/* SHA512-based Unix crypt implementation. Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ #include <alloca.h> #include <endian.h> #include <errno.h> #include <limits.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <minmax.h> #include <sys/types.h> #include "xcrypt.h" #define MIN(x,y) min(x,y) #define MAX(x,y) max(x,y) /* Structure to save state of computation between the single steps. */ struct sha512_ctx { uint64_t H[8]; uint64_t total[2]; uint64_t buflen; char buffer[256]; /* NB: always correctly aligned for uint64_t. */ }; #if __BYTE_ORDER == __LITTLE_ENDIAN # define SWAP(n) \ (((n) << 56) \ | (((n) & 0xff00) << 40) \ | (((n) & 0xff0000) << 24) \ | (((n) & 0xff000000) << 8) \ | (((n) >> 8) & 0xff000000) \ | (((n) >> 24) & 0xff0000) \ | (((n) >> 40) & 0xff00) \ | ((n) >> 56)) #else # define SWAP(n) (n) #endif /* This array contains the bytes used to pad the buffer to the next 64-byte boundary. (FIPS 180-2:5.1.2) */ static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; /* Constants for SHA512 from FIPS 180-2:4.2.3. */ static const uint64_t K[80] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817) }; /* Process LEN bytes of BUFFER, accumulating context into CTX. It is assumed that LEN % 128 == 0. */ static void sha512_process_block(const void *buffer, size_t len, struct sha512_ctx *ctx) { unsigned int t; const uint64_t *words = buffer; size_t nwords = len / sizeof(uint64_t); uint64_t a = ctx->H[0]; uint64_t b = ctx->H[1]; uint64_t c = ctx->H[2]; uint64_t d = ctx->H[3]; uint64_t e = ctx->H[4]; uint64_t f = ctx->H[5]; uint64_t g = ctx->H[6]; uint64_t h = ctx->H[7]; /* First increment the byte count. FIPS 180-2 specifies the possible length of the file up to 2^128 bits. Here we only compute the number of bytes. Do a double word increment. */ ctx->total[0] += len; if (ctx->total[0] < len) ++ctx->total[1]; /* Process all bytes in the buffer with 128 bytes in each round of the loop. */ while (nwords > 0) { uint64_t W[80]; uint64_t a_save = a; uint64_t b_save = b; uint64_t c_save = c; uint64_t d_save = d; uint64_t e_save = e; uint64_t f_save = f; uint64_t g_save = g; uint64_t h_save = h; /* Operators defined in FIPS 180-2:4.1.2. */ #define Ch(x, y, z) ((x & y) ^ (~x & z)) #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) #define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) #define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) #define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) /* It is unfortunate that C does not provide an operator for cyclic rotation. Hope the C compiler is smart enough. */ #define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ for (t = 0; t < 16; ++t) { W[t] = SWAP(*words); ++words; } for (t = 16; t < 80; ++t) W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ for (t = 0; t < 80; ++t) { uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; uint64_t T2 = S0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } /* Add the starting values of the context according to FIPS 180-2:6.3.2 step 4. */ a += a_save; b += b_save; c += c_save; d += d_save; e += e_save; f += f_save; g += g_save; h += h_save; /* Prepare for the next round. */ nwords -= 16; } /* Put checksum in context given as argument. */ ctx->H[0] = a; ctx->H[1] = b; ctx->H[2] = c; ctx->H[3] = d; ctx->H[4] = e; ctx->H[5] = f; ctx->H[6] = g; ctx->H[7] = h; } /* Initialize structure containing state of computation. (FIPS 180-2:5.3.3) */ static void sha512_init_ctx(struct sha512_ctx *ctx) { ctx->H[0] = UINT64_C(0x6a09e667f3bcc908); ctx->H[1] = UINT64_C(0xbb67ae8584caa73b); ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b); ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1); ctx->H[4] = UINT64_C(0x510e527fade682d1); ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f); ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b); ctx->H[7] = UINT64_C(0x5be0cd19137e2179); ctx->total[0] = ctx->total[1] = 0; ctx->buflen = 0; } /* Process the remaining bytes in the internal buffer and the usual prolog according to the standard and write the result to RESBUF. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void *sha512_finish_ctx(struct sha512_ctx *ctx, void *resbuf) { unsigned int i; /* Take yet unprocessed bytes into account. */ uint64_t bytes = ctx->buflen; size_t pad; /* Now count remaining bytes. */ ctx->total[0] += bytes; if (ctx->total[0] < bytes) ++ctx->total[1]; pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; memcpy(&ctx->buffer[bytes], fillbuf, pad); /* Put the 128-bit file length in *bits* at the end of the buffer. */ *(uint64_t *) & ctx->buffer[bytes + pad + 8] = SWAP(ctx->total[0] << 3); *(uint64_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 61)); /* Process last bytes. */ sha512_process_block(ctx->buffer, bytes + pad + 16, ctx); /* Put result from CTX in first 64 bytes following RESBUF. */ for (i = 0; i < 8; ++i) ((uint64_t *) resbuf)[i] = SWAP(ctx->H[i]); return resbuf; } static void sha512_process_bytes(const void *buffer, size_t len, struct sha512_ctx *ctx) { /* When we already have some bits in our internal buffer concatenate both inputs first. */ if (ctx->buflen != 0) { size_t left_over = ctx->buflen; size_t add = 256 - left_over > len ? len : 256 - left_over; memcpy(&ctx->buffer[left_over], buffer, add); ctx->buflen += add; if (ctx->buflen > 128) { sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx); ctx->buflen &= 127; /* The regions in the following copy operation cannot overlap. */ memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~127], ctx->buflen); } buffer = (const char *)buffer + add; len -= add; } /* Process available complete blocks. */ if (len >= 128) { #if !_STRING_ARCH_unaligned /* To check alignment gcc has an appropriate operator. Other compilers don't. */ # if __GNUC__ >= 2 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) # else # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0) # endif if (UNALIGNED_P(buffer)) while (len > 128) { sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128, ctx); buffer = (const char *)buffer + 128; len -= 128; } else #endif { sha512_process_block(buffer, len & ~127, ctx); buffer = (const char *)buffer + (len & ~127); len &= 127; } } /* Move remaining bytes into internal buffer. */ if (len > 0) { size_t left_over = ctx->buflen; memcpy(&ctx->buffer[left_over], buffer, len); left_over += len; if (left_over >= 128) { sha512_process_block(ctx->buffer, 128, ctx); left_over -= 128; memcpy(ctx->buffer, &ctx->buffer[128], left_over); } ctx->buflen = left_over; } } /* Define our magic string to mark salt for SHA512 "encryption" replacement. */ static const char sha512_salt_prefix[] = "$6$"; /* Prefix for optional rounds specification. */ static const char sha512_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16U /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000UL /* Minimum number of rounds. */ #define ROUNDS_MIN 1000UL /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999UL /* Table with characters for base64 transformation. */ static const char b64t[64] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; static char *sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen) { unsigned char alt_result[64] __attribute__ ((__aligned__(__alignof__(uint64_t)))); unsigned char temp_result[64] __attribute__ ((__aligned__(__alignof__(uint64_t)))); struct sha512_ctx ctx; struct sha512_ctx alt_ctx; size_t salt_len; size_t key_len; size_t cnt; char *cp; char *copied_key = NULL; char *copied_salt = NULL; char *p_bytes; char *s_bytes; /* Default number of rounds. */ size_t rounds = ROUNDS_DEFAULT; bool rounds_custom = false; /* Find beginning of salt string. The prefix should normally always be present. Just in case it is not. */ if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha512_salt_prefix) - 1; if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0) { const char *num = salt + sizeof(sha512_rounds_prefix) - 1; char *endp; unsigned long int srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); if ((key - (char *)0) % __alignof__(uint64_t) != 0) { char *tmp = (char *)alloca(key_len + __alignof__(uint64_t)); key = copied_key = memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *)0) % __alignof__(uint64_t), key, key_len); } if ((salt - (char *)0) % __alignof__(uint64_t) != 0) { char *tmp = (char *)alloca(salt_len + __alignof__(uint64_t)); salt = copied_salt = memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *)0) % __alignof__(uint64_t), salt, salt_len); } /* Prepare for the real work. */ sha512_init_ctx(&ctx); /* Add the key string. */ sha512_process_bytes(key, key_len, &ctx); /* The last part is the salt string. This must be at most 8 characters and it ends at the first `$' character (for compatibility with existing implementations). */ sha512_process_bytes(salt, salt_len, &ctx); /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The final result will be added to the first context. */ sha512_init_ctx(&alt_ctx); /* Add key. */ sha512_process_bytes(key, key_len, &alt_ctx); /* Add salt. */ sha512_process_bytes(salt, salt_len, &alt_ctx); /* Add key again. */ sha512_process_bytes(key, key_len, &alt_ctx); /* Now get result of this (64 bytes) and add it to the other context. */ sha512_finish_ctx(&alt_ctx, alt_result); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 64; cnt -= 64) sha512_process_bytes(alt_result, 64, &ctx); sha512_process_bytes(alt_result, cnt, &ctx); /* Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) sha512_process_bytes(alt_result, 64, &ctx); else sha512_process_bytes(key, key_len, &ctx); /* Create intermediate result. */ sha512_finish_ctx(&ctx, alt_result); /* Start computation of P byte sequence. */ sha512_init_ctx(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) sha512_process_bytes(key, key_len, &alt_ctx); /* Finish the digest. */ sha512_finish_ctx(&alt_ctx, temp_result); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 64; cnt -= 64) cp = mempcpy(cp, temp_result, 64); memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ sha512_init_ctx(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < (size_t)16 + alt_result[0]; ++cnt) sha512_process_bytes(salt, salt_len, &alt_ctx); /* Finish the digest. */ sha512_finish_ctx(&alt_ctx, temp_result); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 64; cnt -= 64) cp = mempcpy(cp, temp_result, 64); memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA512 to burn CPU cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ sha512_init_ctx(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) sha512_process_bytes(p_bytes, key_len, &ctx); else sha512_process_bytes(alt_result, 64, &ctx); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) sha512_process_bytes(s_bytes, salt_len, &ctx); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) sha512_process_bytes(p_bytes, key_len, &ctx); /* Add key or last result. */ if ((cnt & 1) != 0) sha512_process_bytes(alt_result, 64, &ctx); else sha512_process_bytes(p_bytes, key_len, &ctx); /* Create intermediate result. */ sha512_finish_ctx(&ctx, alt_result); } /* Now we can construct the result string. It consists of three parts. */ cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); buflen -= sizeof(sha512_salt_prefix) - 1; if (rounds_custom) { int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha512_rounds_prefix, rounds); cp += n; buflen -= n; } cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); buflen -= MIN((size_t) MAX(0, buflen), salt_len); if (buflen > 0) { *cp++ = '$'; --buflen; } #define b64_from_24bit(B2, B1, B0, N) \ do { \ unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ int n = (N); \ while (n-- > 0 && buflen > 0) \ { \ *cp++ = b64t[w & 0x3f]; \ --buflen; \ w >>= 6; \ } \ } while (0) b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4); b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4); b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4); b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4); b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4); b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4); b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4); b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4); b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4); b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4); b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4); b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4); b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4); b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4); b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4); b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4); b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4); b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4); b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4); b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4); b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4); b64_from_24bit(0, 0, alt_result[63], 2); if (buflen <= 0) { errno = ERANGE; buffer = NULL; } else *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps cannot get any information. We do it in this way to clear correct_words[] inside the SHA512 implementation as well. */ sha512_init_ctx(&ctx); sha512_finish_ctx(&ctx, alt_result); memset(temp_result, '\0', sizeof(temp_result)); memset(p_bytes, '\0', key_len); memset(s_bytes, '\0', salt_len); memset(&ctx, '\0', sizeof(ctx)); memset(&alt_ctx, '\0', sizeof(alt_ctx)); if (copied_key != NULL) memset(copied_key, '\0', key_len); if (copied_salt != NULL) memset(copied_salt, '\0', salt_len); return buffer; } /* This entry point is equivalent to the `crypt' function in Unix libcs. */ char *sha512_crypt(const char *key, const char *salt) { /* We don't want to have an arbitrary limit in the size of the password. We can compute an upper bound for the size of the result in advance and so we can prepare the buffer we pass to `sha512_crypt_r'. */ static char *buffer; static int buflen; int needed = (sizeof(sha512_salt_prefix) - 1 + sizeof(sha512_rounds_prefix) + 9 + 1 + strlen(salt) + 1 + 86 + 1); if (buflen < needed) { char *new_buffer = (char *)realloc(buffer, needed); if (new_buffer == NULL) return NULL; buffer = new_buffer; buflen = needed; } return sha512_crypt_r(key, salt, buffer, buflen); } #ifdef TEST static const struct { const char *input; const char result[64]; } tests[] = { /* Test vectors from FIPS 180-2: appendix C.1. */ { "abc", "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f"}, /* Test vectors from FIPS 180-2: appendix C.2. */ { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09"}, /* Test vectors from the NESSIE project. */ { "", "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e"}, { "a", "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75"}, { "message digest", "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c"}, { "abcdefghijklmnopqrstuvwxyz", "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1"}, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45"}, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94"}, { "123456789012345678901234567890123456789012345678901234567890" "12345678901234567890", "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43"} }; #define ntests (sizeof (tests) / sizeof (tests[0])) static const struct { const char *salt; const char *input; const char *expected; } tests2[] = { { "$6$saltstring", "Hello world!", "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"}, { "$6$rounds=10000$saltstringsaltstring", "Hello world!", "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v."}, { "$6$rounds=5000$toolongsaltstring", "This is just a test", "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0"}, { "$6$rounds=1400$anotherlongsaltstring", "a very much longer text to encrypt. This one even stretches over more" "than one line.", "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1"}, { "$6$rounds=77777$short", "we have a short salt string but not a short password", "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0"}, { "$6$rounds=123456$asaltof16chars..", "a short string", "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1"}, { "$6$rounds=10$roundstoolow", "the minimum number is still observed", "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX."},}; #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) int main(void) { struct sha512_ctx ctx; char sum[64]; int result = 0; int cnt; for (cnt = 0; cnt < (int)ntests; ++cnt) { sha512_init_ctx(&ctx); sha512_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); sha512_finish_ctx(&ctx, sum); if (memcmp(tests[cnt].result, sum, 64) != 0) { printf("test %d run %d failed\n", cnt, 1); result = 1; } sha512_init_ctx(&ctx); for (int i = 0; tests[cnt].input[i] != '\0'; ++i) sha512_process_bytes(&tests[cnt].input[i], 1, &ctx); sha512_finish_ctx(&ctx, sum); if (memcmp(tests[cnt].result, sum, 64) != 0) { printf("test %d run %d failed\n", cnt, 2); result = 1; } } /* Test vector from FIPS 180-2: appendix C.3. */ char buf[1000]; memset(buf, 'a', sizeof(buf)); sha512_init_ctx(&ctx); for (int i = 0; i < 1000; ++i) sha512_process_bytes(buf, sizeof(buf), &ctx); sha512_finish_ctx(&ctx, sum); static const char expected[64] = "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; if (memcmp(expected, sum, 64) != 0) { printf("test %d failed\n", cnt); result = 1; } for (cnt = 0; cnt < ntests2; ++cnt) { char *cp = sha512_crypt(tests2[cnt].input, tests2[cnt].salt); if (strcmp(cp, tests2[cnt].expected) != 0) { printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); result = 1; } } if (result == 0) puts("all tests OK"); return result; } #endif