//===- subzero/src/IceTargetLoweringX8664.cpp - x86-64 lowering -----------===// // // The Subzero Code Generator // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Implements the TargetLoweringX8664 class, which consists almost /// entirely of the lowering sequence for each high-level instruction. /// //===----------------------------------------------------------------------===// #include "IceTargetLoweringX8664.h" #include "IceDefs.h" #include "IceTargetLoweringX8664Traits.h" namespace X8664 { std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) { return ::Ice::X8664::TargetX8664::create(Func); } std::unique_ptr<::Ice::TargetDataLowering> createTargetDataLowering(::Ice::GlobalContext *Ctx) { return ::Ice::X8664::TargetDataX86<::Ice::X8664::TargetX8664Traits>::create( Ctx); } std::unique_ptr<::Ice::TargetHeaderLowering> createTargetHeaderLowering(::Ice::GlobalContext *Ctx) { return ::Ice::X8664::TargetHeaderX86::create(Ctx); } void staticInit(::Ice::GlobalContext *Ctx) { ::Ice::X8664::TargetX8664::staticInit(Ctx); } bool shouldBePooled(const class ::Ice::Constant *C) { return ::Ice::X8664::TargetX8664::shouldBePooled(C); } ::Ice::Type getPointerType() { return ::Ice::X8664::TargetX8664::getPointerType(); } } // end of namespace X8664 namespace Ice { namespace X8664 { //------------------------------------------------------------------------------ // ______ ______ ______ __ ______ ______ // /\__ _\ /\ == \ /\ __ \ /\ \ /\__ _\ /\ ___\ // \/_/\ \/ \ \ __< \ \ __ \ \ \ \ \/_/\ \/ \ \___ \ // \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_\ \ \_\ \/\_____\ // \/_/ \/_/ /_/ \/_/\/_/ \/_/ \/_/ \/_____/ // //------------------------------------------------------------------------------ const TargetX8664Traits::TableFcmpType TargetX8664Traits::TableFcmp[] = { #define X(val, dflt, swapS, C1, C2, swapV, pred) \ { \ dflt, swapS, X8664::Traits::Cond::C1, X8664::Traits::Cond::C2, swapV, \ X8664::Traits::Cond::pred \ } \ , FCMPX8664_TABLE #undef X }; const size_t TargetX8664Traits::TableFcmpSize = llvm::array_lengthof(TableFcmp); const TargetX8664Traits::TableIcmp32Type TargetX8664Traits::TableIcmp32[] = { #define X(val, C_32, C1_64, C2_64, C3_64) \ { X8664::Traits::Cond::C_32 } \ , ICMPX8664_TABLE #undef X }; const size_t TargetX8664Traits::TableIcmp32Size = llvm::array_lengthof(TableIcmp32); const TargetX8664Traits::TableIcmp64Type TargetX8664Traits::TableIcmp64[] = { #define X(val, C_32, C1_64, C2_64, C3_64) \ { \ X8664::Traits::Cond::C1_64, X8664::Traits::Cond::C2_64, \ X8664::Traits::Cond::C3_64 \ } \ , ICMPX8664_TABLE #undef X }; const size_t TargetX8664Traits::TableIcmp64Size = llvm::array_lengthof(TableIcmp64); const TargetX8664Traits::TableTypeX8664AttributesType TargetX8664Traits::TableTypeX8664Attributes[] = { #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \ { IceType_##elty } \ , ICETYPEX8664_TABLE #undef X }; const size_t TargetX8664Traits::TableTypeX8664AttributesSize = llvm::array_lengthof(TableTypeX8664Attributes); const uint32_t TargetX8664Traits::X86_STACK_ALIGNMENT_BYTES = 16; const char *TargetX8664Traits::TargetName = "X8664"; template <> std::array<SmallBitVector, RCX86_NUM> TargetX86Base<X8664::Traits>::TypeToRegisterSet = {{}}; template <> std::array<SmallBitVector, RCX86_NUM> TargetX86Base<X8664::Traits>::TypeToRegisterSetUnfiltered = {{}}; template <> std::array<SmallBitVector, TargetX86Base<X8664::Traits>::Traits::RegisterSet::Reg_NUM> TargetX86Base<X8664::Traits>::RegisterAliases = {{}}; template <> FixupKind TargetX86Base<X8664::Traits>::PcRelFixup = TargetX86Base<X8664::Traits>::Traits::FK_PcRel; template <> FixupKind TargetX86Base<X8664::Traits>::AbsFixup = TargetX86Base<X8664::Traits>::Traits::FK_Abs; //------------------------------------------------------------------------------ // __ ______ __ __ ______ ______ __ __ __ ______ // /\ \ /\ __ \/\ \ _ \ \/\ ___\/\ == \/\ \/\ "-.\ \/\ ___\ // \ \ \___\ \ \/\ \ \ \/ ".\ \ \ __\\ \ __<\ \ \ \ \-. \ \ \__ \ // \ \_____\ \_____\ \__/".~\_\ \_____\ \_\ \_\ \_\ \_\\"\_\ \_____\ // \/_____/\/_____/\/_/ \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/\/_____/ // //------------------------------------------------------------------------------ void TargetX8664::_add_sp(Operand *Adjustment) { Variable *rsp = getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); if (!NeedSandboxing) { _add(rsp, Adjustment); return; } Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); // When incrementing rsp, NaCl sandboxing requires the following sequence // // .bundle_start // add Adjustment, %esp // add %r15, %rsp // .bundle_end // // In Subzero, even though rsp and esp alias each other, defining one does not // define the other. Therefore, we must emit // // .bundle_start // %esp = fake-def %rsp // add Adjustment, %esp // %rsp = fake-def %esp // add %r15, %rsp // .bundle_end // // The fake-defs ensure that the // // add Adjustment, %esp // // instruction is not DCE'd. AutoBundle _(this); _redefined(Context.insert<InstFakeDef>(esp, rsp)); _add(esp, Adjustment); _redefined(Context.insert<InstFakeDef>(rsp, esp)); _add(rsp, r15); } void TargetX8664::_mov_sp(Operand *NewValue) { assert(NewValue->getType() == IceType_i32); Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); Variable *rsp = getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); AutoBundle _(this); _redefined(Context.insert<InstFakeDef>(esp, rsp)); _redefined(_mov(esp, NewValue)); _redefined(Context.insert<InstFakeDef>(rsp, esp)); if (!NeedSandboxing) { return; } Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); _add(rsp, r15); } void TargetX8664::_push_rbp() { assert(NeedSandboxing); Constant *_0 = Ctx->getConstantZero(IceType_i32); Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32); Variable *rsp = getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); auto *TopOfStack = llvm::cast<X86OperandMem>( legalize(X86OperandMem::create(Func, IceType_i32, rsp, _0), Legal_Reg | Legal_Mem)); // Emits a sequence: // // .bundle_start // push 0 // mov %ebp, %(rsp) // .bundle_end // // to avoid leaking the upper 32-bits (i.e., the sandbox address.) AutoBundle _(this); _push(_0); Context.insert<typename Traits::Insts::Store>(ebp, TopOfStack); } void TargetX8664::_link_bp() { Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32); Variable *rsp = getPhysicalRegister(Traits::RegisterSet::Reg_rsp, Traits::WordType); Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32); Variable *rbp = getPhysicalRegister(Traits::RegisterSet::Reg_rbp, Traits::WordType); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, Traits::WordType); if (!NeedSandboxing) { _push(rbp); _mov(rbp, rsp); } else { _push_rbp(); AutoBundle _(this); _redefined(Context.insert<InstFakeDef>(ebp, rbp)); _redefined(Context.insert<InstFakeDef>(esp, rsp)); _mov(ebp, esp); _redefined(Context.insert<InstFakeDef>(rsp, esp)); _add(rbp, r15); } // Keep ebp live for late-stage liveness analysis (e.g. asm-verbose mode). Context.insert<InstFakeUse>(rbp); } void TargetX8664::_unlink_bp() { Variable *rsp = getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); Variable *rbp = getPhysicalRegister(Traits::RegisterSet::Reg_rbp, IceType_i64); Variable *ebp = getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32); // For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake // use of rsp before the assignment of rsp=rbp keeps previous rsp // adjustments from being dead-code eliminated. Context.insert<InstFakeUse>(rsp); if (!NeedSandboxing) { _mov(rsp, rbp); _pop(rbp); } else { _mov_sp(ebp); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); Variable *rcx = getPhysicalRegister(Traits::RegisterSet::Reg_rcx, IceType_i64); Variable *ecx = getPhysicalRegister(Traits::RegisterSet::Reg_ecx, IceType_i32); _pop(rcx); Context.insert<InstFakeDef>(ecx, rcx); AutoBundle _(this); _mov(ebp, ecx); _redefined(Context.insert<InstFakeDef>(rbp, ebp)); _add(rbp, r15); } } void TargetX8664::_push_reg(Variable *Reg) { Variable *rbp = getPhysicalRegister(Traits::RegisterSet::Reg_rbp, Traits::WordType); if (Reg != rbp || !NeedSandboxing) { _push(Reg); } else { _push_rbp(); } } void TargetX8664::emitGetIP(CfgNode *Node) { // No IP base register is needed on X86-64. (void)Node; } namespace { bool isAssignedToRspOrRbp(const Variable *Var) { if (Var == nullptr) { return false; } if (Var->isRematerializable()) { return true; } if (!Var->hasReg()) { return false; } const auto RegNum = Var->getRegNum(); if ((RegNum == Traits::RegisterSet::Reg_rsp) || (RegNum == Traits::RegisterSet::Reg_rbp)) { return true; } return false; } } // end of anonymous namespace Traits::X86OperandMem *TargetX8664::_sandbox_mem_reference(X86OperandMem *Mem) { if (SandboxingType == ST_None) { return Mem; } if (SandboxingType == ST_Nonsfi) { llvm::report_fatal_error( "_sandbox_mem_reference not implemented for nonsfi"); } // In x86_64-nacl, all memory references are relative to a base register // (%r15, %rsp, %rbp, or %rip). Variable *Base = Mem->getBase(); Variable *Index = Mem->getIndex(); uint16_t Shift = 0; Variable *ZeroReg = RebasePtr; Constant *Offset = Mem->getOffset(); Variable *T = nullptr; bool AbsoluteAddress = false; if (Base == nullptr && Index == nullptr) { if (llvm::isa<ConstantRelocatable>(Offset)) { // Mem is RIP-relative. There's no need to rebase it. return Mem; } // Offset is an absolute address, so we need to emit // Offset(%r15) AbsoluteAddress = true; } if (Mem->getIsRebased()) { // If Mem.IsRebased, then we don't need to update Mem, as it's already been // updated to contain a reference to one of %rsp, %rbp, or %r15. // We don't return early because we still need to zero extend Index. assert(ZeroReg == Base || AbsoluteAddress || isAssignedToRspOrRbp(Base)); if (!AbsoluteAddress) { // If Mem is an absolute address, no need to update ZeroReg (which is // already set to %r15.) ZeroReg = Base; } if (Index != nullptr) { T = makeReg(IceType_i32); _mov(T, Index); Shift = Mem->getShift(); } } else { if (Base != nullptr) { // If Base is a valid base pointer we don't need to use the RebasePtr. By // doing this we might save us the need to zero extend the memory operand. if (isAssignedToRspOrRbp(Base)) { ZeroReg = Base; } else { T = Base; } } if (Index != nullptr) { assert(!Index->isRematerializable()); // If Index is not nullptr, it is mandatory that T is a nullptr. // Otherwise, the lowering generated a memory operand with two registers. // Note that Base might still be non-nullptr, but it must be a valid // base register. if (T != nullptr) { llvm::report_fatal_error("memory reference contains base and index."); } // If the Index is not shifted, and it is a Valid Base, and the ZeroReg is // still RebasePtr, then we do ZeroReg = Index, and hopefully prevent the // need to zero-extend the memory operand (which may still happen -- see // NeedLea below.) if (Shift == 0 && isAssignedToRspOrRbp(Index) && ZeroReg == RebasePtr) { ZeroReg = Index; } else { T = Index; Shift = Mem->getShift(); } } } // NeedsLea is a flag indicating whether Mem needs to be materialized to a GPR // prior to being used. A LEA is needed if Mem.Offset is a constant // relocatable with a nonzero offset, or if Mem.Offset is a nonzero immediate; // but only when the address mode contains a "user" register other than the // rsp/rbp/r15 base. In both these cases, the LEA is needed to ensure the // sandboxed memory operand will only use the lower 32-bits of T+Offset. bool NeedsLea = false; if (!Mem->getIsRebased()) { bool IsOffsetZero = false; if (Offset == nullptr) { IsOffsetZero = true; } else if (const auto *CR = llvm::dyn_cast<ConstantRelocatable>(Offset)) { IsOffsetZero = (CR->getOffset() == 0); } else if (const auto *Imm = llvm::dyn_cast<ConstantInteger32>(Offset)) { IsOffsetZero = (Imm->getValue() == 0); } else { llvm::report_fatal_error("Unexpected Offset type."); } if (!IsOffsetZero) { if (Base != nullptr && Base != ZeroReg) NeedsLea = true; if (Index != nullptr && Index != ZeroReg) NeedsLea = true; } } RegNumT RegNum, RegNum32; if (T != nullptr) { if (T->hasReg()) { RegNum = Traits::getGprForType(IceType_i64, T->getRegNum()); RegNum32 = Traits::getGprForType(IceType_i32, RegNum); // At this point, if T was assigned to rsp/rbp, then we would have already // made this the ZeroReg. assert(RegNum != Traits::RegisterSet::Reg_rsp); assert(RegNum != Traits::RegisterSet::Reg_rbp); } switch (T->getType()) { default: llvm::report_fatal_error("Mem pointer should be a 32-bit GPR."); case IceType_i64: // Even though "default:" would also catch T.Type == IceType_i64, an // explicit 'case IceType_i64' shows that memory operands are always // supposed to be 32-bits. llvm::report_fatal_error("Mem pointer should not be a 64-bit GPR."); case IceType_i32: { Variable *T64 = makeReg(IceType_i64, RegNum); auto *Movzx = _movzx(T64, T); if (!NeedsLea) { // This movzx is only needed when Mem does not need to be lea'd into a // temporary. If an lea is going to be emitted, then eliding this movzx // is safe because the emitted lea will write a 32-bit result -- // implicitly zero-extended to 64-bit. Movzx->setMustKeep(); } T = T64; } break; } } if (NeedsLea) { Variable *NewT = makeReg(IceType_i32, RegNum32); Variable *Base = T; Variable *Index = T; static constexpr bool NotRebased = false; if (Shift == 0) { Index = nullptr; } else { Base = nullptr; } _lea(NewT, Traits::X86OperandMem::create( Func, Mem->getType(), Base, Offset, Index, Shift, Traits::X86OperandMem::DefaultSegment, NotRebased)); T = makeReg(IceType_i64, RegNum); _movzx(T, NewT); Shift = 0; Offset = nullptr; } static constexpr bool IsRebased = true; return Traits::X86OperandMem::create( Func, Mem->getType(), ZeroReg, Offset, T, Shift, Traits::X86OperandMem::DefaultSegment, IsRebased); } void TargetX8664::_sub_sp(Operand *Adjustment) { Variable *rsp = getPhysicalRegister(Traits::RegisterSet::Reg_rsp, Traits::WordType); if (NeedSandboxing) { Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); // .bundle_start // sub Adjustment, %esp // add %r15, %rsp // .bundle_end AutoBundle _(this); _redefined(Context.insert<InstFakeDef>(esp, rsp)); _sub(esp, Adjustment); _redefined(Context.insert<InstFakeDef>(rsp, esp)); _add(rsp, r15); } else { _sub(rsp, Adjustment); } // Add a fake use of the stack pointer, to prevent the stack pointer adustment // from being dead-code eliminated in a function that doesn't return. Context.insert<InstFakeUse>(rsp); } void TargetX8664::initRebasePtr() { switch (SandboxingType) { case ST_Nonsfi: // Probably no implementation is needed, but error to be safe for now. llvm::report_fatal_error( "initRebasePtr() is not yet implemented on x32-nonsfi."); case ST_NaCl: RebasePtr = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); break; case ST_None: // nothing. break; } } void TargetX8664::initSandbox() { assert(SandboxingType == ST_NaCl); Context.init(Func->getEntryNode()); Context.setInsertPoint(Context.getCur()); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); Context.insert<InstFakeDef>(r15); Context.insert<InstFakeUse>(r15); } namespace { bool isRematerializable(const Variable *Var) { return Var != nullptr && Var->isRematerializable(); } } // end of anonymous namespace bool TargetX8664::legalizeOptAddrForSandbox(OptAddr *Addr) { if (SandboxingType == ST_Nonsfi) { llvm::report_fatal_error("Nonsfi not yet implemented for x8664."); } if (isRematerializable(Addr->Base)) { if (Addr->Index == RebasePtr) { Addr->Index = nullptr; Addr->Shift = 0; } return true; } if (isRematerializable(Addr->Index)) { if (Addr->Base == RebasePtr) { Addr->Base = nullptr; } return true; } assert(Addr->Base != RebasePtr && Addr->Index != RebasePtr); if (Addr->Base == nullptr) { return true; } if (Addr->Index == nullptr) { return true; } return false; } void TargetX8664::lowerIndirectJump(Variable *JumpTarget) { std::unique_ptr<AutoBundle> Bundler; if (!NeedSandboxing) { if (JumpTarget->getType() != IceType_i64) { Variable *T = makeReg(IceType_i64); _movzx(T, JumpTarget); JumpTarget = T; } } else { Variable *T = makeReg(IceType_i32); Variable *T64 = makeReg(IceType_i64); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); _mov(T, JumpTarget); Bundler = makeUnique<AutoBundle>(this); const SizeT BundleSize = 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); _and(T, Ctx->getConstantInt32(~(BundleSize - 1))); _movzx(T64, T); _add(T64, r15); JumpTarget = T64; } _jmp(JumpTarget); } Inst *TargetX8664::emitCallToTarget(Operand *CallTarget, Variable *ReturnReg) { Inst *NewCall = nullptr; auto *CallTargetR = llvm::dyn_cast<Variable>(CallTarget); if (NeedSandboxing) { // In NaCl sandbox, calls are replaced by a push/jmp pair: // // push .after_call // jmp CallTarget // .align bundle_size // after_call: // // In order to emit this sequence, we need a temporary label ("after_call", // in this example.) // // The operand to push is a ConstantRelocatable. The easy way to implement // this sequence is to create a ConstantRelocatable(0, "after_call"), but // this ends up creating more relocations for the linker to resolve. // Therefore, we create a ConstantRelocatable from the name of the function // being compiled (i.e., ConstantRelocatable(after_call - Func, Func). // // By default, ConstantRelocatables are emitted (in textual output) as // // ConstantName + Offset // // ReturnReloc has an offset that is only known during binary emission. // Therefore, we set a custom emit string for ReturnReloc that will be // used instead. In this particular case, the code will be emitted as // // push .after_call InstX86Label *ReturnAddress = InstX86Label::create(Func, this); auto *ReturnRelocOffset = RelocOffset::create(Func->getAssembler()); ReturnAddress->setRelocOffset(ReturnRelocOffset); constexpr RelocOffsetT NoFixedOffset = 0; const std::string EmitString = BuildDefs::dump() ? ReturnAddress->getLabelName().toString() : ""; auto *ReturnReloc = ConstantRelocatable::create( Func->getAssembler(), IceType_i32, RelocatableTuple(NoFixedOffset, {ReturnRelocOffset}, Func->getFunctionName(), EmitString)); /* AutoBundle scoping */ { std::unique_ptr<AutoBundle> Bundler; if (CallTargetR == nullptr) { Bundler = makeUnique<AutoBundle>(this, InstBundleLock::Opt_PadToEnd); _push(ReturnReloc); } else { Variable *T = makeReg(IceType_i32); Variable *T64 = makeReg(IceType_i64); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); _mov(T, CallTargetR); Bundler = makeUnique<AutoBundle>(this, InstBundleLock::Opt_PadToEnd); _push(ReturnReloc); const SizeT BundleSize = 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); _and(T, Ctx->getConstantInt32(~(BundleSize - 1))); _movzx(T64, T); _add(T64, r15); CallTarget = T64; } NewCall = Context.insert<Traits::Insts::Jmp>(CallTarget); } if (ReturnReg != nullptr) { Context.insert<InstFakeDef>(ReturnReg); } Context.insert(ReturnAddress); } else { if (CallTargetR != nullptr) { // x86-64 in Subzero is ILP32. Therefore, CallTarget is i32, but the // emitted call needs a i64 register (for textual asm.) Variable *T = makeReg(IceType_i64); _movzx(T, CallTargetR); CallTarget = T; } NewCall = Context.insert<Traits::Insts::Call>(ReturnReg, CallTarget); } return NewCall; } Variable *TargetX8664::moveReturnValueToRegister(Operand *Value, Type ReturnType) { if (isVectorType(ReturnType) || isScalarFloatingType(ReturnType)) { return legalizeToReg(Value, Traits::RegisterSet::Reg_xmm0); } else { assert(ReturnType == IceType_i32 || ReturnType == IceType_i64); Variable *Reg = nullptr; _mov(Reg, Value, Traits::getGprForType(ReturnType, Traits::RegisterSet::Reg_rax)); return Reg; } } void TargetX8664::emitSandboxedReturn() { Variable *T_rcx = makeReg(IceType_i64, Traits::RegisterSet::Reg_rcx); Variable *T_ecx = makeReg(IceType_i32, Traits::RegisterSet::Reg_ecx); _pop(T_rcx); _mov(T_ecx, T_rcx); // lowerIndirectJump(T_ecx); Variable *r15 = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); /* AutoBundle scoping */ { AutoBundle _(this); const SizeT BundleSize = 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); _and(T_ecx, Ctx->getConstantInt32(~(BundleSize - 1))); Context.insert<InstFakeDef>(T_rcx, T_ecx); _add(T_rcx, r15); _jmp(T_rcx); } } // In some cases, there are x-macros tables for both high-level and low-level // instructions/operands that use the same enum key value. The tables are kept // separate to maintain a proper separation between abstraction layers. There // is a risk that the tables could get out of sync if enum values are reordered // or if entries are added or deleted. The following dummy namespaces use // static_asserts to ensure everything is kept in sync. namespace { // Validate the enum values in FCMPX8664_TABLE. namespace dummy1 { // Define a temporary set of enum values based on low-level table entries. enum _tmp_enum { #define X(val, dflt, swapS, C1, C2, swapV, pred) _tmp_##val, FCMPX8664_TABLE #undef X _num }; // Define a set of constants based on high-level table entries. #define X(tag, str) static const int _table1_##tag = InstFcmp::tag; ICEINSTFCMP_TABLE #undef X // Define a set of constants based on low-level table entries, and ensure the // table entry keys are consistent. #define X(val, dflt, swapS, C1, C2, swapV, pred) \ static const int _table2_##val = _tmp_##val; \ static_assert( \ _table1_##val == _table2_##val, \ "Inconsistency between FCMPX8664_TABLE and ICEINSTFCMP_TABLE"); FCMPX8664_TABLE #undef X // Repeat the static asserts with respect to the high-level table entries in // case the high-level table has extra entries. #define X(tag, str) \ static_assert( \ _table1_##tag == _table2_##tag, \ "Inconsistency between FCMPX8664_TABLE and ICEINSTFCMP_TABLE"); ICEINSTFCMP_TABLE #undef X } // end of namespace dummy1 // Validate the enum values in ICMPX8664_TABLE. namespace dummy2 { // Define a temporary set of enum values based on low-level table entries. enum _tmp_enum { #define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val, ICMPX8664_TABLE #undef X _num }; // Define a set of constants based on high-level table entries. #define X(tag, reverse, str) static const int _table1_##tag = InstIcmp::tag; ICEINSTICMP_TABLE #undef X // Define a set of constants based on low-level table entries, and ensure the // table entry keys are consistent. #define X(val, C_32, C1_64, C2_64, C3_64) \ static const int _table2_##val = _tmp_##val; \ static_assert( \ _table1_##val == _table2_##val, \ "Inconsistency between ICMPX8664_TABLE and ICEINSTICMP_TABLE"); ICMPX8664_TABLE #undef X // Repeat the static asserts with respect to the high-level table entries in // case the high-level table has extra entries. #define X(tag, reverse, str) \ static_assert( \ _table1_##tag == _table2_##tag, \ "Inconsistency between ICMPX8664_TABLE and ICEINSTICMP_TABLE"); ICEINSTICMP_TABLE #undef X } // end of namespace dummy2 // Validate the enum values in ICETYPEX8664_TABLE. namespace dummy3 { // Define a temporary set of enum values based on low-level table entries. enum _tmp_enum { #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \ _tmp_##tag, ICETYPEX8664_TABLE #undef X _num }; // Define a set of constants based on high-level table entries. #define X(tag, sizeLog2, align, elts, elty, str, rcstr) \ static const int _table1_##tag = IceType_##tag; ICETYPE_TABLE #undef X // Define a set of constants based on low-level table entries, and ensure the // table entry keys are consistent. #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \ static const int _table2_##tag = _tmp_##tag; \ static_assert(_table1_##tag == _table2_##tag, \ "Inconsistency between ICETYPEX8664_TABLE and ICETYPE_TABLE"); ICETYPEX8664_TABLE #undef X // Repeat the static asserts with respect to the high-level table entries in // case the high-level table has extra entries. #define X(tag, sizeLog2, align, elts, elty, str, rcstr) \ static_assert(_table1_##tag == _table2_##tag, \ "Inconsistency between ICETYPEX8664_TABLE and ICETYPE_TABLE"); ICETYPE_TABLE #undef X } // end of namespace dummy3 } // end of anonymous namespace } // end of namespace X8664 } // end of namespace Ice