/* * Copyright(C) 2006 Cameron Rich * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Implements the RSA public encryption algorithm. Uses the bigint library to * perform its calculations. */ #include <stdio.h> #include <string.h> #include <time.h> #include <stdlib.h> #include "crypto.h" #ifdef CONFIG_BIGINT_CRT static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi); #endif void RSA_priv_key_new(RSA_CTX **ctx, const uint8_t *modulus, int mod_len, const uint8_t *pub_exp, int pub_len, const uint8_t *priv_exp, int priv_len #if CONFIG_BIGINT_CRT , const uint8_t *p, int p_len, const uint8_t *q, int q_len, const uint8_t *dP, int dP_len, const uint8_t *dQ, int dQ_len, const uint8_t *qInv, int qInv_len #endif ) { RSA_CTX *rsa_ctx; BI_CTX *bi_ctx; RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len); rsa_ctx = *ctx; bi_ctx = rsa_ctx->bi_ctx; rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len); bi_permanent(rsa_ctx->d); #ifdef CONFIG_BIGINT_CRT rsa_ctx->p = bi_import(bi_ctx, p, p_len); rsa_ctx->q = bi_import(bi_ctx, q, q_len); rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len); rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len); rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len); bi_permanent(rsa_ctx->dP); bi_permanent(rsa_ctx->dQ); bi_permanent(rsa_ctx->qInv); bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET); bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET); #endif } void RSA_pub_key_new(RSA_CTX **ctx, const uint8_t *modulus, int mod_len, const uint8_t *pub_exp, int pub_len) { RSA_CTX *rsa_ctx; BI_CTX *bi_ctx = bi_initialize(); *ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX)); rsa_ctx = *ctx; rsa_ctx->bi_ctx = bi_ctx; rsa_ctx->num_octets = (mod_len & 0xFFF0); rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len); bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET); rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len); bi_permanent(rsa_ctx->e); } /** * Free up any RSA context resources. */ void RSA_free(RSA_CTX *rsa_ctx) { BI_CTX *bi_ctx; if (rsa_ctx == NULL) /* deal with ptrs that are null */ return; bi_ctx = rsa_ctx->bi_ctx; bi_depermanent(rsa_ctx->e); bi_free(bi_ctx, rsa_ctx->e); bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET); if (rsa_ctx->d) { bi_depermanent(rsa_ctx->d); bi_free(bi_ctx, rsa_ctx->d); #ifdef CONFIG_BIGINT_CRT bi_depermanent(rsa_ctx->dP); bi_depermanent(rsa_ctx->dQ); bi_depermanent(rsa_ctx->qInv); bi_free(bi_ctx, rsa_ctx->dP); bi_free(bi_ctx, rsa_ctx->dQ); bi_free(bi_ctx, rsa_ctx->qInv); bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET); bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET); #endif } bi_terminate(bi_ctx); free(rsa_ctx); } /** * @brief Use PKCS1.5 for decryption/verification. * @param ctx [in] The context * @param in_data [in] The data to encrypt (must be < modulus size-11) * @param out_data [out] The encrypted data. * @param is_decryption [in] Decryption or verify operation. * @return The number of bytes that were originally encrypted. -1 on error. * @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125 */ int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data, int is_decryption) { int byte_size = ctx->num_octets; uint8_t *block; int i, size; bigint *decrypted_bi, *dat_bi; memset(out_data, 0, byte_size); /* initialise */ /* decrypt */ dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size); #ifdef CONFIG_SSL_CERT_VERIFICATION decrypted_bi = is_decryption ? /* decrypt or verify? */ RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi); #else /* always a decryption */ decrypted_bi = RSA_private(ctx, dat_bi); #endif /* convert to a normal block */ block = (uint8_t *)malloc(byte_size); bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size); i = 10; /* start at the first possible non-padded byte */ #ifdef CONFIG_SSL_CERT_VERIFICATION if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */ { while (block[i++] == 0xff && i < byte_size); if (block[i-2] != 0xff) i = byte_size; /*ensure size is 0 */ } else /* PKCS1.5 encryption padding is random */ #endif { while (block[i++] && i < byte_size); } size = byte_size - i; /* get only the bit we want */ if (size > 0) memcpy(out_data, &block[i], size); free(block); return size ? size : -1; } /** * Performs m = c^d mod n */ bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg) { #ifdef CONFIG_BIGINT_CRT return bi_crt(c, bi_msg); #else BI_CTX *ctx = c->bi_ctx; ctx->mod_offset = BIGINT_M_OFFSET; return bi_mod_power(ctx, bi_msg, c->d); #endif } #ifdef CONFIG_BIGINT_CRT /** * Use the Chinese Remainder Theorem to quickly perform RSA decrypts. * This should really be in bigint.c (and was at one stage), but needs * access to the RSA_CTX context... */ static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi) { BI_CTX *ctx = rsa->bi_ctx; bigint *m1, *m2, *h; /* Montgomery has a condition the 0 < x, y < m and these products violate * that condition. So disable Montgomery when using CRT */ #if defined(CONFIG_BIGINT_MONTGOMERY) ctx->use_classical = 1; #endif ctx->mod_offset = BIGINT_P_OFFSET; m1 = bi_mod_power(ctx, bi_copy(bi), rsa->dP); ctx->mod_offset = BIGINT_Q_OFFSET; m2 = bi_mod_power(ctx, bi, rsa->dQ); h = bi_subtract(ctx, bi_add(ctx, m1, rsa->p), bi_copy(m2), NULL); h = bi_multiply(ctx, h, rsa->qInv); ctx->mod_offset = BIGINT_P_OFFSET; h = bi_residue(ctx, h); #if defined(CONFIG_BIGINT_MONTGOMERY) ctx->use_classical = 0; /* reset for any further operation */ #endif return bi_add(ctx, m2, bi_multiply(ctx, rsa->q, h)); } #endif #ifdef CONFIG_SSL_FULL_MODE /** * Used for diagnostics. */ void RSA_print(const RSA_CTX *rsa_ctx) { if (rsa_ctx == NULL) return; printf("----------------- RSA DEBUG ----------------\n"); printf("Size:\t%d\n", rsa_ctx->num_octets); bi_print("Modulus", rsa_ctx->m); bi_print("Public Key", rsa_ctx->e); bi_print("Private Key", rsa_ctx->d); } #endif #ifdef CONFIG_SSL_CERT_VERIFICATION /** * Performs c = m^e mod n */ bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg) { c->bi_ctx->mod_offset = BIGINT_M_OFFSET; return bi_mod_power(c->bi_ctx, bi_msg, c->e); } /** * Use PKCS1.5 for encryption/signing. * see http://www.rsasecurity.com/rsalabs/node.asp?id=2125 */ int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len, uint8_t *out_data, int is_signing) { int byte_size = ctx->num_octets; int num_pads_needed = byte_size-in_len-3; bigint *dat_bi, *encrypt_bi; /* note: in_len+11 must be > byte_size */ out_data[0] = 0; /* ensure encryption block is < modulus */ if (is_signing) { out_data[1] = 1; /* PKCS1.5 signing pads with "0xff"'s */ memset(&out_data[2], 0xff, num_pads_needed); } else /* randomize the encryption padding with non-zero bytes */ { out_data[1] = 2; get_random_NZ(num_pads_needed, &out_data[2]); } out_data[2+num_pads_needed] = 0; memcpy(&out_data[3+num_pads_needed], in_data, in_len); /* now encrypt it */ dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size); encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi); bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size); return byte_size; } #if 0 /** * Take a signature and decrypt it. */ bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len, bigint *modulus, bigint *pub_exp) { uint8_t *block; int i, size; bigint *decrypted_bi, *dat_bi; bigint *bir = NULL; block = (uint8_t *)malloc(sig_len); /* decrypt */ dat_bi = bi_import(ctx, sig, sig_len); ctx->mod_offset = BIGINT_M_OFFSET; /* convert to a normal block */ decrypted_bi = bi_mod_power2(ctx, dat_bi, modulus, pub_exp); bi_export(ctx, decrypted_bi, block, sig_len); ctx->mod_offset = BIGINT_M_OFFSET; i = 10; /* start at the first possible non-padded byte */ while (block[i++] && i < sig_len); size = sig_len - i; /* get only the bit we want */ if (size > 0) { int len; const uint8_t *sig_ptr = x509_get_signature(&block[i], &len); if (sig_ptr) { bir = bi_import(ctx, sig_ptr, len); } } free(block); return bir; } #endif #endif /* CONFIG_SSL_CERT_VERIFICATION */