/* * Copyright (C) 2008 Michael Brown <mbrown@fensystems.co.uk>. * Copyright (C) 2008 Mellanox Technologies Ltd. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ FILE_LICENCE ( GPL2_OR_LATER ); #include <stdint.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <strings.h> #include <unistd.h> #include <errno.h> #include <byteswap.h> #include <gpxe/io.h> #include <gpxe/pci.h> #include <gpxe/pcibackup.h> #include <gpxe/malloc.h> #include <gpxe/umalloc.h> #include <gpxe/iobuf.h> #include <gpxe/netdevice.h> #include <gpxe/infiniband.h> #include <gpxe/ib_smc.h> #include "hermon.h" /** * @file * * Mellanox Hermon Infiniband HCA * */ /*************************************************************************** * * Queue number allocation * *************************************************************************** */ /** * Allocate offsets within usage bitmask * * @v bits Usage bitmask * @v bits_len Length of usage bitmask * @v num_bits Number of contiguous bits to allocate within bitmask * @ret bit First free bit within bitmask, or negative error */ static int hermon_bitmask_alloc ( hermon_bitmask_t *bits, unsigned int bits_len, unsigned int num_bits ) { unsigned int bit = 0; hermon_bitmask_t mask = 1; unsigned int found = 0; /* Search bits for num_bits contiguous free bits */ while ( bit < bits_len ) { if ( ( mask & *bits ) == 0 ) { if ( ++found == num_bits ) goto found; } else { found = 0; } bit++; mask = ( mask << 1 ) | ( mask >> ( 8 * sizeof ( mask ) - 1 ) ); if ( mask == 1 ) bits++; } return -ENFILE; found: /* Mark bits as in-use */ do { *bits |= mask; if ( mask == 1 ) bits--; mask = ( mask >> 1 ) | ( mask << ( 8 * sizeof ( mask ) - 1 ) ); } while ( --found ); return ( bit - num_bits + 1 ); } /** * Free offsets within usage bitmask * * @v bits Usage bitmask * @v bit Starting bit within bitmask * @v num_bits Number of contiguous bits to free within bitmask */ static void hermon_bitmask_free ( hermon_bitmask_t *bits, int bit, unsigned int num_bits ) { hermon_bitmask_t mask; for ( ; num_bits ; bit++, num_bits-- ) { mask = ( 1 << ( bit % ( 8 * sizeof ( mask ) ) ) ); bits[ ( bit / ( 8 * sizeof ( mask ) ) ) ] &= ~mask; } } /*************************************************************************** * * HCA commands * *************************************************************************** */ /** * Wait for Hermon command completion * * @v hermon Hermon device * @v hcr HCA command registers * @ret rc Return status code */ static int hermon_cmd_wait ( struct hermon *hermon, struct hermonprm_hca_command_register *hcr ) { unsigned int wait; for ( wait = HERMON_HCR_MAX_WAIT_MS ; wait ; wait-- ) { hcr->u.dwords[6] = readl ( hermon->config + HERMON_HCR_REG ( 6 ) ); if ( ( MLX_GET ( hcr, go ) == 0 ) && ( MLX_GET ( hcr, t ) == hermon->toggle ) ) return 0; mdelay ( 1 ); } return -EBUSY; } /** * Issue HCA command * * @v hermon Hermon device * @v command Command opcode, flags and input/output lengths * @v op_mod Opcode modifier (0 if no modifier applicable) * @v in Input parameters * @v in_mod Input modifier (0 if no modifier applicable) * @v out Output parameters * @ret rc Return status code */ static int hermon_cmd ( struct hermon *hermon, unsigned long command, unsigned int op_mod, const void *in, unsigned int in_mod, void *out ) { struct hermonprm_hca_command_register hcr; unsigned int opcode = HERMON_HCR_OPCODE ( command ); size_t in_len = HERMON_HCR_IN_LEN ( command ); size_t out_len = HERMON_HCR_OUT_LEN ( command ); void *in_buffer; void *out_buffer; unsigned int status; unsigned int i; int rc; assert ( in_len <= HERMON_MBOX_SIZE ); assert ( out_len <= HERMON_MBOX_SIZE ); DBGC2 ( hermon, "Hermon %p command %02x in %zx%s out %zx%s\n", hermon, opcode, in_len, ( ( command & HERMON_HCR_IN_MBOX ) ? "(mbox)" : "" ), out_len, ( ( command & HERMON_HCR_OUT_MBOX ) ? "(mbox)" : "" ) ); /* Check that HCR is free */ if ( ( rc = hermon_cmd_wait ( hermon, &hcr ) ) != 0 ) { DBGC ( hermon, "Hermon %p command interface locked\n", hermon ); return rc; } /* Flip HCR toggle */ hermon->toggle = ( 1 - hermon->toggle ); /* Prepare HCR */ memset ( &hcr, 0, sizeof ( hcr ) ); in_buffer = &hcr.u.dwords[0]; if ( in_len && ( command & HERMON_HCR_IN_MBOX ) ) { in_buffer = hermon->mailbox_in; MLX_FILL_1 ( &hcr, 1, in_param_l, virt_to_bus ( in_buffer ) ); } memcpy ( in_buffer, in, in_len ); MLX_FILL_1 ( &hcr, 2, input_modifier, in_mod ); out_buffer = &hcr.u.dwords[3]; if ( out_len && ( command & HERMON_HCR_OUT_MBOX ) ) { out_buffer = hermon->mailbox_out; MLX_FILL_1 ( &hcr, 4, out_param_l, virt_to_bus ( out_buffer ) ); } MLX_FILL_4 ( &hcr, 6, opcode, opcode, opcode_modifier, op_mod, go, 1, t, hermon->toggle ); DBGC ( hermon, "Hermon %p issuing command %04x\n", hermon, opcode ); DBGC2_HDA ( hermon, virt_to_phys ( hermon->config + HERMON_HCR_BASE ), &hcr, sizeof ( hcr ) ); if ( in_len && ( command & HERMON_HCR_IN_MBOX ) ) { DBGC2 ( hermon, "Input mailbox:\n" ); DBGC2_HDA ( hermon, virt_to_phys ( in_buffer ), in_buffer, ( ( in_len < 512 ) ? in_len : 512 ) ); } /* Issue command */ for ( i = 0 ; i < ( sizeof ( hcr ) / sizeof ( hcr.u.dwords[0] ) ) ; i++ ) { writel ( hcr.u.dwords[i], hermon->config + HERMON_HCR_REG ( i ) ); barrier(); } /* Wait for command completion */ if ( ( rc = hermon_cmd_wait ( hermon, &hcr ) ) != 0 ) { DBGC ( hermon, "Hermon %p timed out waiting for command:\n", hermon ); DBGC_HDA ( hermon, virt_to_phys ( hermon->config + HERMON_HCR_BASE ), &hcr, sizeof ( hcr ) ); return rc; } /* Check command status */ status = MLX_GET ( &hcr, status ); if ( status != 0 ) { DBGC ( hermon, "Hermon %p command failed with status %02x:\n", hermon, status ); DBGC_HDA ( hermon, virt_to_phys ( hermon->config + HERMON_HCR_BASE ), &hcr, sizeof ( hcr ) ); return -EIO; } /* Read output parameters, if any */ hcr.u.dwords[3] = readl ( hermon->config + HERMON_HCR_REG ( 3 ) ); hcr.u.dwords[4] = readl ( hermon->config + HERMON_HCR_REG ( 4 ) ); memcpy ( out, out_buffer, out_len ); if ( out_len ) { DBGC2 ( hermon, "Output%s:\n", ( command & HERMON_HCR_OUT_MBOX ) ? " mailbox" : "" ); DBGC2_HDA ( hermon, virt_to_phys ( out_buffer ), out_buffer, ( ( out_len < 512 ) ? out_len : 512 ) ); } return 0; } static inline int hermon_cmd_query_dev_cap ( struct hermon *hermon, struct hermonprm_query_dev_cap *dev_cap ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_DEV_CAP, 1, sizeof ( *dev_cap ) ), 0, NULL, 0, dev_cap ); } static inline int hermon_cmd_query_fw ( struct hermon *hermon, struct hermonprm_query_fw *fw ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_FW, 1, sizeof ( *fw ) ), 0, NULL, 0, fw ); } static inline int hermon_cmd_init_hca ( struct hermon *hermon, const struct hermonprm_init_hca *init_hca ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_INIT_HCA, 1, sizeof ( *init_hca ) ), 0, init_hca, 0, NULL ); } static inline int hermon_cmd_close_hca ( struct hermon *hermon ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_CLOSE_HCA ), 0, NULL, 0, NULL ); } static inline int hermon_cmd_init_port ( struct hermon *hermon, unsigned int port, const struct hermonprm_init_port *init_port ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_INIT_PORT, 1, sizeof ( *init_port ) ), 0, init_port, port, NULL ); } static inline int hermon_cmd_close_port ( struct hermon *hermon, unsigned int port ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_CLOSE_PORT ), 0, NULL, port, NULL ); } static inline int hermon_cmd_sw2hw_mpt ( struct hermon *hermon, unsigned int index, const struct hermonprm_mpt *mpt ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_SW2HW_MPT, 1, sizeof ( *mpt ) ), 0, mpt, index, NULL ); } static inline int hermon_cmd_write_mtt ( struct hermon *hermon, const struct hermonprm_write_mtt *write_mtt ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_WRITE_MTT, 1, sizeof ( *write_mtt ) ), 0, write_mtt, 1, NULL ); } static inline int hermon_cmd_map_eq ( struct hermon *hermon, unsigned long index_map, const struct hermonprm_event_mask *mask ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_EQ, 0, sizeof ( *mask ) ), 0, mask, index_map, NULL ); } static inline int hermon_cmd_sw2hw_eq ( struct hermon *hermon, unsigned int index, const struct hermonprm_eqc *eqctx ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_SW2HW_EQ, 1, sizeof ( *eqctx ) ), 0, eqctx, index, NULL ); } static inline int hermon_cmd_hw2sw_eq ( struct hermon *hermon, unsigned int index, struct hermonprm_eqc *eqctx ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_HW2SW_EQ, 1, sizeof ( *eqctx ) ), 1, NULL, index, eqctx ); } static inline int hermon_cmd_query_eq ( struct hermon *hermon, unsigned int index, struct hermonprm_eqc *eqctx ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_EQ, 1, sizeof ( *eqctx ) ), 0, NULL, index, eqctx ); } static inline int hermon_cmd_sw2hw_cq ( struct hermon *hermon, unsigned long cqn, const struct hermonprm_completion_queue_context *cqctx ){ return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_SW2HW_CQ, 1, sizeof ( *cqctx ) ), 0, cqctx, cqn, NULL ); } static inline int hermon_cmd_hw2sw_cq ( struct hermon *hermon, unsigned long cqn, struct hermonprm_completion_queue_context *cqctx) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_HW2SW_CQ, 1, sizeof ( *cqctx ) ), 0, NULL, cqn, cqctx ); } static inline int hermon_cmd_rst2init_qp ( struct hermon *hermon, unsigned long qpn, const struct hermonprm_qp_ee_state_transitions *ctx ){ return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_RST2INIT_QP, 1, sizeof ( *ctx ) ), 0, ctx, qpn, NULL ); } static inline int hermon_cmd_init2rtr_qp ( struct hermon *hermon, unsigned long qpn, const struct hermonprm_qp_ee_state_transitions *ctx ){ return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_INIT2RTR_QP, 1, sizeof ( *ctx ) ), 0, ctx, qpn, NULL ); } static inline int hermon_cmd_rtr2rts_qp ( struct hermon *hermon, unsigned long qpn, const struct hermonprm_qp_ee_state_transitions *ctx ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_RTR2RTS_QP, 1, sizeof ( *ctx ) ), 0, ctx, qpn, NULL ); } static inline int hermon_cmd_rts2rts_qp ( struct hermon *hermon, unsigned long qpn, const struct hermonprm_qp_ee_state_transitions *ctx ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_RTS2RTS_QP, 1, sizeof ( *ctx ) ), 0, ctx, qpn, NULL ); } static inline int hermon_cmd_2rst_qp ( struct hermon *hermon, unsigned long qpn ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_2RST_QP ), 0x03, NULL, qpn, NULL ); } static inline int hermon_cmd_query_qp ( struct hermon *hermon, unsigned long qpn, struct hermonprm_qp_ee_state_transitions *ctx ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_QP, 1, sizeof ( *ctx ) ), 0, NULL, qpn, ctx ); } static inline int hermon_cmd_conf_special_qp ( struct hermon *hermon, unsigned int internal_qps, unsigned long base_qpn ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_CONF_SPECIAL_QP ), internal_qps, NULL, base_qpn, NULL ); } static inline int hermon_cmd_mad_ifc ( struct hermon *hermon, unsigned int port, union hermonprm_mad *mad ) { return hermon_cmd ( hermon, HERMON_HCR_INOUT_CMD ( HERMON_HCR_MAD_IFC, 1, sizeof ( *mad ), 1, sizeof ( *mad ) ), 0x03, mad, port, mad ); } static inline int hermon_cmd_read_mcg ( struct hermon *hermon, unsigned int index, struct hermonprm_mcg_entry *mcg ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_READ_MCG, 1, sizeof ( *mcg ) ), 0, NULL, index, mcg ); } static inline int hermon_cmd_write_mcg ( struct hermon *hermon, unsigned int index, const struct hermonprm_mcg_entry *mcg ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_WRITE_MCG, 1, sizeof ( *mcg ) ), 0, mcg, index, NULL ); } static inline int hermon_cmd_mgid_hash ( struct hermon *hermon, const struct ib_gid *gid, struct hermonprm_mgm_hash *hash ) { return hermon_cmd ( hermon, HERMON_HCR_INOUT_CMD ( HERMON_HCR_MGID_HASH, 1, sizeof ( *gid ), 0, sizeof ( *hash ) ), 0, gid, 0, hash ); } static inline int hermon_cmd_run_fw ( struct hermon *hermon ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_RUN_FW ), 0, NULL, 0, NULL ); } static inline int hermon_cmd_unmap_icm ( struct hermon *hermon, unsigned int page_count, const struct hermonprm_scalar_parameter *offset ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_UNMAP_ICM, 0, sizeof ( *offset ) ), 0, offset, page_count, NULL ); } static inline int hermon_cmd_map_icm ( struct hermon *hermon, const struct hermonprm_virtual_physical_mapping *map ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_ICM, 1, sizeof ( *map ) ), 0, map, 1, NULL ); } static inline int hermon_cmd_unmap_icm_aux ( struct hermon *hermon ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_UNMAP_ICM_AUX ), 0, NULL, 0, NULL ); } static inline int hermon_cmd_map_icm_aux ( struct hermon *hermon, const struct hermonprm_virtual_physical_mapping *map ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_ICM_AUX, 1, sizeof ( *map ) ), 0, map, 1, NULL ); } static inline int hermon_cmd_set_icm_size ( struct hermon *hermon, const struct hermonprm_scalar_parameter *icm_size, struct hermonprm_scalar_parameter *icm_aux_size ) { return hermon_cmd ( hermon, HERMON_HCR_INOUT_CMD ( HERMON_HCR_SET_ICM_SIZE, 0, sizeof ( *icm_size ), 0, sizeof (*icm_aux_size) ), 0, icm_size, 0, icm_aux_size ); } static inline int hermon_cmd_unmap_fa ( struct hermon *hermon ) { return hermon_cmd ( hermon, HERMON_HCR_VOID_CMD ( HERMON_HCR_UNMAP_FA ), 0, NULL, 0, NULL ); } static inline int hermon_cmd_map_fa ( struct hermon *hermon, const struct hermonprm_virtual_physical_mapping *map ) { return hermon_cmd ( hermon, HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_FA, 1, sizeof ( *map ) ), 0, map, 1, NULL ); } static inline int hermon_cmd_sense_port ( struct hermon *hermon, unsigned int port, struct hermonprm_sense_port *port_type ) { return hermon_cmd ( hermon, HERMON_HCR_OUT_CMD ( HERMON_HCR_SENSE_PORT, 1, sizeof ( *port_type ) ), 0, NULL, port, port_type ); } /*************************************************************************** * * Memory translation table operations * *************************************************************************** */ /** * Allocate MTT entries * * @v hermon Hermon device * @v memory Memory to map into MTT * @v len Length of memory to map * @v mtt MTT descriptor to fill in * @ret rc Return status code */ static int hermon_alloc_mtt ( struct hermon *hermon, const void *memory, size_t len, struct hermon_mtt *mtt ) { struct hermonprm_write_mtt write_mtt; physaddr_t start; unsigned int page_offset; unsigned int num_pages; int mtt_offset; unsigned int mtt_base_addr; unsigned int i; int rc; /* Find available MTT entries */ start = virt_to_phys ( memory ); page_offset = ( start & ( HERMON_PAGE_SIZE - 1 ) ); start -= page_offset; len += page_offset; num_pages = ( ( len + HERMON_PAGE_SIZE - 1 ) / HERMON_PAGE_SIZE ); mtt_offset = hermon_bitmask_alloc ( hermon->mtt_inuse, HERMON_MAX_MTTS, num_pages ); if ( mtt_offset < 0 ) { DBGC ( hermon, "Hermon %p could not allocate %d MTT entries\n", hermon, num_pages ); rc = mtt_offset; goto err_mtt_offset; } mtt_base_addr = ( ( hermon->cap.reserved_mtts + mtt_offset ) * hermon->cap.mtt_entry_size ); /* Fill in MTT structure */ mtt->mtt_offset = mtt_offset; mtt->num_pages = num_pages; mtt->mtt_base_addr = mtt_base_addr; mtt->page_offset = page_offset; /* Construct and issue WRITE_MTT commands */ for ( i = 0 ; i < num_pages ; i++ ) { memset ( &write_mtt, 0, sizeof ( write_mtt ) ); MLX_FILL_1 ( &write_mtt.mtt_base_addr, 1, value, mtt_base_addr ); MLX_FILL_2 ( &write_mtt.mtt, 1, p, 1, ptag_l, ( start >> 3 ) ); if ( ( rc = hermon_cmd_write_mtt ( hermon, &write_mtt ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not write MTT at %x\n", hermon, mtt_base_addr ); goto err_write_mtt; } start += HERMON_PAGE_SIZE; mtt_base_addr += hermon->cap.mtt_entry_size; } return 0; err_write_mtt: hermon_bitmask_free ( hermon->mtt_inuse, mtt_offset, num_pages ); err_mtt_offset: return rc; } /** * Free MTT entries * * @v hermon Hermon device * @v mtt MTT descriptor */ static void hermon_free_mtt ( struct hermon *hermon, struct hermon_mtt *mtt ) { hermon_bitmask_free ( hermon->mtt_inuse, mtt->mtt_offset, mtt->num_pages ); } /*************************************************************************** * * MAD operations * *************************************************************************** */ /** * Issue management datagram * * @v ibdev Infiniband device * @v mad Management datagram * @ret rc Return status code */ static int hermon_mad ( struct ib_device *ibdev, union ib_mad *mad ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); union hermonprm_mad mad_ifc; int rc; linker_assert ( sizeof ( *mad ) == sizeof ( mad_ifc.mad ), mad_size_mismatch ); /* Copy in request packet */ memcpy ( &mad_ifc.mad, mad, sizeof ( mad_ifc.mad ) ); /* Issue MAD */ if ( ( rc = hermon_cmd_mad_ifc ( hermon, ibdev->port, &mad_ifc ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not issue MAD IFC: %s\n", hermon, strerror ( rc ) ); return rc; } /* Copy out reply packet */ memcpy ( mad, &mad_ifc.mad, sizeof ( *mad ) ); if ( mad->hdr.status != 0 ) { DBGC ( hermon, "Hermon %p MAD IFC status %04x\n", hermon, ntohs ( mad->hdr.status ) ); return -EIO; } return 0; } /*************************************************************************** * * Completion queue operations * *************************************************************************** */ /** * Create completion queue * * @v ibdev Infiniband device * @v cq Completion queue * @ret rc Return status code */ static int hermon_create_cq ( struct ib_device *ibdev, struct ib_completion_queue *cq ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_completion_queue *hermon_cq; struct hermonprm_completion_queue_context cqctx; int cqn_offset; unsigned int i; int rc; /* Find a free completion queue number */ cqn_offset = hermon_bitmask_alloc ( hermon->cq_inuse, HERMON_MAX_CQS, 1 ); if ( cqn_offset < 0 ) { DBGC ( hermon, "Hermon %p out of completion queues\n", hermon ); rc = cqn_offset; goto err_cqn_offset; } cq->cqn = ( hermon->cap.reserved_cqs + cqn_offset ); /* Allocate control structures */ hermon_cq = zalloc ( sizeof ( *hermon_cq ) ); if ( ! hermon_cq ) { rc = -ENOMEM; goto err_hermon_cq; } /* Allocate completion queue itself */ hermon_cq->cqe_size = ( cq->num_cqes * sizeof ( hermon_cq->cqe[0] ) ); hermon_cq->cqe = malloc_dma ( hermon_cq->cqe_size, sizeof ( hermon_cq->cqe[0] ) ); if ( ! hermon_cq->cqe ) { rc = -ENOMEM; goto err_cqe; } memset ( hermon_cq->cqe, 0, hermon_cq->cqe_size ); for ( i = 0 ; i < cq->num_cqes ; i++ ) { MLX_FILL_1 ( &hermon_cq->cqe[i].normal, 7, owner, 1 ); } barrier(); /* Allocate MTT entries */ if ( ( rc = hermon_alloc_mtt ( hermon, hermon_cq->cqe, hermon_cq->cqe_size, &hermon_cq->mtt ) ) != 0 ) goto err_alloc_mtt; /* Hand queue over to hardware */ memset ( &cqctx, 0, sizeof ( cqctx ) ); MLX_FILL_1 ( &cqctx, 0, st, 0xa /* "Event fired" */ ); MLX_FILL_1 ( &cqctx, 2, page_offset, ( hermon_cq->mtt.page_offset >> 5 ) ); MLX_FILL_2 ( &cqctx, 3, usr_page, HERMON_UAR_NON_EQ_PAGE, log_cq_size, fls ( cq->num_cqes - 1 ) ); MLX_FILL_1 ( &cqctx, 7, mtt_base_addr_l, ( hermon_cq->mtt.mtt_base_addr >> 3 ) ); MLX_FILL_1 ( &cqctx, 15, db_record_addr_l, ( virt_to_phys ( &hermon_cq->doorbell ) >> 3 ) ); if ( ( rc = hermon_cmd_sw2hw_cq ( hermon, cq->cqn, &cqctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p SW2HW_CQ failed: %s\n", hermon, strerror ( rc ) ); goto err_sw2hw_cq; } DBGC ( hermon, "Hermon %p CQN %#lx ring at [%p,%p)\n", hermon, cq->cqn, hermon_cq->cqe, ( ( ( void * ) hermon_cq->cqe ) + hermon_cq->cqe_size ) ); ib_cq_set_drvdata ( cq, hermon_cq ); return 0; err_sw2hw_cq: hermon_free_mtt ( hermon, &hermon_cq->mtt ); err_alloc_mtt: free_dma ( hermon_cq->cqe, hermon_cq->cqe_size ); err_cqe: free ( hermon_cq ); err_hermon_cq: hermon_bitmask_free ( hermon->cq_inuse, cqn_offset, 1 ); err_cqn_offset: return rc; } /** * Destroy completion queue * * @v ibdev Infiniband device * @v cq Completion queue */ static void hermon_destroy_cq ( struct ib_device *ibdev, struct ib_completion_queue *cq ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_completion_queue *hermon_cq = ib_cq_get_drvdata ( cq ); struct hermonprm_completion_queue_context cqctx; int cqn_offset; int rc; /* Take ownership back from hardware */ if ( ( rc = hermon_cmd_hw2sw_cq ( hermon, cq->cqn, &cqctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p FATAL HW2SW_CQ failed on CQN %#lx: " "%s\n", hermon, cq->cqn, strerror ( rc ) ); /* Leak memory and return; at least we avoid corruption */ return; } /* Free MTT entries */ hermon_free_mtt ( hermon, &hermon_cq->mtt ); /* Free memory */ free_dma ( hermon_cq->cqe, hermon_cq->cqe_size ); free ( hermon_cq ); /* Mark queue number as free */ cqn_offset = ( cq->cqn - hermon->cap.reserved_cqs ); hermon_bitmask_free ( hermon->cq_inuse, cqn_offset, 1 ); ib_cq_set_drvdata ( cq, NULL ); } /*************************************************************************** * * Queue pair operations * *************************************************************************** */ /** * Assign queue pair number * * @v ibdev Infiniband device * @v qp Queue pair * @ret rc Return status code */ static int hermon_alloc_qpn ( struct ib_device *ibdev, struct ib_queue_pair *qp ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); unsigned int port_offset; int qpn_offset; /* Calculate queue pair number */ port_offset = ( ibdev->port - HERMON_PORT_BASE ); switch ( qp->type ) { case IB_QPT_SMI: qp->qpn = ( hermon->special_qpn_base + port_offset ); return 0; case IB_QPT_GSI: qp->qpn = ( hermon->special_qpn_base + 2 + port_offset ); return 0; case IB_QPT_UD: case IB_QPT_RC: /* Find a free queue pair number */ qpn_offset = hermon_bitmask_alloc ( hermon->qp_inuse, HERMON_MAX_QPS, 1 ); if ( qpn_offset < 0 ) { DBGC ( hermon, "Hermon %p out of queue pairs\n", hermon ); return qpn_offset; } qp->qpn = ( ( random() & HERMON_QPN_RANDOM_MASK ) | ( hermon->qpn_base + qpn_offset ) ); return 0; default: DBGC ( hermon, "Hermon %p unsupported QP type %d\n", hermon, qp->type ); return -ENOTSUP; } } /** * Free queue pair number * * @v ibdev Infiniband device * @v qp Queue pair */ static void hermon_free_qpn ( struct ib_device *ibdev, struct ib_queue_pair *qp ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); int qpn_offset; qpn_offset = ( ( qp->qpn & ~HERMON_QPN_RANDOM_MASK ) - hermon->qpn_base ); if ( qpn_offset >= 0 ) hermon_bitmask_free ( hermon->qp_inuse, qpn_offset, 1 ); } /** * Calculate transmission rate * * @v av Address vector * @ret hermon_rate Hermon rate */ static unsigned int hermon_rate ( struct ib_address_vector *av ) { return ( ( ( av->rate >= IB_RATE_2_5 ) && ( av->rate <= IB_RATE_120 ) ) ? ( av->rate + 5 ) : 0 ); } /** * Calculate schedule queue * * @v ibdev Infiniband device * @v qp Queue pair * @ret sched_queue Schedule queue */ static unsigned int hermon_sched_queue ( struct ib_device *ibdev, struct ib_queue_pair *qp ) { return ( ( ( qp->type == IB_QPT_SMI ) ? HERMON_SCHED_QP0 : HERMON_SCHED_DEFAULT ) | ( ( ibdev->port - 1 ) << 6 ) ); } /** Queue pair transport service type map */ static uint8_t hermon_qp_st[] = { [IB_QPT_SMI] = HERMON_ST_MLX, [IB_QPT_GSI] = HERMON_ST_MLX, [IB_QPT_UD] = HERMON_ST_UD, [IB_QPT_RC] = HERMON_ST_RC, }; /** * Dump queue pair context (for debugging only) * * @v hermon Hermon device * @v qp Queue pair * @ret rc Return status code */ static inline int hermon_dump_qpctx ( struct hermon *hermon, struct ib_queue_pair *qp ) { struct hermonprm_qp_ee_state_transitions qpctx; int rc; memset ( &qpctx, 0, sizeof ( qpctx ) ); if ( ( rc = hermon_cmd_query_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p QUERY_QP failed: %s\n", hermon, strerror ( rc ) ); return rc; } DBGC ( hermon, "Hermon %p QPN %lx context:\n", hermon, qp->qpn ); DBGC_HDA ( hermon, 0, &qpctx.u.dwords[2], ( sizeof ( qpctx ) - 8 ) ); return 0; } /** * Create queue pair * * @v ibdev Infiniband device * @v qp Queue pair * @ret rc Return status code */ static int hermon_create_qp ( struct ib_device *ibdev, struct ib_queue_pair *qp ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_queue_pair *hermon_qp; struct hermonprm_qp_ee_state_transitions qpctx; int rc; /* Calculate queue pair number */ if ( ( rc = hermon_alloc_qpn ( ibdev, qp ) ) != 0 ) goto err_alloc_qpn; /* Allocate control structures */ hermon_qp = zalloc ( sizeof ( *hermon_qp ) ); if ( ! hermon_qp ) { rc = -ENOMEM; goto err_hermon_qp; } /* Calculate doorbell address */ hermon_qp->send.doorbell = ( hermon->uar + HERMON_UAR_NON_EQ_PAGE * HERMON_PAGE_SIZE + HERMON_DB_POST_SND_OFFSET ); /* Allocate work queue buffer */ hermon_qp->send.num_wqes = ( qp->send.num_wqes /* headroom */ + 1 + ( 2048 / sizeof ( hermon_qp->send.wqe[0] ) ) ); hermon_qp->send.num_wqes = ( 1 << fls ( hermon_qp->send.num_wqes - 1 ) ); /* round up */ hermon_qp->send.wqe_size = ( hermon_qp->send.num_wqes * sizeof ( hermon_qp->send.wqe[0] ) ); hermon_qp->recv.wqe_size = ( qp->recv.num_wqes * sizeof ( hermon_qp->recv.wqe[0] ) ); hermon_qp->wqe_size = ( hermon_qp->send.wqe_size + hermon_qp->recv.wqe_size ); hermon_qp->wqe = malloc_dma ( hermon_qp->wqe_size, sizeof ( hermon_qp->send.wqe[0] ) ); if ( ! hermon_qp->wqe ) { rc = -ENOMEM; goto err_alloc_wqe; } hermon_qp->send.wqe = hermon_qp->wqe; memset ( hermon_qp->send.wqe, 0xff, hermon_qp->send.wqe_size ); hermon_qp->recv.wqe = ( hermon_qp->wqe + hermon_qp->send.wqe_size ); memset ( hermon_qp->recv.wqe, 0, hermon_qp->recv.wqe_size ); /* Allocate MTT entries */ if ( ( rc = hermon_alloc_mtt ( hermon, hermon_qp->wqe, hermon_qp->wqe_size, &hermon_qp->mtt ) ) != 0 ) { goto err_alloc_mtt; } /* Transition queue to INIT state */ memset ( &qpctx, 0, sizeof ( qpctx ) ); MLX_FILL_2 ( &qpctx, 2, qpc_eec_data.pm_state, HERMON_PM_STATE_MIGRATED, qpc_eec_data.st, hermon_qp_st[qp->type] ); MLX_FILL_1 ( &qpctx, 3, qpc_eec_data.pd, HERMON_GLOBAL_PD ); MLX_FILL_4 ( &qpctx, 4, qpc_eec_data.log_rq_size, fls ( qp->recv.num_wqes - 1 ), qpc_eec_data.log_rq_stride, ( fls ( sizeof ( hermon_qp->recv.wqe[0] ) - 1 ) - 4 ), qpc_eec_data.log_sq_size, fls ( hermon_qp->send.num_wqes - 1 ), qpc_eec_data.log_sq_stride, ( fls ( sizeof ( hermon_qp->send.wqe[0] ) - 1 ) - 4 ) ); MLX_FILL_1 ( &qpctx, 5, qpc_eec_data.usr_page, HERMON_UAR_NON_EQ_PAGE ); MLX_FILL_1 ( &qpctx, 33, qpc_eec_data.cqn_snd, qp->send.cq->cqn ); MLX_FILL_4 ( &qpctx, 38, qpc_eec_data.rre, 1, qpc_eec_data.rwe, 1, qpc_eec_data.rae, 1, qpc_eec_data.page_offset, ( hermon_qp->mtt.page_offset >> 6 ) ); MLX_FILL_1 ( &qpctx, 41, qpc_eec_data.cqn_rcv, qp->recv.cq->cqn ); MLX_FILL_1 ( &qpctx, 43, qpc_eec_data.db_record_addr_l, ( virt_to_phys ( &hermon_qp->recv.doorbell ) >> 2 ) ); MLX_FILL_1 ( &qpctx, 53, qpc_eec_data.mtt_base_addr_l, ( hermon_qp->mtt.mtt_base_addr >> 3 ) ); if ( ( rc = hermon_cmd_rst2init_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p RST2INIT_QP failed: %s\n", hermon, strerror ( rc ) ); goto err_rst2init_qp; } hermon_qp->state = HERMON_QP_ST_INIT; DBGC ( hermon, "Hermon %p QPN %#lx send ring at [%p,%p)\n", hermon, qp->qpn, hermon_qp->send.wqe, ( ((void *)hermon_qp->send.wqe ) + hermon_qp->send.wqe_size ) ); DBGC ( hermon, "Hermon %p QPN %#lx receive ring at [%p,%p)\n", hermon, qp->qpn, hermon_qp->recv.wqe, ( ((void *)hermon_qp->recv.wqe ) + hermon_qp->recv.wqe_size ) ); ib_qp_set_drvdata ( qp, hermon_qp ); return 0; hermon_cmd_2rst_qp ( hermon, qp->qpn ); err_rst2init_qp: hermon_free_mtt ( hermon, &hermon_qp->mtt ); err_alloc_mtt: free_dma ( hermon_qp->wqe, hermon_qp->wqe_size ); err_alloc_wqe: free ( hermon_qp ); err_hermon_qp: hermon_free_qpn ( ibdev, qp ); err_alloc_qpn: return rc; } /** * Modify queue pair * * @v ibdev Infiniband device * @v qp Queue pair * @ret rc Return status code */ static int hermon_modify_qp ( struct ib_device *ibdev, struct ib_queue_pair *qp ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp ); struct hermonprm_qp_ee_state_transitions qpctx; int rc; /* Transition queue to RTR state, if applicable */ if ( hermon_qp->state < HERMON_QP_ST_RTR ) { memset ( &qpctx, 0, sizeof ( qpctx ) ); MLX_FILL_2 ( &qpctx, 4, qpc_eec_data.mtu, HERMON_MTU_2048, qpc_eec_data.msg_max, 31 ); MLX_FILL_1 ( &qpctx, 7, qpc_eec_data.remote_qpn_een, qp->av.qpn ); MLX_FILL_1 ( &qpctx, 9, qpc_eec_data.primary_address_path.rlid, qp->av.lid ); MLX_FILL_1 ( &qpctx, 10, qpc_eec_data.primary_address_path.max_stat_rate, hermon_rate ( &qp->av ) ); memcpy ( &qpctx.u.dwords[12], &qp->av.gid, sizeof ( qp->av.gid ) ); MLX_FILL_1 ( &qpctx, 16, qpc_eec_data.primary_address_path.sched_queue, hermon_sched_queue ( ibdev, qp ) ); MLX_FILL_1 ( &qpctx, 39, qpc_eec_data.next_rcv_psn, qp->recv.psn ); if ( ( rc = hermon_cmd_init2rtr_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p INIT2RTR_QP failed: %s\n", hermon, strerror ( rc ) ); return rc; } hermon_qp->state = HERMON_QP_ST_RTR; } /* Transition queue to RTS state */ if ( hermon_qp->state < HERMON_QP_ST_RTS ) { memset ( &qpctx, 0, sizeof ( qpctx ) ); MLX_FILL_1 ( &qpctx, 10, qpc_eec_data.primary_address_path.ack_timeout, 14 /* 4.096us * 2^(14) = 67ms */ ); MLX_FILL_2 ( &qpctx, 30, qpc_eec_data.retry_count, HERMON_RETRY_MAX, qpc_eec_data.rnr_retry, HERMON_RETRY_MAX ); MLX_FILL_1 ( &qpctx, 32, qpc_eec_data.next_send_psn, qp->send.psn ); if ( ( rc = hermon_cmd_rtr2rts_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p RTR2RTS_QP failed: %s\n", hermon, strerror ( rc ) ); return rc; } hermon_qp->state = HERMON_QP_ST_RTS; } /* Update parameters in RTS state */ memset ( &qpctx, 0, sizeof ( qpctx ) ); MLX_FILL_1 ( &qpctx, 0, opt_param_mask, HERMON_QP_OPT_PARAM_QKEY ); MLX_FILL_1 ( &qpctx, 44, qpc_eec_data.q_key, qp->qkey ); if ( ( rc = hermon_cmd_rts2rts_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ){ DBGC ( hermon, "Hermon %p RTS2RTS_QP failed: %s\n", hermon, strerror ( rc ) ); return rc; } return 0; } /** * Destroy queue pair * * @v ibdev Infiniband device * @v qp Queue pair */ static void hermon_destroy_qp ( struct ib_device *ibdev, struct ib_queue_pair *qp ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp ); int rc; /* Take ownership back from hardware */ if ( ( rc = hermon_cmd_2rst_qp ( hermon, qp->qpn ) ) != 0 ) { DBGC ( hermon, "Hermon %p FATAL 2RST_QP failed on QPN %#lx: " "%s\n", hermon, qp->qpn, strerror ( rc ) ); /* Leak memory and return; at least we avoid corruption */ return; } /* Free MTT entries */ hermon_free_mtt ( hermon, &hermon_qp->mtt ); /* Free memory */ free_dma ( hermon_qp->wqe, hermon_qp->wqe_size ); free ( hermon_qp ); /* Mark queue number as free */ hermon_free_qpn ( ibdev, qp ); ib_qp_set_drvdata ( qp, NULL ); } /*************************************************************************** * * Work request operations * *************************************************************************** */ /** * Construct UD send work queue entry * * @v ibdev Infiniband device * @v qp Queue pair * @v av Address vector * @v iobuf I/O buffer * @v wqe Send work queue entry * @ret opcode Control opcode */ static unsigned int hermon_fill_ud_send_wqe ( struct ib_device *ibdev, struct ib_queue_pair *qp __unused, struct ib_address_vector *av, struct io_buffer *iobuf, union hermon_send_wqe *wqe ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); MLX_FILL_1 ( &wqe->ud.ctrl, 1, ds, ( ( offsetof ( typeof ( wqe->ud ), data[1] ) / 16 ) ) ); MLX_FILL_1 ( &wqe->ud.ctrl, 2, c, 0x03 /* generate completion */ ); MLX_FILL_2 ( &wqe->ud.ud, 0, ud_address_vector.pd, HERMON_GLOBAL_PD, ud_address_vector.port_number, ibdev->port ); MLX_FILL_2 ( &wqe->ud.ud, 1, ud_address_vector.rlid, av->lid, ud_address_vector.g, av->gid_present ); MLX_FILL_1 ( &wqe->ud.ud, 2, ud_address_vector.max_stat_rate, hermon_rate ( av ) ); MLX_FILL_1 ( &wqe->ud.ud, 3, ud_address_vector.sl, av->sl ); memcpy ( &wqe->ud.ud.u.dwords[4], &av->gid, sizeof ( av->gid ) ); MLX_FILL_1 ( &wqe->ud.ud, 8, destination_qp, av->qpn ); MLX_FILL_1 ( &wqe->ud.ud, 9, q_key, av->qkey ); MLX_FILL_1 ( &wqe->ud.data[0], 0, byte_count, iob_len ( iobuf ) ); MLX_FILL_1 ( &wqe->ud.data[0], 1, l_key, hermon->lkey ); MLX_FILL_1 ( &wqe->ud.data[0], 3, local_address_l, virt_to_bus ( iobuf->data ) ); return HERMON_OPCODE_SEND; } /** * Construct MLX send work queue entry * * @v ibdev Infiniband device * @v qp Queue pair * @v av Address vector * @v iobuf I/O buffer * @v wqe Send work queue entry * @ret opcode Control opcode */ static unsigned int hermon_fill_mlx_send_wqe ( struct ib_device *ibdev, struct ib_queue_pair *qp, struct ib_address_vector *av, struct io_buffer *iobuf, union hermon_send_wqe *wqe ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct io_buffer headers; /* Construct IB headers */ iob_populate ( &headers, &wqe->mlx.headers, 0, sizeof ( wqe->mlx.headers ) ); iob_reserve ( &headers, sizeof ( wqe->mlx.headers ) ); ib_push ( ibdev, &headers, qp, iob_len ( iobuf ), av ); /* Fill work queue entry */ MLX_FILL_1 ( &wqe->mlx.ctrl, 1, ds, ( ( offsetof ( typeof ( wqe->mlx ), data[2] ) / 16 ) ) ); MLX_FILL_5 ( &wqe->mlx.ctrl, 2, c, 0x03 /* generate completion */, icrc, 0 /* generate ICRC */, max_statrate, hermon_rate ( av ), slr, 0, v15, ( ( qp->ext_qpn == IB_QPN_SMI ) ? 1 : 0 ) ); MLX_FILL_1 ( &wqe->mlx.ctrl, 3, rlid, av->lid ); MLX_FILL_1 ( &wqe->mlx.data[0], 0, byte_count, iob_len ( &headers ) ); MLX_FILL_1 ( &wqe->mlx.data[0], 1, l_key, hermon->lkey ); MLX_FILL_1 ( &wqe->mlx.data[0], 3, local_address_l, virt_to_bus ( headers.data ) ); MLX_FILL_1 ( &wqe->mlx.data[1], 0, byte_count, ( iob_len ( iobuf ) + 4 /* ICRC */ ) ); MLX_FILL_1 ( &wqe->mlx.data[1], 1, l_key, hermon->lkey ); MLX_FILL_1 ( &wqe->mlx.data[1], 3, local_address_l, virt_to_bus ( iobuf->data ) ); return HERMON_OPCODE_SEND; } /** * Construct RC send work queue entry * * @v ibdev Infiniband device * @v qp Queue pair * @v av Address vector * @v iobuf I/O buffer * @v wqe Send work queue entry * @ret opcode Control opcode */ static unsigned int hermon_fill_rc_send_wqe ( struct ib_device *ibdev, struct ib_queue_pair *qp __unused, struct ib_address_vector *av __unused, struct io_buffer *iobuf, union hermon_send_wqe *wqe ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); MLX_FILL_1 ( &wqe->rc.ctrl, 1, ds, ( ( offsetof ( typeof ( wqe->rc ), data[1] ) / 16 ) ) ); MLX_FILL_1 ( &wqe->rc.ctrl, 2, c, 0x03 /* generate completion */ ); MLX_FILL_1 ( &wqe->rc.data[0], 0, byte_count, iob_len ( iobuf ) ); MLX_FILL_1 ( &wqe->rc.data[0], 1, l_key, hermon->lkey ); MLX_FILL_1 ( &wqe->rc.data[0], 3, local_address_l, virt_to_bus ( iobuf->data ) ); return HERMON_OPCODE_SEND; } /** Work queue entry constructors */ static unsigned int ( * hermon_fill_send_wqe[] ) ( struct ib_device *ibdev, struct ib_queue_pair *qp, struct ib_address_vector *av, struct io_buffer *iobuf, union hermon_send_wqe *wqe ) = { [IB_QPT_SMI] = hermon_fill_mlx_send_wqe, [IB_QPT_GSI] = hermon_fill_mlx_send_wqe, [IB_QPT_UD] = hermon_fill_ud_send_wqe, [IB_QPT_RC] = hermon_fill_rc_send_wqe, }; /** * Post send work queue entry * * @v ibdev Infiniband device * @v qp Queue pair * @v av Address vector * @v iobuf I/O buffer * @ret rc Return status code */ static int hermon_post_send ( struct ib_device *ibdev, struct ib_queue_pair *qp, struct ib_address_vector *av, struct io_buffer *iobuf ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp ); struct ib_work_queue *wq = &qp->send; struct hermon_send_work_queue *hermon_send_wq = &hermon_qp->send; union hermon_send_wqe *wqe; union hermonprm_doorbell_register db_reg; unsigned int wqe_idx_mask; unsigned int opcode; /* Allocate work queue entry */ wqe_idx_mask = ( wq->num_wqes - 1 ); if ( wq->iobufs[wq->next_idx & wqe_idx_mask] ) { DBGC ( hermon, "Hermon %p send queue full", hermon ); return -ENOBUFS; } wq->iobufs[wq->next_idx & wqe_idx_mask] = iobuf; wqe = &hermon_send_wq->wqe[ wq->next_idx & ( hermon_send_wq->num_wqes - 1 ) ]; /* Construct work queue entry */ memset ( ( ( ( void * ) wqe ) + 4 /* avoid ctrl.owner */ ), 0, ( sizeof ( *wqe ) - 4 ) ); assert ( qp->type < ( sizeof ( hermon_fill_send_wqe ) / sizeof ( hermon_fill_send_wqe[0] ) ) ); assert ( hermon_fill_send_wqe[qp->type] != NULL ); opcode = hermon_fill_send_wqe[qp->type] ( ibdev, qp, av, iobuf, wqe ); barrier(); MLX_FILL_2 ( &wqe->ctrl, 0, opcode, opcode, owner, ( ( wq->next_idx & hermon_send_wq->num_wqes ) ? 1 : 0 ) ); DBGCP ( hermon, "Hermon %p posting send WQE:\n", hermon ); DBGCP_HD ( hermon, wqe, sizeof ( *wqe ) ); barrier(); /* Ring doorbell register */ MLX_FILL_1 ( &db_reg.send, 0, qn, qp->qpn ); DBGCP ( hermon, "Ringing doorbell %08lx with %08x\n", virt_to_phys ( hermon_send_wq->doorbell ), db_reg.dword[0] ); writel ( db_reg.dword[0], ( hermon_send_wq->doorbell ) ); /* Update work queue's index */ wq->next_idx++; return 0; } /** * Post receive work queue entry * * @v ibdev Infiniband device * @v qp Queue pair * @v iobuf I/O buffer * @ret rc Return status code */ static int hermon_post_recv ( struct ib_device *ibdev, struct ib_queue_pair *qp, struct io_buffer *iobuf ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp ); struct ib_work_queue *wq = &qp->recv; struct hermon_recv_work_queue *hermon_recv_wq = &hermon_qp->recv; struct hermonprm_recv_wqe *wqe; unsigned int wqe_idx_mask; /* Allocate work queue entry */ wqe_idx_mask = ( wq->num_wqes - 1 ); if ( wq->iobufs[wq->next_idx & wqe_idx_mask] ) { DBGC ( hermon, "Hermon %p receive queue full", hermon ); return -ENOBUFS; } wq->iobufs[wq->next_idx & wqe_idx_mask] = iobuf; wqe = &hermon_recv_wq->wqe[wq->next_idx & wqe_idx_mask].recv; /* Construct work queue entry */ MLX_FILL_1 ( &wqe->data[0], 0, byte_count, iob_tailroom ( iobuf ) ); MLX_FILL_1 ( &wqe->data[0], 1, l_key, hermon->lkey ); MLX_FILL_1 ( &wqe->data[0], 3, local_address_l, virt_to_bus ( iobuf->data ) ); /* Update work queue's index */ wq->next_idx++; /* Update doorbell record */ barrier(); MLX_FILL_1 ( &hermon_recv_wq->doorbell, 0, receive_wqe_counter, ( wq->next_idx & 0xffff ) ); return 0; } /** * Handle completion * * @v ibdev Infiniband device * @v cq Completion queue * @v cqe Hardware completion queue entry * @ret rc Return status code */ static int hermon_complete ( struct ib_device *ibdev, struct ib_completion_queue *cq, union hermonprm_completion_entry *cqe ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct ib_work_queue *wq; struct ib_queue_pair *qp; struct hermon_queue_pair *hermon_qp; struct io_buffer *iobuf; struct ib_address_vector recv_av; struct ib_global_route_header *grh; struct ib_address_vector *av; unsigned int opcode; unsigned long qpn; int is_send; unsigned int wqe_idx; size_t len; int rc = 0; /* Parse completion */ qpn = MLX_GET ( &cqe->normal, qpn ); is_send = MLX_GET ( &cqe->normal, s_r ); opcode = MLX_GET ( &cqe->normal, opcode ); if ( opcode >= HERMON_OPCODE_RECV_ERROR ) { /* "s" field is not valid for error opcodes */ is_send = ( opcode == HERMON_OPCODE_SEND_ERROR ); DBGC ( hermon, "Hermon %p CQN %lx syndrome %x vendor %x\n", hermon, cq->cqn, MLX_GET ( &cqe->error, syndrome ), MLX_GET ( &cqe->error, vendor_error_syndrome ) ); rc = -EIO; /* Don't return immediately; propagate error to completer */ } /* Identify work queue */ wq = ib_find_wq ( cq, qpn, is_send ); if ( ! wq ) { DBGC ( hermon, "Hermon %p CQN %lx unknown %s QPN %lx\n", hermon, cq->cqn, ( is_send ? "send" : "recv" ), qpn ); return -EIO; } qp = wq->qp; hermon_qp = ib_qp_get_drvdata ( qp ); /* Identify I/O buffer */ wqe_idx = ( MLX_GET ( &cqe->normal, wqe_counter ) & ( wq->num_wqes - 1 ) ); iobuf = wq->iobufs[wqe_idx]; if ( ! iobuf ) { DBGC ( hermon, "Hermon %p CQN %lx QPN %lx empty WQE %x\n", hermon, cq->cqn, qp->qpn, wqe_idx ); return -EIO; } wq->iobufs[wqe_idx] = NULL; if ( is_send ) { /* Hand off to completion handler */ ib_complete_send ( ibdev, qp, iobuf, rc ); } else { /* Set received length */ len = MLX_GET ( &cqe->normal, byte_cnt ); assert ( len <= iob_tailroom ( iobuf ) ); iob_put ( iobuf, len ); switch ( qp->type ) { case IB_QPT_SMI: case IB_QPT_GSI: case IB_QPT_UD: assert ( iob_len ( iobuf ) >= sizeof ( *grh ) ); grh = iobuf->data; iob_pull ( iobuf, sizeof ( *grh ) ); /* Construct address vector */ av = &recv_av; memset ( av, 0, sizeof ( *av ) ); av->qpn = MLX_GET ( &cqe->normal, srq_rqpn ); av->lid = MLX_GET ( &cqe->normal, slid_smac47_32 ); av->sl = MLX_GET ( &cqe->normal, sl ); av->gid_present = MLX_GET ( &cqe->normal, g ); memcpy ( &av->gid, &grh->sgid, sizeof ( av->gid ) ); break; case IB_QPT_RC: av = &qp->av; break; default: assert ( 0 ); return -EINVAL; } /* Hand off to completion handler */ ib_complete_recv ( ibdev, qp, av, iobuf, rc ); } return rc; } /** * Poll completion queue * * @v ibdev Infiniband device * @v cq Completion queue */ static void hermon_poll_cq ( struct ib_device *ibdev, struct ib_completion_queue *cq ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_completion_queue *hermon_cq = ib_cq_get_drvdata ( cq ); union hermonprm_completion_entry *cqe; unsigned int cqe_idx_mask; int rc; while ( 1 ) { /* Look for completion entry */ cqe_idx_mask = ( cq->num_cqes - 1 ); cqe = &hermon_cq->cqe[cq->next_idx & cqe_idx_mask]; if ( MLX_GET ( &cqe->normal, owner ) ^ ( ( cq->next_idx & cq->num_cqes ) ? 1 : 0 ) ) { /* Entry still owned by hardware; end of poll */ break; } DBGCP ( hermon, "Hermon %p completion:\n", hermon ); DBGCP_HD ( hermon, cqe, sizeof ( *cqe ) ); /* Handle completion */ if ( ( rc = hermon_complete ( ibdev, cq, cqe ) ) != 0 ) { DBGC ( hermon, "Hermon %p failed to complete: %s\n", hermon, strerror ( rc ) ); DBGC_HD ( hermon, cqe, sizeof ( *cqe ) ); } /* Update completion queue's index */ cq->next_idx++; /* Update doorbell record */ MLX_FILL_1 ( &hermon_cq->doorbell, 0, update_ci, ( cq->next_idx & 0x00ffffffUL ) ); } } /*************************************************************************** * * Event queues * *************************************************************************** */ /** * Create event queue * * @v hermon Hermon device * @ret rc Return status code */ static int hermon_create_eq ( struct hermon *hermon ) { struct hermon_event_queue *hermon_eq = &hermon->eq; struct hermonprm_eqc eqctx; struct hermonprm_event_mask mask; unsigned int i; int rc; /* Select event queue number */ hermon_eq->eqn = ( 4 * hermon->cap.reserved_uars ); if ( hermon_eq->eqn < hermon->cap.reserved_eqs ) hermon_eq->eqn = hermon->cap.reserved_eqs; /* Calculate doorbell address */ hermon_eq->doorbell = ( hermon->uar + HERMON_DB_EQ_OFFSET ( hermon_eq->eqn ) ); /* Allocate event queue itself */ hermon_eq->eqe_size = ( HERMON_NUM_EQES * sizeof ( hermon_eq->eqe[0] ) ); hermon_eq->eqe = malloc_dma ( hermon_eq->eqe_size, sizeof ( hermon_eq->eqe[0] ) ); if ( ! hermon_eq->eqe ) { rc = -ENOMEM; goto err_eqe; } memset ( hermon_eq->eqe, 0, hermon_eq->eqe_size ); for ( i = 0 ; i < HERMON_NUM_EQES ; i++ ) { MLX_FILL_1 ( &hermon_eq->eqe[i].generic, 7, owner, 1 ); } barrier(); /* Allocate MTT entries */ if ( ( rc = hermon_alloc_mtt ( hermon, hermon_eq->eqe, hermon_eq->eqe_size, &hermon_eq->mtt ) ) != 0 ) goto err_alloc_mtt; /* Hand queue over to hardware */ memset ( &eqctx, 0, sizeof ( eqctx ) ); MLX_FILL_1 ( &eqctx, 0, st, 0xa /* "Fired" */ ); MLX_FILL_1 ( &eqctx, 2, page_offset, ( hermon_eq->mtt.page_offset >> 5 ) ); MLX_FILL_1 ( &eqctx, 3, log_eq_size, fls ( HERMON_NUM_EQES - 1 ) ); MLX_FILL_1 ( &eqctx, 7, mtt_base_addr_l, ( hermon_eq->mtt.mtt_base_addr >> 3 ) ); if ( ( rc = hermon_cmd_sw2hw_eq ( hermon, hermon_eq->eqn, &eqctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p SW2HW_EQ failed: %s\n", hermon, strerror ( rc ) ); goto err_sw2hw_eq; } /* Map events to this event queue */ memset ( &mask, 0, sizeof ( mask ) ); MLX_FILL_1 ( &mask, 1, port_state_change, 1 ); if ( ( rc = hermon_cmd_map_eq ( hermon, ( HERMON_MAP_EQ | hermon_eq->eqn ), &mask ) ) != 0 ) { DBGC ( hermon, "Hermon %p MAP_EQ failed: %s\n", hermon, strerror ( rc ) ); goto err_map_eq; } DBGC ( hermon, "Hermon %p EQN %#lx ring at [%p,%p])\n", hermon, hermon_eq->eqn, hermon_eq->eqe, ( ( ( void * ) hermon_eq->eqe ) + hermon_eq->eqe_size ) ); return 0; err_map_eq: hermon_cmd_hw2sw_eq ( hermon, hermon_eq->eqn, &eqctx ); err_sw2hw_eq: hermon_free_mtt ( hermon, &hermon_eq->mtt ); err_alloc_mtt: free_dma ( hermon_eq->eqe, hermon_eq->eqe_size ); err_eqe: memset ( hermon_eq, 0, sizeof ( *hermon_eq ) ); return rc; } /** * Destroy event queue * * @v hermon Hermon device */ static void hermon_destroy_eq ( struct hermon *hermon ) { struct hermon_event_queue *hermon_eq = &hermon->eq; struct hermonprm_eqc eqctx; struct hermonprm_event_mask mask; int rc; /* Unmap events from event queue */ memset ( &mask, 0, sizeof ( mask ) ); MLX_FILL_1 ( &mask, 1, port_state_change, 1 ); if ( ( rc = hermon_cmd_map_eq ( hermon, ( HERMON_UNMAP_EQ | hermon_eq->eqn ), &mask ) ) != 0 ) { DBGC ( hermon, "Hermon %p FATAL MAP_EQ failed to unmap: %s\n", hermon, strerror ( rc ) ); /* Continue; HCA may die but system should survive */ } /* Take ownership back from hardware */ if ( ( rc = hermon_cmd_hw2sw_eq ( hermon, hermon_eq->eqn, &eqctx ) ) != 0 ) { DBGC ( hermon, "Hermon %p FATAL HW2SW_EQ failed: %s\n", hermon, strerror ( rc ) ); /* Leak memory and return; at least we avoid corruption */ return; } /* Free MTT entries */ hermon_free_mtt ( hermon, &hermon_eq->mtt ); /* Free memory */ free_dma ( hermon_eq->eqe, hermon_eq->eqe_size ); memset ( hermon_eq, 0, sizeof ( *hermon_eq ) ); } /** * Handle port state event * * @v hermon Hermon device * @v eqe Port state change event queue entry */ static void hermon_event_port_state_change ( struct hermon *hermon, union hermonprm_event_entry *eqe){ unsigned int port; int link_up; /* Get port and link status */ port = ( MLX_GET ( &eqe->port_state_change, data.p ) - 1 ); link_up = ( MLX_GET ( &eqe->generic, event_sub_type ) & 0x04 ); DBGC ( hermon, "Hermon %p port %d link %s\n", hermon, ( port + 1 ), ( link_up ? "up" : "down" ) ); /* Sanity check */ if ( port >= hermon->cap.num_ports ) { DBGC ( hermon, "Hermon %p port %d does not exist!\n", hermon, ( port + 1 ) ); return; } /* Update MAD parameters */ ib_smc_update ( hermon->ibdev[port], hermon_mad ); /* Notify Infiniband core of link state change */ ib_link_state_changed ( hermon->ibdev[port] ); } /** * Poll event queue * * @v ibdev Infiniband device */ static void hermon_poll_eq ( struct ib_device *ibdev ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermon_event_queue *hermon_eq = &hermon->eq; union hermonprm_event_entry *eqe; union hermonprm_doorbell_register db_reg; unsigned int eqe_idx_mask; unsigned int event_type; while ( 1 ) { /* Look for event entry */ eqe_idx_mask = ( HERMON_NUM_EQES - 1 ); eqe = &hermon_eq->eqe[hermon_eq->next_idx & eqe_idx_mask]; if ( MLX_GET ( &eqe->generic, owner ) ^ ( ( hermon_eq->next_idx & HERMON_NUM_EQES ) ? 1 : 0 ) ) { /* Entry still owned by hardware; end of poll */ break; } DBGCP ( hermon, "Hermon %p event:\n", hermon ); DBGCP_HD ( hermon, eqe, sizeof ( *eqe ) ); /* Handle event */ event_type = MLX_GET ( &eqe->generic, event_type ); switch ( event_type ) { case HERMON_EV_PORT_STATE_CHANGE: hermon_event_port_state_change ( hermon, eqe ); break; default: DBGC ( hermon, "Hermon %p unrecognised event type " "%#x:\n", hermon, event_type ); DBGC_HD ( hermon, eqe, sizeof ( *eqe ) ); break; } /* Update event queue's index */ hermon_eq->next_idx++; /* Ring doorbell */ MLX_FILL_1 ( &db_reg.event, 0, ci, ( hermon_eq->next_idx & 0x00ffffffUL ) ); DBGCP ( hermon, "Ringing doorbell %08lx with %08x\n", virt_to_phys ( hermon_eq->doorbell ), db_reg.dword[0] ); writel ( db_reg.dword[0], hermon_eq->doorbell ); } } /*************************************************************************** * * Infiniband link-layer operations * *************************************************************************** */ /** * Sense port type * * @v ibdev Infiniband device * @ret port_type Port type, or negative error */ static int hermon_sense_port_type ( struct ib_device *ibdev ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermonprm_sense_port sense_port; int port_type; int rc; /* If DPDP is not supported, always assume Infiniband */ if ( ! hermon->cap.dpdp ) return HERMON_PORT_TYPE_IB; /* Sense the port type */ if ( ( rc = hermon_cmd_sense_port ( hermon, ibdev->port, &sense_port ) ) != 0 ) { DBGC ( hermon, "Hermon %p port %d sense failed: %s\n", hermon, ibdev->port, strerror ( rc ) ); return rc; } port_type = MLX_GET ( &sense_port, port_type ); DBGC ( hermon, "Hermon %p port %d type %d\n", hermon, ibdev->port, port_type ); return port_type; } /** * Initialise Infiniband link * * @v ibdev Infiniband device * @ret rc Return status code */ static int hermon_open ( struct ib_device *ibdev ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermonprm_init_port init_port; int port_type; int rc; /* Check we are connected to an Infiniband network */ if ( ( rc = port_type = hermon_sense_port_type ( ibdev ) ) < 0 ) return rc; if ( port_type != HERMON_PORT_TYPE_IB ) { DBGC ( hermon, "Hermon %p port %d not connected to an " "Infiniband network", hermon, ibdev->port ); return -ENOTCONN; } /* Init Port */ memset ( &init_port, 0, sizeof ( init_port ) ); MLX_FILL_2 ( &init_port, 0, port_width_cap, 3, vl_cap, 1 ); MLX_FILL_2 ( &init_port, 1, mtu, HERMON_MTU_2048, max_gid, 1 ); MLX_FILL_1 ( &init_port, 2, max_pkey, 64 ); if ( ( rc = hermon_cmd_init_port ( hermon, ibdev->port, &init_port ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not intialise port: %s\n", hermon, strerror ( rc ) ); return rc; } /* Update MAD parameters */ ib_smc_update ( ibdev, hermon_mad ); return 0; } /** * Close Infiniband link * * @v ibdev Infiniband device */ static void hermon_close ( struct ib_device *ibdev ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); int rc; if ( ( rc = hermon_cmd_close_port ( hermon, ibdev->port ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not close port: %s\n", hermon, strerror ( rc ) ); /* Nothing we can do about this */ } } /** * Inform embedded subnet management agent of a received MAD * * @v ibdev Infiniband device * @v mad MAD * @ret rc Return status code */ static int hermon_inform_sma ( struct ib_device *ibdev, union ib_mad *mad ) { int rc; /* Send the MAD to the embedded SMA */ if ( ( rc = hermon_mad ( ibdev, mad ) ) != 0 ) return rc; /* Update parameters held in software */ ib_smc_update ( ibdev, hermon_mad ); return 0; } /*************************************************************************** * * Multicast group operations * *************************************************************************** */ /** * Attach to multicast group * * @v ibdev Infiniband device * @v qp Queue pair * @v gid Multicast GID * @ret rc Return status code */ static int hermon_mcast_attach ( struct ib_device *ibdev, struct ib_queue_pair *qp, struct ib_gid *gid ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermonprm_mgm_hash hash; struct hermonprm_mcg_entry mcg; unsigned int index; int rc; /* Generate hash table index */ if ( ( rc = hermon_cmd_mgid_hash ( hermon, gid, &hash ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not hash GID: %s\n", hermon, strerror ( rc ) ); return rc; } index = MLX_GET ( &hash, hash ); /* Check for existing hash table entry */ if ( ( rc = hermon_cmd_read_mcg ( hermon, index, &mcg ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not read MCG %#x: %s\n", hermon, index, strerror ( rc ) ); return rc; } if ( MLX_GET ( &mcg, hdr.members_count ) != 0 ) { /* FIXME: this implementation allows only a single QP * per multicast group, and doesn't handle hash * collisions. Sufficient for IPoIB but may need to * be extended in future. */ DBGC ( hermon, "Hermon %p MGID index %#x already in use\n", hermon, index ); return -EBUSY; } /* Update hash table entry */ MLX_FILL_1 ( &mcg, 1, hdr.members_count, 1 ); MLX_FILL_1 ( &mcg, 8, qp[0].qpn, qp->qpn ); memcpy ( &mcg.u.dwords[4], gid, sizeof ( *gid ) ); if ( ( rc = hermon_cmd_write_mcg ( hermon, index, &mcg ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not write MCG %#x: %s\n", hermon, index, strerror ( rc ) ); return rc; } return 0; } /** * Detach from multicast group * * @v ibdev Infiniband device * @v qp Queue pair * @v gid Multicast GID */ static void hermon_mcast_detach ( struct ib_device *ibdev, struct ib_queue_pair *qp __unused, struct ib_gid *gid ) { struct hermon *hermon = ib_get_drvdata ( ibdev ); struct hermonprm_mgm_hash hash; struct hermonprm_mcg_entry mcg; unsigned int index; int rc; /* Generate hash table index */ if ( ( rc = hermon_cmd_mgid_hash ( hermon, gid, &hash ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not hash GID: %s\n", hermon, strerror ( rc ) ); return; } index = MLX_GET ( &hash, hash ); /* Clear hash table entry */ memset ( &mcg, 0, sizeof ( mcg ) ); if ( ( rc = hermon_cmd_write_mcg ( hermon, index, &mcg ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not write MCG %#x: %s\n", hermon, index, strerror ( rc ) ); return; } } /** Hermon Infiniband operations */ static struct ib_device_operations hermon_ib_operations = { .create_cq = hermon_create_cq, .destroy_cq = hermon_destroy_cq, .create_qp = hermon_create_qp, .modify_qp = hermon_modify_qp, .destroy_qp = hermon_destroy_qp, .post_send = hermon_post_send, .post_recv = hermon_post_recv, .poll_cq = hermon_poll_cq, .poll_eq = hermon_poll_eq, .open = hermon_open, .close = hermon_close, .mcast_attach = hermon_mcast_attach, .mcast_detach = hermon_mcast_detach, .set_port_info = hermon_inform_sma, .set_pkey_table = hermon_inform_sma, }; /*************************************************************************** * * Firmware control * *************************************************************************** */ /** * Map virtual to physical address for firmware usage * * @v hermon Hermon device * @v map Mapping function * @v va Virtual address * @v pa Physical address * @v len Length of region * @ret rc Return status code */ static int hermon_map_vpm ( struct hermon *hermon, int ( *map ) ( struct hermon *hermon, const struct hermonprm_virtual_physical_mapping* ), uint64_t va, physaddr_t pa, size_t len ) { struct hermonprm_virtual_physical_mapping mapping; int rc; assert ( ( va & ( HERMON_PAGE_SIZE - 1 ) ) == 0 ); assert ( ( pa & ( HERMON_PAGE_SIZE - 1 ) ) == 0 ); assert ( ( len & ( HERMON_PAGE_SIZE - 1 ) ) == 0 ); /* These mappings tend to generate huge volumes of * uninteresting debug data, which basically makes it * impossible to use debugging otherwise. */ DBG_DISABLE ( DBGLVL_LOG | DBGLVL_EXTRA ); while ( len ) { memset ( &mapping, 0, sizeof ( mapping ) ); MLX_FILL_1 ( &mapping, 0, va_h, ( va >> 32 ) ); MLX_FILL_1 ( &mapping, 1, va_l, ( va >> 12 ) ); MLX_FILL_2 ( &mapping, 3, log2size, 0, pa_l, ( pa >> 12 ) ); if ( ( rc = map ( hermon, &mapping ) ) != 0 ) { DBG_ENABLE ( DBGLVL_LOG | DBGLVL_EXTRA ); DBGC ( hermon, "Hermon %p could not map %llx => %lx: " "%s\n", hermon, va, pa, strerror ( rc ) ); return rc; } pa += HERMON_PAGE_SIZE; va += HERMON_PAGE_SIZE; len -= HERMON_PAGE_SIZE; } DBG_ENABLE ( DBGLVL_LOG | DBGLVL_EXTRA ); return 0; } /** * Start firmware running * * @v hermon Hermon device * @ret rc Return status code */ static int hermon_start_firmware ( struct hermon *hermon ) { struct hermonprm_query_fw fw; unsigned int fw_pages; size_t fw_size; physaddr_t fw_base; int rc; /* Get firmware parameters */ if ( ( rc = hermon_cmd_query_fw ( hermon, &fw ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not query firmware: %s\n", hermon, strerror ( rc ) ); goto err_query_fw; } DBGC ( hermon, "Hermon %p firmware version %d.%d.%d\n", hermon, MLX_GET ( &fw, fw_rev_major ), MLX_GET ( &fw, fw_rev_minor ), MLX_GET ( &fw, fw_rev_subminor ) ); fw_pages = MLX_GET ( &fw, fw_pages ); DBGC ( hermon, "Hermon %p requires %d pages (%d kB) for firmware\n", hermon, fw_pages, ( fw_pages * ( HERMON_PAGE_SIZE / 1024 ) ) ); /* Allocate firmware pages and map firmware area */ fw_size = ( fw_pages * HERMON_PAGE_SIZE ); hermon->firmware_area = umalloc ( fw_size ); if ( ! hermon->firmware_area ) { rc = -ENOMEM; goto err_alloc_fa; } fw_base = user_to_phys ( hermon->firmware_area, 0 ); DBGC ( hermon, "Hermon %p firmware area at physical [%lx,%lx)\n", hermon, fw_base, ( fw_base + fw_size ) ); if ( ( rc = hermon_map_vpm ( hermon, hermon_cmd_map_fa, 0, fw_base, fw_size ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not map firmware: %s\n", hermon, strerror ( rc ) ); goto err_map_fa; } /* Start firmware */ if ( ( rc = hermon_cmd_run_fw ( hermon ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not run firmware: %s\n", hermon, strerror ( rc ) ); goto err_run_fw; } DBGC ( hermon, "Hermon %p firmware started\n", hermon ); return 0; err_run_fw: err_map_fa: hermon_cmd_unmap_fa ( hermon ); ufree ( hermon->firmware_area ); hermon->firmware_area = UNULL; err_alloc_fa: err_query_fw: return rc; } /** * Stop firmware running * * @v hermon Hermon device */ static void hermon_stop_firmware ( struct hermon *hermon ) { int rc; if ( ( rc = hermon_cmd_unmap_fa ( hermon ) ) != 0 ) { DBGC ( hermon, "Hermon %p FATAL could not stop firmware: %s\n", hermon, strerror ( rc ) ); /* Leak memory and return; at least we avoid corruption */ return; } ufree ( hermon->firmware_area ); hermon->firmware_area = UNULL; } /*************************************************************************** * * Infinihost Context Memory management * *************************************************************************** */ /** * Get device limits * * @v hermon Hermon device * @ret rc Return status code */ static int hermon_get_cap ( struct hermon *hermon ) { struct hermonprm_query_dev_cap dev_cap; int rc; if ( ( rc = hermon_cmd_query_dev_cap ( hermon, &dev_cap ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not get device limits: %s\n", hermon, strerror ( rc ) ); return rc; } hermon->cap.cmpt_entry_size = MLX_GET ( &dev_cap, c_mpt_entry_sz ); hermon->cap.reserved_qps = ( 1 << MLX_GET ( &dev_cap, log2_rsvd_qps ) ); hermon->cap.qpc_entry_size = MLX_GET ( &dev_cap, qpc_entry_sz ); hermon->cap.altc_entry_size = MLX_GET ( &dev_cap, altc_entry_sz ); hermon->cap.auxc_entry_size = MLX_GET ( &dev_cap, aux_entry_sz ); hermon->cap.reserved_srqs = ( 1 << MLX_GET ( &dev_cap, log2_rsvd_srqs ) ); hermon->cap.srqc_entry_size = MLX_GET ( &dev_cap, srq_entry_sz ); hermon->cap.reserved_cqs = ( 1 << MLX_GET ( &dev_cap, log2_rsvd_cqs ) ); hermon->cap.cqc_entry_size = MLX_GET ( &dev_cap, cqc_entry_sz ); hermon->cap.reserved_eqs = MLX_GET ( &dev_cap, num_rsvd_eqs ); hermon->cap.eqc_entry_size = MLX_GET ( &dev_cap, eqc_entry_sz ); hermon->cap.reserved_mtts = ( 1 << MLX_GET ( &dev_cap, log2_rsvd_mtts ) ); hermon->cap.mtt_entry_size = MLX_GET ( &dev_cap, mtt_entry_sz ); hermon->cap.reserved_mrws = ( 1 << MLX_GET ( &dev_cap, log2_rsvd_mrws ) ); hermon->cap.dmpt_entry_size = MLX_GET ( &dev_cap, d_mpt_entry_sz ); hermon->cap.reserved_uars = MLX_GET ( &dev_cap, num_rsvd_uars ); hermon->cap.num_ports = MLX_GET ( &dev_cap, num_ports ); hermon->cap.dpdp = MLX_GET ( &dev_cap, dpdp ); /* Sanity check */ if ( hermon->cap.num_ports > HERMON_MAX_PORTS ) { DBGC ( hermon, "Hermon %p has %d ports (only %d supported)\n", hermon, hermon->cap.num_ports, HERMON_MAX_PORTS ); hermon->cap.num_ports = HERMON_MAX_PORTS; } return 0; } /** * Get ICM usage * * @v log_num_entries Log2 of the number of entries * @v entry_size Entry size * @ret usage Usage size in ICM */ static size_t icm_usage ( unsigned int log_num_entries, size_t entry_size ) { size_t usage; usage = ( ( 1 << log_num_entries ) * entry_size ); usage = ( ( usage + HERMON_PAGE_SIZE - 1 ) & ~( HERMON_PAGE_SIZE - 1 ) ); return usage; } /** * Allocate ICM * * @v hermon Hermon device * @v init_hca INIT_HCA structure to fill in * @ret rc Return status code */ static int hermon_alloc_icm ( struct hermon *hermon, struct hermonprm_init_hca *init_hca ) { struct hermonprm_scalar_parameter icm_size; struct hermonprm_scalar_parameter icm_aux_size; uint64_t icm_offset = 0; unsigned int log_num_qps, log_num_srqs, log_num_cqs, log_num_eqs; unsigned int log_num_mtts, log_num_mpts; size_t cmpt_max_len; size_t qp_cmpt_len, srq_cmpt_len, cq_cmpt_len, eq_cmpt_len; size_t icm_len, icm_aux_len; physaddr_t icm_phys; int i; int rc; /* * Start by carving up the ICM virtual address space * */ /* Calculate number of each object type within ICM */ log_num_qps = fls ( hermon->cap.reserved_qps + HERMON_RSVD_SPECIAL_QPS + HERMON_MAX_QPS - 1 ); log_num_srqs = fls ( hermon->cap.reserved_srqs - 1 ); log_num_cqs = fls ( hermon->cap.reserved_cqs + HERMON_MAX_CQS - 1 ); log_num_eqs = fls ( hermon->cap.reserved_eqs + HERMON_MAX_EQS - 1 ); log_num_mtts = fls ( hermon->cap.reserved_mtts + HERMON_MAX_MTTS - 1 ); /* ICM starts with the cMPT tables, which are sparse */ cmpt_max_len = ( HERMON_CMPT_MAX_ENTRIES * ( ( uint64_t ) hermon->cap.cmpt_entry_size ) ); qp_cmpt_len = icm_usage ( log_num_qps, hermon->cap.cmpt_entry_size ); hermon->icm_map[HERMON_ICM_QP_CMPT].offset = icm_offset; hermon->icm_map[HERMON_ICM_QP_CMPT].len = qp_cmpt_len; icm_offset += cmpt_max_len; srq_cmpt_len = icm_usage ( log_num_srqs, hermon->cap.cmpt_entry_size ); hermon->icm_map[HERMON_ICM_SRQ_CMPT].offset = icm_offset; hermon->icm_map[HERMON_ICM_SRQ_CMPT].len = srq_cmpt_len; icm_offset += cmpt_max_len; cq_cmpt_len = icm_usage ( log_num_cqs, hermon->cap.cmpt_entry_size ); hermon->icm_map[HERMON_ICM_CQ_CMPT].offset = icm_offset; hermon->icm_map[HERMON_ICM_CQ_CMPT].len = cq_cmpt_len; icm_offset += cmpt_max_len; eq_cmpt_len = icm_usage ( log_num_eqs, hermon->cap.cmpt_entry_size ); hermon->icm_map[HERMON_ICM_EQ_CMPT].offset = icm_offset; hermon->icm_map[HERMON_ICM_EQ_CMPT].len = eq_cmpt_len; icm_offset += cmpt_max_len; hermon->icm_map[HERMON_ICM_OTHER].offset = icm_offset; /* Queue pair contexts */ MLX_FILL_1 ( init_hca, 12, qpc_eec_cqc_eqc_rdb_parameters.qpc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_2 ( init_hca, 13, qpc_eec_cqc_eqc_rdb_parameters.qpc_base_addr_l, ( icm_offset >> 5 ), qpc_eec_cqc_eqc_rdb_parameters.log_num_of_qp, log_num_qps ); DBGC ( hermon, "Hermon %p ICM QPC base = %llx\n", hermon, icm_offset ); icm_offset += icm_usage ( log_num_qps, hermon->cap.qpc_entry_size ); /* Extended alternate path contexts */ MLX_FILL_1 ( init_hca, 24, qpc_eec_cqc_eqc_rdb_parameters.altc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_1 ( init_hca, 25, qpc_eec_cqc_eqc_rdb_parameters.altc_base_addr_l, icm_offset ); DBGC ( hermon, "Hermon %p ICM ALTC base = %llx\n", hermon, icm_offset); icm_offset += icm_usage ( log_num_qps, hermon->cap.altc_entry_size ); /* Extended auxiliary contexts */ MLX_FILL_1 ( init_hca, 28, qpc_eec_cqc_eqc_rdb_parameters.auxc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_1 ( init_hca, 29, qpc_eec_cqc_eqc_rdb_parameters.auxc_base_addr_l, icm_offset ); DBGC ( hermon, "Hermon %p ICM AUXC base = %llx\n", hermon, icm_offset); icm_offset += icm_usage ( log_num_qps, hermon->cap.auxc_entry_size ); /* Shared receive queue contexts */ MLX_FILL_1 ( init_hca, 18, qpc_eec_cqc_eqc_rdb_parameters.srqc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_2 ( init_hca, 19, qpc_eec_cqc_eqc_rdb_parameters.srqc_base_addr_l, ( icm_offset >> 5 ), qpc_eec_cqc_eqc_rdb_parameters.log_num_of_srq, log_num_srqs ); DBGC ( hermon, "Hermon %p ICM SRQC base = %llx\n", hermon, icm_offset); icm_offset += icm_usage ( log_num_srqs, hermon->cap.srqc_entry_size ); /* Completion queue contexts */ MLX_FILL_1 ( init_hca, 20, qpc_eec_cqc_eqc_rdb_parameters.cqc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_2 ( init_hca, 21, qpc_eec_cqc_eqc_rdb_parameters.cqc_base_addr_l, ( icm_offset >> 5 ), qpc_eec_cqc_eqc_rdb_parameters.log_num_of_cq, log_num_cqs ); DBGC ( hermon, "Hermon %p ICM CQC base = %llx\n", hermon, icm_offset ); icm_offset += icm_usage ( log_num_cqs, hermon->cap.cqc_entry_size ); /* Event queue contexts */ MLX_FILL_1 ( init_hca, 32, qpc_eec_cqc_eqc_rdb_parameters.eqc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_2 ( init_hca, 33, qpc_eec_cqc_eqc_rdb_parameters.eqc_base_addr_l, ( icm_offset >> 5 ), qpc_eec_cqc_eqc_rdb_parameters.log_num_of_eq, log_num_eqs ); DBGC ( hermon, "Hermon %p ICM EQC base = %llx\n", hermon, icm_offset ); icm_offset += icm_usage ( log_num_eqs, hermon->cap.eqc_entry_size ); /* Memory translation table */ MLX_FILL_1 ( init_hca, 64, tpt_parameters.mtt_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_1 ( init_hca, 65, tpt_parameters.mtt_base_addr_l, icm_offset ); DBGC ( hermon, "Hermon %p ICM MTT base = %llx\n", hermon, icm_offset ); icm_offset += icm_usage ( log_num_mtts, hermon->cap.mtt_entry_size ); /* Memory protection table */ log_num_mpts = fls ( hermon->cap.reserved_mrws + 1 - 1 ); MLX_FILL_1 ( init_hca, 60, tpt_parameters.dmpt_base_adr_h, ( icm_offset >> 32 ) ); MLX_FILL_1 ( init_hca, 61, tpt_parameters.dmpt_base_adr_l, icm_offset ); MLX_FILL_1 ( init_hca, 62, tpt_parameters.log_dmpt_sz, log_num_mpts ); DBGC ( hermon, "Hermon %p ICM DMPT base = %llx\n", hermon, icm_offset); icm_offset += icm_usage ( log_num_mpts, hermon->cap.dmpt_entry_size ); /* Multicast table */ MLX_FILL_1 ( init_hca, 48, multicast_parameters.mc_base_addr_h, ( icm_offset >> 32 ) ); MLX_FILL_1 ( init_hca, 49, multicast_parameters.mc_base_addr_l, icm_offset ); MLX_FILL_1 ( init_hca, 52, multicast_parameters.log_mc_table_entry_sz, fls ( sizeof ( struct hermonprm_mcg_entry ) - 1 ) ); MLX_FILL_1 ( init_hca, 53, multicast_parameters.log_mc_table_hash_sz, 3 ); MLX_FILL_1 ( init_hca, 54, multicast_parameters.log_mc_table_sz, 3 ); DBGC ( hermon, "Hermon %p ICM MC base = %llx\n", hermon, icm_offset ); icm_offset += ( ( 8 * sizeof ( struct hermonprm_mcg_entry ) + HERMON_PAGE_SIZE - 1 ) & ~( HERMON_PAGE_SIZE - 1 ) ); hermon->icm_map[HERMON_ICM_OTHER].len = ( icm_offset - hermon->icm_map[HERMON_ICM_OTHER].offset ); /* * Allocate and map physical memory for (portions of) ICM * * Map is: * ICM AUX area (aligned to its own size) * cMPT areas * Other areas */ /* Calculate physical memory required for ICM */ icm_len = 0; for ( i = 0 ; i < HERMON_ICM_NUM_REGIONS ; i++ ) { icm_len += hermon->icm_map[i].len; } /* Get ICM auxiliary area size */ memset ( &icm_size, 0, sizeof ( icm_size ) ); MLX_FILL_1 ( &icm_size, 0, value_hi, ( icm_offset >> 32 ) ); MLX_FILL_1 ( &icm_size, 1, value, icm_offset ); if ( ( rc = hermon_cmd_set_icm_size ( hermon, &icm_size, &icm_aux_size ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not set ICM size: %s\n", hermon, strerror ( rc ) ); goto err_set_icm_size; } icm_aux_len = ( MLX_GET ( &icm_aux_size, value ) * HERMON_PAGE_SIZE ); /* Allocate ICM data and auxiliary area */ DBGC ( hermon, "Hermon %p requires %zd kB ICM and %zd kB AUX ICM\n", hermon, ( icm_len / 1024 ), ( icm_aux_len / 1024 ) ); hermon->icm = umalloc ( icm_aux_len + icm_len ); if ( ! hermon->icm ) { rc = -ENOMEM; goto err_alloc; } icm_phys = user_to_phys ( hermon->icm, 0 ); /* Map ICM auxiliary area */ DBGC ( hermon, "Hermon %p mapping ICM AUX => %08lx\n", hermon, icm_phys ); if ( ( rc = hermon_map_vpm ( hermon, hermon_cmd_map_icm_aux, 0, icm_phys, icm_aux_len ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not map AUX ICM: %s\n", hermon, strerror ( rc ) ); goto err_map_icm_aux; } icm_phys += icm_aux_len; /* MAP ICM area */ for ( i = 0 ; i < HERMON_ICM_NUM_REGIONS ; i++ ) { DBGC ( hermon, "Hermon %p mapping ICM %llx+%zx => %08lx\n", hermon, hermon->icm_map[i].offset, hermon->icm_map[i].len, icm_phys ); if ( ( rc = hermon_map_vpm ( hermon, hermon_cmd_map_icm, hermon->icm_map[i].offset, icm_phys, hermon->icm_map[i].len ) ) != 0 ){ DBGC ( hermon, "Hermon %p could not map ICM: %s\n", hermon, strerror ( rc ) ); goto err_map_icm; } icm_phys += hermon->icm_map[i].len; } return 0; err_map_icm: assert ( i == 0 ); /* We don't handle partial failure at present */ err_map_icm_aux: hermon_cmd_unmap_icm_aux ( hermon ); ufree ( hermon->icm ); hermon->icm = UNULL; err_alloc: err_set_icm_size: return rc; } /** * Free ICM * * @v hermon Hermon device */ static void hermon_free_icm ( struct hermon *hermon ) { struct hermonprm_scalar_parameter unmap_icm; int i; for ( i = ( HERMON_ICM_NUM_REGIONS - 1 ) ; i >= 0 ; i-- ) { memset ( &unmap_icm, 0, sizeof ( unmap_icm ) ); MLX_FILL_1 ( &unmap_icm, 0, value_hi, ( hermon->icm_map[i].offset >> 32 ) ); MLX_FILL_1 ( &unmap_icm, 1, value, hermon->icm_map[i].offset ); hermon_cmd_unmap_icm ( hermon, ( 1 << fls ( ( hermon->icm_map[i].len / HERMON_PAGE_SIZE ) - 1)), &unmap_icm ); } hermon_cmd_unmap_icm_aux ( hermon ); ufree ( hermon->icm ); hermon->icm = UNULL; } /*************************************************************************** * * PCI interface * *************************************************************************** */ /** * Set up memory protection table * * @v hermon Hermon device * @ret rc Return status code */ static int hermon_setup_mpt ( struct hermon *hermon ) { struct hermonprm_mpt mpt; uint32_t key; int rc; /* Derive key */ key = ( hermon->cap.reserved_mrws | HERMON_MKEY_PREFIX ); hermon->lkey = ( ( key << 8 ) | ( key >> 24 ) ); /* Initialise memory protection table */ memset ( &mpt, 0, sizeof ( mpt ) ); MLX_FILL_7 ( &mpt, 0, atomic, 1, rw, 1, rr, 1, lw, 1, lr, 1, pa, 1, r_w, 1 ); MLX_FILL_1 ( &mpt, 2, mem_key, key ); MLX_FILL_1 ( &mpt, 3, pd, HERMON_GLOBAL_PD ); MLX_FILL_1 ( &mpt, 10, len64, 1 ); if ( ( rc = hermon_cmd_sw2hw_mpt ( hermon, hermon->cap.reserved_mrws, &mpt ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not set up MPT: %s\n", hermon, strerror ( rc ) ); return rc; } return 0; } /** * Configure special queue pairs * * @v hermon Hermon device * @ret rc Return status code */ static int hermon_configure_special_qps ( struct hermon *hermon ) { int rc; /* Special QP block must be aligned on its own size */ hermon->special_qpn_base = ( ( hermon->cap.reserved_qps + HERMON_NUM_SPECIAL_QPS - 1 ) & ~( HERMON_NUM_SPECIAL_QPS - 1 ) ); hermon->qpn_base = ( hermon->special_qpn_base + HERMON_NUM_SPECIAL_QPS ); DBGC ( hermon, "Hermon %p special QPs at [%lx,%lx]\n", hermon, hermon->special_qpn_base, ( hermon->qpn_base - 1 ) ); /* Issue command to configure special QPs */ if ( ( rc = hermon_cmd_conf_special_qp ( hermon, 0x00, hermon->special_qpn_base ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not configure special QPs: " "%s\n", hermon, strerror ( rc ) ); return rc; } return 0; } /** * Reset device * * @v hermon Hermon device * @v pci PCI device */ static void hermon_reset ( struct hermon *hermon, struct pci_device *pci ) { struct pci_config_backup backup; static const uint8_t backup_exclude[] = PCI_CONFIG_BACKUP_EXCLUDE ( 0x58, 0x5c ); pci_backup ( pci, &backup, backup_exclude ); writel ( HERMON_RESET_MAGIC, ( hermon->config + HERMON_RESET_OFFSET ) ); mdelay ( HERMON_RESET_WAIT_TIME_MS ); pci_restore ( pci, &backup, backup_exclude ); } /** * Probe PCI device * * @v pci PCI device * @v id PCI ID * @ret rc Return status code */ static int hermon_probe ( struct pci_device *pci, const struct pci_device_id *id __unused ) { struct hermon *hermon; struct ib_device *ibdev; struct hermonprm_init_hca init_hca; unsigned int i; int rc; /* Allocate Hermon device */ hermon = zalloc ( sizeof ( *hermon ) ); if ( ! hermon ) { rc = -ENOMEM; goto err_alloc_hermon; } pci_set_drvdata ( pci, hermon ); /* Fix up PCI device */ adjust_pci_device ( pci ); /* Get PCI BARs */ hermon->config = ioremap ( pci_bar_start ( pci, HERMON_PCI_CONFIG_BAR), HERMON_PCI_CONFIG_BAR_SIZE ); hermon->uar = ioremap ( pci_bar_start ( pci, HERMON_PCI_UAR_BAR ), HERMON_UAR_NON_EQ_PAGE * HERMON_PAGE_SIZE ); /* Reset device */ hermon_reset ( hermon, pci ); /* Allocate space for mailboxes */ hermon->mailbox_in = malloc_dma ( HERMON_MBOX_SIZE, HERMON_MBOX_ALIGN ); if ( ! hermon->mailbox_in ) { rc = -ENOMEM; goto err_mailbox_in; } hermon->mailbox_out = malloc_dma ( HERMON_MBOX_SIZE, HERMON_MBOX_ALIGN ); if ( ! hermon->mailbox_out ) { rc = -ENOMEM; goto err_mailbox_out; } /* Start firmware */ if ( ( rc = hermon_start_firmware ( hermon ) ) != 0 ) goto err_start_firmware; /* Get device limits */ if ( ( rc = hermon_get_cap ( hermon ) ) != 0 ) goto err_get_cap; /* Allocate Infiniband devices */ for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) { ibdev = alloc_ibdev ( 0 ); if ( ! ibdev ) { rc = -ENOMEM; goto err_alloc_ibdev; } hermon->ibdev[i] = ibdev; ibdev->op = &hermon_ib_operations; ibdev->dev = &pci->dev; ibdev->port = ( HERMON_PORT_BASE + i ); ib_set_drvdata ( ibdev, hermon ); } /* Allocate ICM */ memset ( &init_hca, 0, sizeof ( init_hca ) ); if ( ( rc = hermon_alloc_icm ( hermon, &init_hca ) ) != 0 ) goto err_alloc_icm; /* Initialise HCA */ MLX_FILL_1 ( &init_hca, 0, version, 0x02 /* "Must be 0x02" */ ); MLX_FILL_1 ( &init_hca, 5, udp, 1 ); MLX_FILL_1 ( &init_hca, 74, uar_parameters.log_max_uars, 8 ); if ( ( rc = hermon_cmd_init_hca ( hermon, &init_hca ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not initialise HCA: %s\n", hermon, strerror ( rc ) ); goto err_init_hca; } /* Set up memory protection */ if ( ( rc = hermon_setup_mpt ( hermon ) ) != 0 ) goto err_setup_mpt; for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) hermon->ibdev[i]->rdma_key = hermon->lkey; /* Set up event queue */ if ( ( rc = hermon_create_eq ( hermon ) ) != 0 ) goto err_create_eq; /* Configure special QPs */ if ( ( rc = hermon_configure_special_qps ( hermon ) ) != 0 ) goto err_conf_special_qps; /* Update IPoIB MAC address */ for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) { ib_smc_update ( hermon->ibdev[i], hermon_mad ); } /* Register Infiniband devices */ for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) { if ( ( rc = register_ibdev ( hermon->ibdev[i] ) ) != 0 ) { DBGC ( hermon, "Hermon %p could not register IB " "device: %s\n", hermon, strerror ( rc ) ); goto err_register_ibdev; } } return 0; i = hermon->cap.num_ports; err_register_ibdev: for ( i-- ; ( signed int ) i >= 0 ; i-- ) unregister_ibdev ( hermon->ibdev[i] ); err_conf_special_qps: hermon_destroy_eq ( hermon ); err_create_eq: err_setup_mpt: hermon_cmd_close_hca ( hermon ); err_init_hca: hermon_free_icm ( hermon ); err_alloc_icm: i = hermon->cap.num_ports; err_alloc_ibdev: for ( i-- ; ( signed int ) i >= 0 ; i-- ) ibdev_put ( hermon->ibdev[i] ); err_get_cap: hermon_stop_firmware ( hermon ); err_start_firmware: free_dma ( hermon->mailbox_out, HERMON_MBOX_SIZE ); err_mailbox_out: free_dma ( hermon->mailbox_in, HERMON_MBOX_SIZE ); err_mailbox_in: free ( hermon ); err_alloc_hermon: return rc; } /** * Remove PCI device * * @v pci PCI device */ static void hermon_remove ( struct pci_device *pci ) { struct hermon *hermon = pci_get_drvdata ( pci ); int i; for ( i = ( hermon->cap.num_ports - 1 ) ; i >= 0 ; i-- ) unregister_ibdev ( hermon->ibdev[i] ); hermon_destroy_eq ( hermon ); hermon_cmd_close_hca ( hermon ); hermon_free_icm ( hermon ); hermon_stop_firmware ( hermon ); hermon_stop_firmware ( hermon ); free_dma ( hermon->mailbox_out, HERMON_MBOX_SIZE ); free_dma ( hermon->mailbox_in, HERMON_MBOX_SIZE ); for ( i = ( hermon->cap.num_ports - 1 ) ; i >= 0 ; i-- ) ibdev_put ( hermon->ibdev[i] ); free ( hermon ); } static struct pci_device_id hermon_nics[] = { PCI_ROM ( 0x15b3, 0x6340, "mt25408", "MT25408 HCA driver", 0 ), PCI_ROM ( 0x15b3, 0x634a, "mt25418", "MT25418 HCA driver", 0 ), PCI_ROM ( 0x15b3, 0x6732, "mt26418", "MT26418 HCA driver", 0 ), PCI_ROM ( 0x15b3, 0x673c, "mt26428", "MT26428 HCA driver", 0 ), }; struct pci_driver hermon_driver __pci_driver = { .ids = hermon_nics, .id_count = ( sizeof ( hermon_nics ) / sizeof ( hermon_nics[0] ) ), .probe = hermon_probe, .remove = hermon_remove, };