// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASE_BITS_H_ #define V8_BASE_BITS_H_ #include <stdint.h> #include "src/base/base-export.h" #include "src/base/macros.h" #if V8_CC_MSVC #include <intrin.h> #endif #if V8_OS_WIN32 #include "src/base/win32-headers.h" #endif namespace v8 { namespace base { namespace internal { template <typename T> class CheckedNumeric; } namespace bits { // CountPopulation32(value) returns the number of bits set in |value|. inline unsigned CountPopulation32(uint32_t value) { #if V8_HAS_BUILTIN_POPCOUNT return __builtin_popcount(value); #else value = ((value >> 1) & 0x55555555) + (value & 0x55555555); value = ((value >> 2) & 0x33333333) + (value & 0x33333333); value = ((value >> 4) & 0x0f0f0f0f) + (value & 0x0f0f0f0f); value = ((value >> 8) & 0x00ff00ff) + (value & 0x00ff00ff); value = ((value >> 16) & 0x0000ffff) + (value & 0x0000ffff); return static_cast<unsigned>(value); #endif } // CountPopulation64(value) returns the number of bits set in |value|. inline unsigned CountPopulation64(uint64_t value) { #if V8_HAS_BUILTIN_POPCOUNT return __builtin_popcountll(value); #else return CountPopulation32(static_cast<uint32_t>(value)) + CountPopulation32(static_cast<uint32_t>(value >> 32)); #endif } // Overloaded versions of CountPopulation32/64. inline unsigned CountPopulation(uint32_t value) { return CountPopulation32(value); } inline unsigned CountPopulation(uint64_t value) { return CountPopulation64(value); } // CountLeadingZeros32(value) returns the number of zero bits following the most // significant 1 bit in |value| if |value| is non-zero, otherwise it returns 32. inline unsigned CountLeadingZeros32(uint32_t value) { #if V8_HAS_BUILTIN_CLZ return value ? __builtin_clz(value) : 32; #elif V8_CC_MSVC unsigned long result; // NOLINT(runtime/int) if (!_BitScanReverse(&result, value)) return 32; return static_cast<unsigned>(31 - result); #else value = value | (value >> 1); value = value | (value >> 2); value = value | (value >> 4); value = value | (value >> 8); value = value | (value >> 16); return CountPopulation32(~value); #endif } // CountLeadingZeros64(value) returns the number of zero bits following the most // significant 1 bit in |value| if |value| is non-zero, otherwise it returns 64. inline unsigned CountLeadingZeros64(uint64_t value) { #if V8_HAS_BUILTIN_CLZ return value ? __builtin_clzll(value) : 64; #else value = value | (value >> 1); value = value | (value >> 2); value = value | (value >> 4); value = value | (value >> 8); value = value | (value >> 16); value = value | (value >> 32); return CountPopulation64(~value); #endif } // ReverseBits(value) returns |value| in reverse bit order. template <typename T> T ReverseBits(T value) { DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || (sizeof(value) == 4) || (sizeof(value) == 8)); T result = 0; for (unsigned i = 0; i < (sizeof(value) * 8); i++) { result = (result << 1) | (value & 1); value >>= 1; } return result; } // CountTrailingZeros32(value) returns the number of zero bits preceding the // least significant 1 bit in |value| if |value| is non-zero, otherwise it // returns 32. inline unsigned CountTrailingZeros32(uint32_t value) { #if V8_HAS_BUILTIN_CTZ return value ? __builtin_ctz(value) : 32; #elif V8_CC_MSVC unsigned long result; // NOLINT(runtime/int) if (!_BitScanForward(&result, value)) return 32; return static_cast<unsigned>(result); #else if (value == 0) return 32; unsigned count = 0; for (value ^= value - 1; value >>= 1; ++count) { } return count; #endif } // CountTrailingZeros64(value) returns the number of zero bits preceding the // least significant 1 bit in |value| if |value| is non-zero, otherwise it // returns 64. inline unsigned CountTrailingZeros64(uint64_t value) { #if V8_HAS_BUILTIN_CTZ return value ? __builtin_ctzll(value) : 64; #else if (value == 0) return 64; unsigned count = 0; for (value ^= value - 1; value >>= 1; ++count) { } return count; #endif } // Overloaded versions of CountTrailingZeros32/64. inline unsigned CountTrailingZeros(uint32_t value) { return CountTrailingZeros32(value); } inline unsigned CountTrailingZeros(uint64_t value) { return CountTrailingZeros64(value); } // Returns true iff |value| is a power of 2. inline bool IsPowerOfTwo32(uint32_t value) { return value && !(value & (value - 1)); } // Returns true iff |value| is a power of 2. inline bool IsPowerOfTwo64(uint64_t value) { return value && !(value & (value - 1)); } // RoundUpToPowerOfTwo32(value) returns the smallest power of two which is // greater than or equal to |value|. If you pass in a |value| that is already a // power of two, it is returned as is. |value| must be less than or equal to // 0x80000000u. Implementation is from "Hacker's Delight" by Henry S. Warren, // Jr., figure 3-3, page 48, where the function is called clp2. V8_BASE_EXPORT uint32_t RoundUpToPowerOfTwo32(uint32_t value); // RoundDownToPowerOfTwo32(value) returns the greatest power of two which is // less than or equal to |value|. If you pass in a |value| that is already a // power of two, it is returned as is. inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) { if (value > 0x80000000u) return 0x80000000u; uint32_t result = RoundUpToPowerOfTwo32(value); if (result > value) result >>= 1; return result; } // Precondition: 0 <= shift < 32 inline uint32_t RotateRight32(uint32_t value, uint32_t shift) { if (shift == 0) return value; return (value >> shift) | (value << (32 - shift)); } // Precondition: 0 <= shift < 32 inline uint32_t RotateLeft32(uint32_t value, uint32_t shift) { if (shift == 0) return value; return (value << shift) | (value >> (32 - shift)); } // Precondition: 0 <= shift < 64 inline uint64_t RotateRight64(uint64_t value, uint64_t shift) { if (shift == 0) return value; return (value >> shift) | (value << (64 - shift)); } // Precondition: 0 <= shift < 64 inline uint64_t RotateLeft64(uint64_t value, uint64_t shift) { if (shift == 0) return value; return (value << shift) | (value >> (64 - shift)); } // SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed summation resulted in an overflow. inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) { #if V8_HAS_BUILTIN_SADD_OVERFLOW return __builtin_sadd_overflow(lhs, rhs, val); #else uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs); *val = bit_cast<int32_t>(res); return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0; #endif } // SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed subtraction resulted in an overflow. inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) { #if V8_HAS_BUILTIN_SSUB_OVERFLOW return __builtin_ssub_overflow(lhs, rhs, val); #else uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs); *val = bit_cast<int32_t>(res); return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0; #endif } // SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs| // and |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed multiplication resulted in an overflow. V8_BASE_EXPORT bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val); // SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed summation resulted in an overflow. inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) { uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs); *val = bit_cast<int64_t>(res); return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0; } // SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and // |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed subtraction resulted in an overflow. inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) { uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs); *val = bit_cast<int64_t>(res); return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0; } // SignedMulOverflow64(lhs,rhs,val) performs a signed multiplication of |lhs| // and |rhs| and stores the result into the variable pointed to by |val| and // returns true if the signed multiplication resulted in an overflow. V8_BASE_EXPORT bool SignedMulOverflow64(int64_t lhs, int64_t rhs, int64_t* val); // SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and // |rhs|, extracts the most significant 32 bits of the result, and returns // those. V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs); // SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values // |lhs| and |rhs|, extracts the most significant 32 bits of the result, and // adds the accumulate value |acc|. V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs, int32_t acc); // SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient // truncated to int32. If |rhs| is zero, then zero is returned. If |lhs| // is minint and |rhs| is -1, it returns minint. V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs); // SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder // truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs| // is -1, it returns zero. V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs); // UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs| // and |rhs| and stores the result into the variable pointed to by |val| and // returns true if the unsigned summation resulted in an overflow. inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) { #if V8_HAS_BUILTIN_SADD_OVERFLOW return __builtin_uadd_overflow(lhs, rhs, val); #else *val = lhs + rhs; return *val < (lhs | rhs); #endif } // UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient // truncated to uint32. If |rhs| is zero, then zero is returned. inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) { return rhs ? lhs / rhs : 0u; } // UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder // truncated to uint32. If |rhs| is zero, then zero is returned. inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) { return rhs ? lhs % rhs : 0u; } // Clamp |value| on overflow and underflow conditions. V8_BASE_EXPORT int64_t FromCheckedNumeric(const internal::CheckedNumeric<int64_t> value); // SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|, // checks and returns the result. V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs); // SignedSaturatedSub64(lhs, rhs) substracts |lhs| by |rhs|, // checks and returns the result. V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs); } // namespace bits } // namespace base } // namespace v8 #endif // V8_BASE_BITS_H_