// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Platform-specific code for MacOS goes here. For the POSIX-compatible // parts, the implementation is in platform-posix.cc. #include <dlfcn.h> #include <mach/mach_init.h> #include <mach-o/dyld.h> #include <mach-o/getsect.h> #include <sys/mman.h> #include <unistd.h> #include <AvailabilityMacros.h> #include <errno.h> #include <libkern/OSAtomic.h> #include <mach/mach.h> #include <mach/semaphore.h> #include <mach/task.h> #include <mach/vm_statistics.h> #include <pthread.h> #include <semaphore.h> #include <signal.h> #include <stdarg.h> #include <stdlib.h> #include <string.h> #include <sys/resource.h> #include <sys/sysctl.h> #include <sys/time.h> #include <sys/types.h> #include <cmath> #undef MAP_TYPE #include "src/base/macros.h" #include "src/base/platform/platform.h" namespace v8 { namespace base { // Constants used for mmap. // kMmapFd is used to pass vm_alloc flags to tag the region with the user // defined tag 255 This helps identify V8-allocated regions in memory analysis // tools like vmmap(1). static const int kMmapFd = VM_MAKE_TAG(255); static const off_t kMmapFdOffset = 0; void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, getpagesize()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(OS::GetRandomMmapAddr(), msize, prot, MAP_PRIVATE | MAP_ANON, kMmapFd, kMmapFdOffset); if (mbase == MAP_FAILED) return NULL; *allocated = msize; return mbase; } std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { std::vector<SharedLibraryAddress> result; unsigned int images_count = _dyld_image_count(); for (unsigned int i = 0; i < images_count; ++i) { const mach_header* header = _dyld_get_image_header(i); if (header == NULL) continue; #if V8_HOST_ARCH_X64 uint64_t size; char* code_ptr = getsectdatafromheader_64( reinterpret_cast<const mach_header_64*>(header), SEG_TEXT, SECT_TEXT, &size); #else unsigned int size; char* code_ptr = getsectdatafromheader(header, SEG_TEXT, SECT_TEXT, &size); #endif if (code_ptr == NULL) continue; const intptr_t slide = _dyld_get_image_vmaddr_slide(i); const uintptr_t start = reinterpret_cast<uintptr_t>(code_ptr) + slide; result.push_back(SharedLibraryAddress(_dyld_get_image_name(i), start, start + size, slide)); } return result; } void OS::SignalCodeMovingGC() { } const char* OS::LocalTimezone(double time, TimezoneCache* cache) { if (std::isnan(time)) return ""; time_t tv = static_cast<time_t>(std::floor(time/msPerSecond)); struct tm tm; struct tm* t = localtime_r(&tv, &tm); if (NULL == t) return ""; return t->tm_zone; } double OS::LocalTimeOffset(TimezoneCache* cache) { time_t tv = time(NULL); struct tm tm; struct tm* t = localtime_r(&tv, &tm); // tm_gmtoff includes any daylight savings offset, so subtract it. return static_cast<double>(t->tm_gmtoff * msPerSecond - (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } VirtualMemory::VirtualMemory(size_t size) : address_(ReserveRegion(size)), size_(size) { } VirtualMemory::VirtualMemory(size_t size, size_t alignment) : address_(NULL), size_(0) { DCHECK((alignment % OS::AllocateAlignment()) == 0); size_t request_size = RoundUp(size + alignment, static_cast<intptr_t>(OS::AllocateAlignment())); void* reservation = mmap(OS::GetRandomMmapAddr(), request_size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (reservation == MAP_FAILED) return; uint8_t* base = static_cast<uint8_t*>(reservation); uint8_t* aligned_base = RoundUp(base, alignment); DCHECK_LE(base, aligned_base); // Unmap extra memory reserved before and after the desired block. if (aligned_base != base) { size_t prefix_size = static_cast<size_t>(aligned_base - base); OS::Free(base, prefix_size); request_size -= prefix_size; } size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); DCHECK_LE(aligned_size, request_size); if (aligned_size != request_size) { size_t suffix_size = request_size - aligned_size; OS::Free(aligned_base + aligned_size, suffix_size); request_size -= suffix_size; } DCHECK(aligned_size == request_size); address_ = static_cast<void*>(aligned_base); size_ = aligned_size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { bool result = ReleaseRegion(address(), size()); DCHECK(result); USE(result); } } bool VirtualMemory::IsReserved() { return address_ != NULL; } void VirtualMemory::Reset() { address_ = NULL; size_ = 0; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { return CommitRegion(address, size, is_executable); } bool VirtualMemory::Uncommit(void* address, size_t size) { return UncommitRegion(address, size); } bool VirtualMemory::Guard(void* address) { OS::Guard(address, OS::CommitPageSize()); return true; } void* VirtualMemory::ReserveRegion(size_t size) { void* result = mmap(OS::GetRandomMmapAddr(), size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (result == MAP_FAILED) return NULL; return result; } bool VirtualMemory::CommitRegion(void* address, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(address, size, prot, MAP_PRIVATE | MAP_ANON | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } return true; } bool VirtualMemory::UncommitRegion(void* address, size_t size) { return mmap(address, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } bool VirtualMemory::ReleasePartialRegion(void* base, size_t size, void* free_start, size_t free_size) { return munmap(free_start, free_size) == 0; } bool VirtualMemory::ReleaseRegion(void* address, size_t size) { return munmap(address, size) == 0; } bool VirtualMemory::HasLazyCommits() { return true; } } // namespace base } // namespace v8