTIONARY_ELEMENTS: case NO_ELEMENTS: DCHECK_EQ(0u, length); break; default: UNREACHABLE(); } } if (failure) break; } } if (!failure) { return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); } // In case of failure, fall through. } Handle<HeapObject> storage; if (fast_case) { // The backing storage array must have non-existing elements to preserve // holes across concat operations. storage = isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); } else if (is_array_species) { // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate uint32_t at_least_space_for = estimate_nof_elements + (estimate_nof_elements >> 2); storage = SeededNumberDictionary::New(isolate, at_least_space_for); } else { DCHECK(species->IsConstructor()); Handle<Object> length(Smi::kZero, isolate); Handle<Object> storage_object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, storage_object, Execution::New(isolate, species, species, 1, &length)); storage = Handle<HeapObject>::cast(storage_object); } ArrayConcatVisitor visitor(isolate, storage, fast_case); for (int i = 0; i < argument_count; i++) { Handle<Object> obj((*args)[i], isolate); Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj); MAYBE_RETURN(spreadable, isolate->heap()->exception()); if (spreadable.FromJust()) { Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj); if (!IterateElements(isolate, object, &visitor)) { return isolate->heap()->exception(); } } else { if (!visitor.visit(0, obj)) return isolate->heap()->exception(); visitor.increase_index_offset(1); } } if (visitor.exceeds_array_limit()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); } if (is_array_species) { return *visitor.ToArray(); } else { return *visitor.storage_jsreceiver(); } } bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) { DisallowHeapAllocation no_gc; Map* map = obj->map(); // If there is only the 'length' property we are fine. if (map->prototype() == isolate->native_context()->initial_array_prototype() && map->NumberOfOwnDescriptors() == 1) { return true; } // TODO(cbruni): slower lookup for array subclasses and support slow // @@IsConcatSpreadable lookup. return false; } MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, BuiltinArguments* args) { if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { return MaybeHandle<JSArray>(); } // We shouldn't overflow when adding another len. const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); USE(kHalfOfMaxInt); int n_arguments = args->length(); int result_len = 0; { DisallowHeapAllocation no_gc; // Iterate through all the arguments performing checks // and calculating total length. for (int i = 0; i < n_arguments; i++) { Object* arg = (*args)[i]; if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { return MaybeHandle<JSArray>(); } // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. if (!JSObject::cast(arg)->HasFastElements()) { return MaybeHandle<JSArray>(); } Handle<JSArray> array(JSArray::cast(arg), isolate); if (!IsSimpleArray(isolate, array)) { return MaybeHandle<JSArray>(); } // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't // overflow. result_len += Smi::cast(array->length())->value(); DCHECK(result_len >= 0); // Throw an Error if we overflow the FixedArray limits if (FixedDoubleArray::kMaxLength < result_len || FixedArray::kMaxLength < result_len) { AllowHeapAllocation gc; THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kInvalidArrayLength), JSArray); } } } return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); } } // namespace // ES6 22.1.3.1 Array.prototype.concat BUILTIN(ArrayConcat) { HandleScope scope(isolate); Handle<Object> receiver = args.receiver(); // TODO(bmeurer): Do we really care about the exact exception message here? if (receiver->IsNullOrUndefined(isolate)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, isolate->factory()->NewStringFromAsciiChecked( "Array.prototype.concat"))); } ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, receiver, Object::ToObject(isolate, args.receiver())); args[0] = *receiver; Handle<JSArray> result_array; // Avoid a real species read to avoid extra lookups to the array constructor if (V8_LIKELY(receiver->IsJSArray() && Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) && isolate->IsArraySpeciesLookupChainIntact())) { if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { return *result_array; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); } // Reading @@species happens before anything else with a side effect, so // we can do it here to determine whether to take the fast path. Handle<Object> species; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); if (*species == *isolate->array_function()) { if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { return *result_array; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); } return Slow_ArrayConcat(&args, species, isolate); } void Builtins::Generate_ArrayIsArray(compiler::CodeAssemblerState* state) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; CodeStubAssembler assembler(state); Node* object = assembler.Parameter(1); Node* context = assembler.Parameter(4); Label call_runtime(&assembler), return_true(&assembler), return_false(&assembler); assembler.GotoIf(assembler.TaggedIsSmi(object), &return_false); Node* instance_type = assembler.LoadInstanceType(object); assembler.GotoIf(assembler.Word32Equal( instance_type, assembler.Int32Constant(JS_ARRAY_TYPE)), &return_true); // TODO(verwaest): Handle proxies in-place. assembler.Branch(assembler.Word32Equal( instance_type, assembler.Int32Constant(JS_PROXY_TYPE)), &call_runtime, &return_false); assembler.Bind(&return_true); assembler.Return(assembler.BooleanConstant(true)); assembler.Bind(&return_false); assembler.Return(assembler.BooleanConstant(false)); assembler.Bind(&call_runtime); assembler.Return( assembler.CallRuntime(Runtime::kArrayIsArray, context, object)); } TF_BUILTIN(ArrayIncludes, CodeStubAssembler) { Node* const array = Parameter(0); Node* const search_element = Parameter(1); Node* const start_from = Parameter(2); Node* const context = Parameter(3 + 2); Variable len_var(this, MachineType::PointerRepresentation()), index_var(this, MachineType::PointerRepresentation()); Label init_k(this), return_true(this), return_false(this), call_runtime(this); Label init_len(this), select_loop(this); index_var.Bind(IntPtrConstant(0)); len_var.Bind(IntPtrConstant(0)); // Take slow path if not a JSArray, if retrieving elements requires // traversing prototype, or if access checks are required. BranchIfFastJSArray(array, context, CodeStubAssembler::FastJSArrayAccessMode::INBOUNDS_READ, &init_len, &call_runtime); Bind(&init_len); { // Handle case where JSArray length is not an Smi in the runtime Node* len = LoadObjectField(array, JSArray::kLengthOffset); GotoIfNot(TaggedIsSmi(len), &call_runtime); len_var.Bind(SmiToWord(len)); GotoIf(IsUndefined(start_from), &select_loop); // Bailout to slow path if startIndex is not an Smi. Branch(TaggedIsSmi(start_from), &init_k, &call_runtime); } Bind(&init_k); CSA_ASSERT(this, TaggedIsSmi(start_from)); Node* const untagged_start_from = SmiToWord(start_from); index_var.Bind(Select( IntPtrGreaterThanOrEqual(untagged_start_from, IntPtrConstant(0)), [=]() { return untagged_start_from; }, [=]() { Node* const index = IntPtrAdd(len_var.value(), untagged_start_from); return SelectConstant(IntPtrLessThan(index, IntPtrConstant(0)), IntPtrConstant(0), index, MachineType::PointerRepresentation()); }, MachineType::PointerRepresentation())); Goto(&select_loop); Bind(&select_loop); static int32_t kElementsKind[] = { FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, }; Label if_smiorobjects(this), if_packed_doubles(this), if_holey_doubles(this); Label* element_kind_handlers[] = {&if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_packed_doubles, &if_holey_doubles}; Node* map = LoadMap(array); Node* elements_kind = LoadMapElementsKind(map); Node* elements = LoadElements(array); Switch(elements_kind, &return_false, kElementsKind, element_kind_handlers, arraysize(kElementsKind)); Bind(&if_smiorobjects); { Variable search_num(this, MachineRepresentation::kFloat64); Label ident_loop(this, &index_var), heap_num_loop(this, &search_num), string_loop(this, &index_var), undef_loop(this, &index_var), not_smi(this), not_heap_num(this); GotoIfNot(TaggedIsSmi(search_element), ¬_smi); search_num.Bind(SmiToFloat64(search_element)); Goto(&heap_num_loop); Bind(¬_smi); GotoIf(WordEqual(search_element, UndefinedConstant()), &undef_loop); Node* map = LoadMap(search_element); GotoIfNot(IsHeapNumberMap(map), ¬_heap_num); search_num.Bind(LoadHeapNumberValue(search_element)); Goto(&heap_num_loop); Bind(¬_heap_num); Node* search_type = LoadMapInstanceType(map); GotoIf(IsStringInstanceType(search_type), &string_loop); Goto(&ident_loop); Bind(&ident_loop); { GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedArrayElement(elements, index_var.value()); GotoIf(WordEqual(element_k, search_element), &return_true); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&ident_loop); } Bind(&undef_loop); { GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedArrayElement(elements, index_var.value()); GotoIf(WordEqual(element_k, UndefinedConstant()), &return_true); GotoIf(WordEqual(element_k, TheHoleConstant()), &return_true); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&undef_loop); } Bind(&heap_num_loop); { Label nan_loop(this, &index_var), not_nan_loop(this, &index_var); BranchIfFloat64IsNaN(search_num.value(), &nan_loop, ¬_nan_loop); Bind(¬_nan_loop); { Label continue_loop(this), not_smi(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedArrayElement(elements, index_var.value()); GotoIfNot(TaggedIsSmi(element_k), ¬_smi); Branch(Float64Equal(search_num.value(), SmiToFloat64(element_k)), &return_true, &continue_loop); Bind(¬_smi); GotoIfNot(IsHeapNumber(element_k), &continue_loop); Branch(Float64Equal(search_num.value(), LoadHeapNumberValue(element_k)), &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(¬_nan_loop); } Bind(&nan_loop); { Label continue_loop(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedArrayElement(elements, index_var.value()); GotoIf(TaggedIsSmi(element_k), &continue_loop); GotoIfNot(IsHeapNumber(element_k), &continue_loop); BranchIfFloat64IsNaN(LoadHeapNumberValue(element_k), &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&nan_loop); } } Bind(&string_loop); { Label continue_loop(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedArrayElement(elements, index_var.value()); GotoIf(TaggedIsSmi(element_k), &continue_loop); GotoIfNot(IsStringInstanceType(LoadInstanceType(element_k)), &continue_loop); // TODO(bmeurer): Consider inlining the StringEqual logic here. Node* result = CallStub(CodeFactory::StringEqual(isolate()), context, search_element, element_k); Branch(WordEqual(BooleanConstant(true), result), &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&string_loop); } } Bind(&if_packed_doubles); { Label nan_loop(this, &index_var), not_nan_loop(this, &index_var), hole_loop(this, &index_var), search_notnan(this); Variable search_num(this, MachineRepresentation::kFloat64); GotoIfNot(TaggedIsSmi(search_element), &search_notnan); search_num.Bind(SmiToFloat64(search_element)); Goto(¬_nan_loop); Bind(&search_notnan); GotoIfNot(IsHeapNumber(search_element), &return_false); search_num.Bind(LoadHeapNumberValue(search_element)); BranchIfFloat64IsNaN(search_num.value(), &nan_loop, ¬_nan_loop); // Search for HeapNumber Bind(¬_nan_loop); { Label continue_loop(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedDoubleArrayElement(elements, index_var.value(), MachineType::Float64()); Branch(Float64Equal(element_k, search_num.value()), &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(¬_nan_loop); } // Search for NaN Bind(&nan_loop); { Label continue_loop(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = LoadFixedDoubleArrayElement(elements, index_var.value(), MachineType::Float64()); BranchIfFloat64IsNaN(element_k, &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&nan_loop); } } Bind(&if_holey_doubles); { Label nan_loop(this, &index_var), not_nan_loop(this, &index_var), hole_loop(this, &index_var), search_notnan(this); Variable search_num(this, MachineRepresentation::kFloat64); GotoIfNot(TaggedIsSmi(search_element), &search_notnan); search_num.Bind(SmiToFloat64(search_element)); Goto(¬_nan_loop); Bind(&search_notnan); GotoIf(WordEqual(search_element, UndefinedConstant()), &hole_loop); GotoIfNot(IsHeapNumber(search_element), &return_false); search_num.Bind(LoadHeapNumberValue(search_element)); BranchIfFloat64IsNaN(search_num.value(), &nan_loop, ¬_nan_loop); // Search for HeapNumber Bind(¬_nan_loop); { Label continue_loop(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); // Load double value or continue if it contains a double hole. Node* element_k = LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop); Branch(Float64Equal(element_k, search_num.value()), &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(¬_nan_loop); } // Search for NaN Bind(&nan_loop); { Label continue_loop(this); GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); // Load double value or continue if it contains a double hole. Node* element_k = LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop); BranchIfFloat64IsNaN(element_k, &return_true, &continue_loop); Bind(&continue_loop); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&nan_loop); } // Search for the Hole Bind(&hole_loop); { GotoIfNot(UintPtrLessThan(index_var.value(), len_var.value()), &return_false); // Check if the element is a double hole, but don't load it. LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::None(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &return_true); index_var.Bind(IntPtrAdd(index_var.value(), IntPtrConstant(1))); Goto(&hole_loop); } } Bind(&return_true); Return(TrueConstant()); Bind(&return_false); Return(FalseConstant()); Bind(&call_runtime); Return(CallRuntime(Runtime::kArrayIncludes_Slow, context, array, search_element, start_from)); } void Builtins::Generate_ArrayIndexOf(compiler::CodeAssemblerState* state) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; CodeStubAssembler assembler(state); Node* array = assembler.Parameter(0); Node* search_element = assembler.Parameter(1); Node* start_from = assembler.Parameter(2); Node* context = assembler.Parameter(3 + 2); Node* intptr_zero = assembler.IntPtrConstant(0); Node* intptr_one = assembler.IntPtrConstant(1); Node* undefined = assembler.UndefinedConstant(); Variable len_var(&assembler, MachineType::PointerRepresentation()), index_var(&assembler, MachineType::PointerRepresentation()), start_from_var(&assembler, MachineType::PointerRepresentation()); Label init_k(&assembler), return_found(&assembler), return_not_found(&assembler), call_runtime(&assembler); Label init_len(&assembler); index_var.Bind(intptr_zero); len_var.Bind(intptr_zero); // Take slow path if not a JSArray, if retrieving elements requires // traversing prototype, or if access checks are required. assembler.BranchIfFastJSArray( array, context, CodeStubAssembler::FastJSArrayAccessMode::INBOUNDS_READ, &init_len, &call_runtime); assembler.Bind(&init_len); { // Handle case where JSArray length is not an Smi in the runtime Node* len = assembler.LoadObjectField(array, JSArray::kLengthOffset); assembler.GotoIfNot(assembler.TaggedIsSmi(len), &call_runtime); len_var.Bind(assembler.SmiToWord(len)); assembler.Branch(assembler.WordEqual(len_var.value(), intptr_zero), &return_not_found, &init_k); } assembler.Bind(&init_k); { // For now only deal with undefined and Smis here; we must be really careful // with side-effects from the ToInteger conversion as the side-effects might // render our assumptions about the receiver being a fast JSArray and the // length invalid. Label done(&assembler), init_k_smi(&assembler), init_k_other(&assembler), init_k_zero(&assembler), init_k_n(&assembler); assembler.Branch(assembler.TaggedIsSmi(start_from), &init_k_smi, &init_k_other); assembler.Bind(&init_k_smi); { start_from_var.Bind(assembler.SmiUntag(start_from)); assembler.Goto(&init_k_n); } assembler.Bind(&init_k_other); { // The fromIndex must be undefined here, otherwise bailout and let the // runtime deal with the full ToInteger conversion. assembler.GotoIfNot(assembler.IsUndefined(start_from), &call_runtime); start_from_var.Bind(intptr_zero); assembler.Goto(&init_k_n); } assembler.Bind(&init_k_n); { Label if_positive(&assembler), if_negative(&assembler), done(&assembler); assembler.Branch( assembler.IntPtrLessThan(start_from_var.value(), intptr_zero), &if_negative, &if_positive); assembler.Bind(&if_positive); { index_var.Bind(start_from_var.value()); assembler.Goto(&done); } assembler.Bind(&if_negative); { index_var.Bind( assembler.IntPtrAdd(len_var.value(), start_from_var.value())); assembler.Branch( assembler.IntPtrLessThan(index_var.value(), intptr_zero), &init_k_zero, &done); } assembler.Bind(&init_k_zero); { index_var.Bind(intptr_zero); assembler.Goto(&done); } assembler.Bind(&done); } } static int32_t kElementsKind[] = { FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, }; Label if_smiorobjects(&assembler), if_packed_doubles(&assembler), if_holey_doubles(&assembler); Label* element_kind_handlers[] = {&if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_packed_doubles, &if_holey_doubles}; Node* map = assembler.LoadMap(array); Node* elements_kind = assembler.LoadMapElementsKind(map); Node* elements = assembler.LoadElements(array); assembler.Switch(elements_kind, &return_not_found, kElementsKind, element_kind_handlers, arraysize(kElementsKind)); assembler.Bind(&if_smiorobjects); { Variable search_num(&assembler, MachineRepresentation::kFloat64); Label ident_loop(&assembler, &index_var), heap_num_loop(&assembler, &search_num), string_loop(&assembler, &index_var), undef_loop(&assembler, &index_var), not_smi(&assembler), not_heap_num(&assembler); assembler.GotoIfNot(assembler.TaggedIsSmi(search_element), ¬_smi); search_num.Bind(assembler.SmiToFloat64(search_element)); assembler.Goto(&heap_num_loop); assembler.Bind(¬_smi); assembler.GotoIf(assembler.WordEqual(search_element, undefined), &undef_loop); Node* map = assembler.LoadMap(search_element); assembler.GotoIfNot(assembler.IsHeapNumberMap(map), ¬_heap_num); search_num.Bind(assembler.LoadHeapNumberValue(search_element)); assembler.Goto(&heap_num_loop); assembler.Bind(¬_heap_num); Node* search_type = assembler.LoadMapInstanceType(map); assembler.GotoIf(assembler.IsStringInstanceType(search_type), &string_loop); assembler.Goto(&ident_loop); assembler.Bind(&ident_loop); { assembler.GotoIfNot( assembler.UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler.LoadFixedArrayElement(elements, index_var.value()); assembler.GotoIf(assembler.WordEqual(element_k, search_element), &return_found); index_var.Bind(assembler.IntPtrAdd(index_var.value(), intptr_one)); assembler.Goto(&ident_loop); } assembler.Bind(&undef_loop); { assembler.GotoIfNot( assembler.UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler.LoadFixedArrayElement(elements, index_var.value()); assembler.GotoIf(assembler.WordEqual(element_k, undefined), &return_found); index_var.Bind(assembler.IntPtrAdd(index_var.value(), intptr_one)); assembler.Goto(&undef_loop); } assembler.Bind(&heap_num_loop); { Label not_nan_loop(&assembler, &index_var); assembler.BranchIfFloat64IsNaN(search_num.value(), &return_not_found, ¬_nan_loop); assembler.Bind(¬_nan_loop); { Label continue_loop(&assembler), not_smi(&assembler); assembler.GotoIfNot( assembler.UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler.LoadFixedArrayElement(elements, index_var.value()); assembler.GotoIfNot(assembler.TaggedIsSmi(element_k), ¬_smi); assembler.Branch( assembler.Float64Equal(search_num.value(), assembler.SmiToFloat64(element_k)), &return_found, &continue_loop); assembler.Bind(¬_smi); assembler.GotoIfNot( assembler.IsHeapNumberMap(assembler.LoadMap(element_k)), &continue_loop); assembler.Branch( assembler.Float64Equal(search_num.value(), assembler.LoadHeapNumberValue(element_k)), &return_found, &continue_loop); assembler.Bind(&continue_loop); index_var.Bind(assembler.IntPtrAdd(index_var.value(), intptr_one)); assembler.Goto(¬_nan_loop); } } assembler.Bind(&string_loop); { Label continue_loop(&assembler); assembler.GotoIfNot( assembler.UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler.LoadFixedArrayElement(elements, index_var.value()); assembler.GotoIf(assembler.TaggedIsSmi(element_k), &continue_loop); assembler.GotoIfNot( assembler.IsStringInstanceType(assembler.LoadInstanceType(element_k)), &continue_loop); // TODO(bmeurer): Consider inlining the StringEqual logic here. Callable callable = CodeFactory::StringEqual(assembler.isolate()); Node* result = assembler.CallStub(callable, context, search_element, element_k); assembler.Branch( assembler.WordEqual(assembler.BooleanConstant(true), result), &return_found, &continue_loop); assembler.Bind(&continue_loop); index_var.Bind(assembler.IntPtrAdd(index_var.value(), intptr_one)); assembler.Goto(&string_loop); } } assembler.Bind(&if_packed_doubles); { Label not_nan_loop(&assembler, &index_var), search_notnan(&assembler); Variable search_num(&assembler, MachineRepresentation::kFloat64); assembler.GotoIfNot(assembler.TaggedIsSmi(search_element), &search_notnan); search_num.Bind(assembler.SmiToFloat64(search_element)); assembler.Goto(¬_nan_loop); assembler.Bind(&search_notnan); assembler.GotoIfNot( assembler.IsHeapNumberMap(assembler.LoadMap(search_element)), &return_not_found); search_num.Bind(assembler.LoadHeapNumberValue(search_element)); assembler.BranchIfFloat64IsNaN(search_num.value(), &return_not_found, ¬_nan_loop); // Search for HeapNumber assembler.Bind(¬_nan_loop); { Label continue_loop(&assembler); assembler.GotoIfNot( assembler.UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler.LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64()); assembler.Branch(assembler.Float64Equal(element_k, search_num.value()), &return_found, &continue_loop); assembler.Bind(&continue_loop); index_var.Bind(assembler.IntPtrAdd(index_var.value(), intptr_one)); assembler.Goto(¬_nan_loop); } } assembler.Bind(&if_holey_doubles); { Label not_nan_loop(&assembler, &index_var), search_notnan(&assembler); Variable search_num(&assembler, MachineRepresentation::kFloat64); assembler.GotoIfNot(assembler.TaggedIsSmi(search_element), &search_notnan); search_num.Bind(assembler.SmiToFloat64(search_element)); assembler.Goto(¬_nan_loop); assembler.Bind(&search_notnan); assembler.GotoIfNot( assembler.IsHeapNumberMap(assembler.LoadMap(search_element)), &return_not_found); search_num.Bind(assembler.LoadHeapNumberValue(search_element)); assembler.BranchIfFloat64IsNaN(search_num.value(), &return_not_found, ¬_nan_loop); // Search for HeapNumber assembler.Bind(¬_nan_loop); { Label continue_loop(&assembler); assembler.GotoIfNot( assembler.UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); // Load double value or continue if it contains a double hole. Node* element_k = assembler.LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop); assembler.Branch(assembler.Float64Equal(element_k, search_num.value()), &return_found, &continue_loop); assembler.Bind(&continue_loop); index_var.Bind(assembler.IntPtrAdd(index_var.value(), intptr_one)); assembler.Goto(¬_nan_loop); } } assembler.Bind(&return_found); assembler.Return(assembler.SmiTag(index_var.value())); assembler.Bind(&return_not_found); assembler.Return(assembler.NumberConstant(-1)); assembler.Bind(&call_runtime); assembler.Return(assembler.CallRuntime(Runtime::kArrayIndexOf, context, array, search_element, start_from)); } namespace { template <IterationKind kIterationKind> void Generate_ArrayPrototypeIterationMethod( compiler::CodeAssemblerState* state) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; CodeStubAssembler assembler(state); Node* receiver = assembler.Parameter(0); Node* context = assembler.Parameter(3); Variable var_array(&assembler, MachineRepresentation::kTagged); Variable var_map(&assembler, MachineRepresentation::kTagged); Variable var_type(&assembler, MachineRepresentation::kWord32); Label if_isnotobject(&assembler, Label::kDeferred); Label create_array_iterator(&assembler); assembler.GotoIf(assembler.TaggedIsSmi(receiver), &if_isnotobject); var_array.Bind(receiver); var_map.Bind(assembler.LoadMap(receiver)); var_type.Bind(assembler.LoadMapInstanceType(var_map.value())); assembler.Branch(assembler.IsJSReceiverInstanceType(var_type.value()), &create_array_iterator, &if_isnotobject); assembler.Bind(&if_isnotobject); { Callable callable = CodeFactory::ToObject(assembler.isolate()); Node* result = assembler.CallStub(callable, context, receiver); var_array.Bind(result); var_map.Bind(assembler.LoadMap(result)); var_type.Bind(assembler.LoadMapInstanceType(var_map.value())); assembler.Goto(&create_array_iterator); } assembler.Bind(&create_array_iterator); assembler.Return( assembler.CreateArrayIterator(var_array.value(), var_map.value(), var_type.value(), context, kIterationKind)); } } // namespace void Builtins::Generate_ArrayPrototypeValues( compiler::CodeAssemblerState* state) { Generate_ArrayPrototypeIterationMethod<IterationKind::kValues>(state); } void Builtins::Generate_ArrayPrototypeEntries( compiler::CodeAssemblerState* state) { Generate_ArrayPrototypeIterationMethod<IterationKind::kEntries>(state); } void Builtins::Generate_ArrayPrototypeKeys( compiler::CodeAssemblerState* state) { Generate_ArrayPrototypeIterationMethod<IterationKind::kKeys>(state); } void Builtins::Generate_ArrayIteratorPrototypeNext( compiler::CodeAssemblerState* state) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; CodeStubAssembler assembler(state); Handle<String> operation = assembler.factory()->NewStringFromAsciiChecked( "Array Iterator.prototype.next", TENURED); Node* iterator = assembler.Parameter(0); Node* context = assembler.Parameter(3); Variable var_value(&assembler, MachineRepresentation::kTagged); Variable var_done(&assembler, MachineRepresentation::kTagged); // Required, or else `throw_bad_receiver` fails a DCHECK due to these // variables not being bound along all paths, despite not being used. var_done.Bind(assembler.TrueConstant()); var_value.Bind(assembler.UndefinedConstant()); Label throw_bad_receiver(&assembler, Label::kDeferred); Label set_done(&assembler); Label allocate_key_result(&assembler); Label allocate_entry_if_needed(&assembler); Label allocate_iterator_result(&assembler); Label generic_values(&assembler); // If O does not have all of the internal slots of an Array Iterator Instance // (22.1.5.3), throw a TypeError exception assembler.GotoIf(assembler.TaggedIsSmi(iterator), &throw_bad_receiver); Node* instance_type = assembler.LoadInstanceType(iterator); assembler.GotoIf( assembler.Uint32LessThan( assembler.Int32Constant(LAST_ARRAY_ITERATOR_TYPE - FIRST_ARRAY_ITERATOR_TYPE), assembler.Int32Sub(instance_type, assembler.Int32Constant( FIRST_ARRAY_ITERATOR_TYPE))), &throw_bad_receiver); // Let a be O.[[IteratedObject]]. Node* array = assembler.LoadObjectField( iterator, JSArrayIterator::kIteratedObjectOffset); // Let index be O.[[ArrayIteratorNextIndex]]. Node* index = assembler.LoadObjectField(iterator, JSArrayIterator::kNextIndexOffset); Node* orig_map = assembler.LoadObjectField( iterator, JSArrayIterator::kIteratedObjectMapOffset); Node* array_map = assembler.LoadMap(array); Label if_isfastarray(&assembler), if_isnotfastarray(&assembler), if_isdetached(&assembler, Label::kDeferred); assembler.Branch(assembler.WordEqual(orig_map, array_map), &if_isfastarray, &if_isnotfastarray); assembler.Bind(&if_isfastarray); { CSA_ASSERT(&assembler, assembler.Word32Equal(assembler.LoadMapInstanceType(array_map), assembler.Int32Constant(JS_ARRAY_TYPE))); Node* length = assembler.LoadObjectField(array, JSArray::kLengthOffset); CSA_ASSERT(&assembler, assembler.TaggedIsSmi(length)); CSA_ASSERT(&assembler, assembler.TaggedIsSmi(index)); assembler.GotoIfNot(assembler.SmiBelow(index, length), &set_done); Node* one = assembler.SmiConstant(Smi::FromInt(1)); assembler.StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset, assembler.SmiAdd(index, one)); var_done.Bind(assembler.FalseConstant()); Node* elements = assembler.LoadElements(array); static int32_t kInstanceType[] = { JS_FAST_ARRAY_KEY_ITERATOR_TYPE, JS_FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_SMI_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_SMI_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE, }; Label packed_object_values(&assembler), holey_object_values(&assembler), packed_double_values(&assembler), holey_double_values(&assembler); Label* kInstanceTypeHandlers[] = { &allocate_key_result, &packed_object_values, &holey_object_values, &packed_object_values, &holey_object_values, &packed_double_values, &holey_double_values, &packed_object_values, &holey_object_values, &packed_object_values, &holey_object_values, &packed_double_values, &holey_double_values}; assembler.Switch(instance_type, &throw_bad_receiver, kInstanceType, kInstanceTypeHandlers, arraysize(kInstanceType)); assembler.Bind(&packed_object_values); { var_value.Bind(assembler.LoadFixedArrayElement( elements, index, 0, CodeStubAssembler::SMI_PARAMETERS)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&packed_double_values); { Node* value = assembler.LoadFixedDoubleArrayElement( elements, index, MachineType::Float64(), 0, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.AllocateHeapNumberWithValue(value)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&holey_object_values); { // Check the array_protector cell, and take the slow path if it's invalid. Node* invalid = assembler.SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid)); Node* cell = assembler.LoadRoot(Heap::kArrayProtectorRootIndex); Node* cell_value = assembler.LoadObjectField(cell, PropertyCell::kValueOffset); assembler.GotoIf(assembler.WordEqual(cell_value, invalid), &generic_values); var_value.Bind(assembler.UndefinedConstant()); Node* value = assembler.LoadFixedArrayElement( elements, index, 0, CodeStubAssembler::SMI_PARAMETERS); assembler.GotoIf(assembler.WordEqual(value, assembler.TheHoleConstant()), &allocate_entry_if_needed); var_value.Bind(value); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&holey_double_values); { // Check the array_protector cell, and take the slow path if it's invalid. Node* invalid = assembler.SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid)); Node* cell = assembler.LoadRoot(Heap::kArrayProtectorRootIndex); Node* cell_value = assembler.LoadObjectField(cell, PropertyCell::kValueOffset); assembler.GotoIf(assembler.WordEqual(cell_value, invalid), &generic_values); var_value.Bind(assembler.UndefinedConstant()); Node* value = assembler.LoadFixedDoubleArrayElement( elements, index, MachineType::Float64(), 0, CodeStubAssembler::SMI_PARAMETERS, &allocate_entry_if_needed); var_value.Bind(assembler.AllocateHeapNumberWithValue(value)); assembler.Goto(&allocate_entry_if_needed); } } assembler.Bind(&if_isnotfastarray); { Label if_istypedarray(&assembler), if_isgeneric(&assembler); // If a is undefined, return CreateIterResultObject(undefined, true) assembler.GotoIf(assembler.WordEqual(array, assembler.UndefinedConstant()), &allocate_iterator_result); Node* array_type = assembler.LoadInstanceType(array); assembler.Branch( assembler.Word32Equal(array_type, assembler.Int32Constant(JS_TYPED_ARRAY_TYPE)), &if_istypedarray, &if_isgeneric); assembler.Bind(&if_isgeneric); { Label if_wasfastarray(&assembler); Node* length = nullptr; { Variable var_length(&assembler, MachineRepresentation::kTagged); Label if_isarray(&assembler), if_isnotarray(&assembler), done(&assembler); assembler.Branch( assembler.Word32Equal(array_type, assembler.Int32Constant(JS_ARRAY_TYPE)), &if_isarray, &if_isnotarray); assembler.Bind(&if_isarray); { var_length.Bind( assembler.LoadObjectField(array, JSArray::kLengthOffset)); // Invalidate protector cell if needed assembler.Branch( assembler.WordNotEqual(orig_map, assembler.UndefinedConstant()), &if_wasfastarray, &done); assembler.Bind(&if_wasfastarray); { Label if_invalid(&assembler, Label::kDeferred); // A fast array iterator transitioned to a slow iterator during // iteration. Invalidate fast_array_iteration_prtoector cell to // prevent potential deopt loops. assembler.StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectMapOffset, assembler.UndefinedConstant()); assembler.GotoIf( assembler.Uint32LessThanOrEqual( instance_type, assembler.Int32Constant( JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE)), &done); Node* invalid = assembler.SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid)); Node* cell = assembler.LoadRoot(Heap::kFastArrayIterationProtectorRootIndex); assembler.StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset, invalid); assembler.Goto(&done); } } assembler.Bind(&if_isnotarray); { Node* length_string = assembler.HeapConstant( assembler.isolate()->factory()->length_string()); Callable get_property = CodeFactory::GetProperty(assembler.isolate()); Node* length = assembler.CallStub(get_property, context, array, length_string); Callable to_length = CodeFactory::ToLength(assembler.isolate()); var_length.Bind(assembler.CallStub(to_length, context, length)); assembler.Goto(&done); } assembler.Bind(&done); length = var_length.value(); } assembler.GotoUnlessNumberLessThan(index, length, &set_done); assembler.StoreObjectField(iterator, JSArrayIterator::kNextIndexOffset, assembler.NumberInc(index)); var_done.Bind(assembler.FalseConstant()); assembler.Branch( assembler.Uint32LessThanOrEqual( instance_type, assembler.Int32Constant(JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE)), &allocate_key_result, &generic_values); assembler.Bind(&generic_values); { Callable get_property = CodeFactory::GetProperty(assembler.isolate()); var_value.Bind(assembler.CallStub(get_property, context, array, index)); assembler.Goto(&allocate_entry_if_needed); } } assembler.Bind(&if_istypedarray); { Node* buffer = assembler.LoadObjectField(array, JSTypedArray::kBufferOffset); assembler.GotoIf(assembler.IsDetachedBuffer(buffer), &if_isdetached); Node* length = assembler.LoadObjectField(array, JSTypedArray::kLengthOffset); CSA_ASSERT(&assembler, assembler.TaggedIsSmi(length)); CSA_ASSERT(&assembler, assembler.TaggedIsSmi(index)); assembler.GotoIfNot(assembler.SmiBelow(index, length), &set_done); Node* one = assembler.SmiConstant(1); assembler.StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kNextIndexOffset, assembler.SmiAdd(index, one)); var_done.Bind(assembler.FalseConstant()); Node* elements = assembler.LoadElements(array); Node* base_ptr = assembler.LoadObjectField( elements, FixedTypedArrayBase::kBasePointerOffset); Node* external_ptr = assembler.LoadObjectField( elements, FixedTypedArrayBase::kExternalPointerOffset, MachineType::Pointer()); Node* data_ptr = assembler.IntPtrAdd( assembler.BitcastTaggedToWord(base_ptr), external_ptr); static int32_t kInstanceType[] = { JS_TYPED_ARRAY_KEY_ITERATOR_TYPE, JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT8_CLAMPED_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_INT8_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT16_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_INT16_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT32_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_INT32_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FLOAT32_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FLOAT64_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE, JS_UINT8_CLAMPED_ARRAY_VALUE_ITERATOR_TYPE, JS_INT8_ARRAY_VALUE_ITERATOR_TYPE, JS_UINT16_ARRAY_VALUE_ITERATOR_TYPE, JS_INT16_ARRAY_VALUE_ITERATOR_TYPE, JS_UINT32_ARRAY_VALUE_ITERATOR_TYPE, JS_INT32_ARRAY_VALUE_ITERATOR_TYPE, JS_FLOAT32_ARRAY_VALUE_ITERATOR_TYPE, JS_FLOAT64_ARRAY_VALUE_ITERATOR_TYPE, }; Label uint8_values(&assembler), int8_values(&assembler), uint16_values(&assembler), int16_values(&assembler), uint32_values(&assembler), int32_values(&assembler), float32_values(&assembler), float64_values(&assembler); Label* kInstanceTypeHandlers[] = { &allocate_key_result, &uint8_values, &uint8_values, &int8_values, &uint16_values, &int16_values, &uint32_values, &int32_values, &float32_values, &float64_values, &uint8_values, &uint8_values, &int8_values, &uint16_values, &int16_values, &uint32_values, &int32_values, &float32_values, &float64_values, }; var_done.Bind(assembler.FalseConstant()); assembler.Switch(instance_type, &throw_bad_receiver, kInstanceType, kInstanceTypeHandlers, arraysize(kInstanceType)); assembler.Bind(&uint8_values); { Node* value_uint8 = assembler.LoadFixedTypedArrayElement( data_ptr, index, UINT8_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.SmiFromWord32(value_uint8)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&int8_values); { Node* value_int8 = assembler.LoadFixedTypedArrayElement( data_ptr, index, INT8_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.SmiFromWord32(value_int8)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&uint16_values); { Node* value_uint16 = assembler.LoadFixedTypedArrayElement( data_ptr, index, UINT16_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.SmiFromWord32(value_uint16)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&int16_values); { Node* value_int16 = assembler.LoadFixedTypedArrayElement( data_ptr, index, INT16_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.SmiFromWord32(value_int16)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&uint32_values); { Node* value_uint32 = assembler.LoadFixedTypedArrayElement( data_ptr, index, UINT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.ChangeUint32ToTagged(value_uint32)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&int32_values); { Node* value_int32 = assembler.LoadFixedTypedArrayElement( data_ptr, index, INT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.ChangeInt32ToTagged(value_int32)); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&float32_values); { Node* value_float32 = assembler.LoadFixedTypedArrayElement( data_ptr, index, FLOAT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.AllocateHeapNumberWithValue( assembler.ChangeFloat32ToFloat64(value_float32))); assembler.Goto(&allocate_entry_if_needed); } assembler.Bind(&float64_values); { Node* value_float64 = assembler.LoadFixedTypedArrayElement( data_ptr, index, FLOAT64_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler.AllocateHeapNumberWithValue(value_float64)); assembler.Goto(&allocate_entry_if_needed); } } } assembler.Bind(&set_done); { assembler.StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectOffset, assembler.UndefinedConstant()); assembler.Goto(&allocate_iterator_result); } assembler.Bind(&allocate_key_result); { var_value.Bind(index); var_done.Bind(assembler.FalseConstant()); assembler.Goto(&allocate_iterator_result); } assembler.Bind(&allocate_entry_if_needed); { assembler.GotoIf( assembler.Int32GreaterThan( instance_type, assembler.Int32Constant(LAST_ARRAY_KEY_VALUE_ITERATOR_TYPE)), &allocate_iterator_result); Node* elements = assembler.AllocateFixedArray(FAST_ELEMENTS, assembler.IntPtrConstant(2)); assembler.StoreFixedArrayElement(elements, 0, index, SKIP_WRITE_BARRIER); assembler.StoreFixedArrayElement(elements, 1, var_value.value(), SKIP_WRITE_BARRIER); Node* entry = assembler.Allocate(JSArray::kSize); Node* map = assembler.LoadContextElement(assembler.LoadNativeContext(context), Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX); assembler.StoreMapNoWriteBarrier(entry, map); assembler.StoreObjectFieldRoot(entry, JSArray::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); assembler.StoreObjectFieldNoWriteBarrier(entry, JSArray::kElementsOffset, elements); assembler.StoreObjectFieldNoWriteBarrier( entry, JSArray::kLengthOffset, assembler.SmiConstant(Smi::FromInt(2))); var_value.Bind(entry); assembler.Goto(&allocate_iterator_result); } assembler.Bind(&allocate_iterator_result); { Node* result = assembler.Allocate(JSIteratorResult::kSize); Node* map = assembler.LoadContextElement(assembler.LoadNativeContext(context), Context::ITERATOR_RESULT_MAP_INDEX); assembler.StoreMapNoWriteBarrier(result, map); assembler.StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); assembler.StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); assembler.StoreObjectFieldNoWriteBarrier( result, JSIteratorResult::kValueOffset, var_value.value()); assembler.StoreObjectFieldNoWriteBarrier( result, JSIteratorResult::kDoneOffset, var_done.value()); assembler.Return(result); } assembler.Bind(&throw_bad_receiver); { // The {receiver} is not a valid JSArrayIterator. assembler.CallRuntime(Runtime::kThrowIncompatibleMethodReceiver, context, assembler.HeapConstant(operation), iterator); assembler.Unreachable(); } assembler.Bind(&if_isdetached); { Node* message = assembler.SmiConstant(MessageTemplate::kDetachedOperation); assembler.CallRuntime(Runtime::kThrowTypeError, context, message, assembler.HeapConstant(operation)); assembler.Unreachable(); } } } // namespace internal } // namespace v8