//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces which should be // implemented by each target which is using a TableGen based code generator. // //===----------------------------------------------------------------------===// // Include all information about LLVM intrinsics. include "llvm/Intrinsics.td" //===----------------------------------------------------------------------===// // Register file description - These classes are used to fill in the target // description classes. class RegisterClass; // Forward def // SubRegIndex - Use instances of SubRegIndex to identify subregisters. class SubRegIndex { string Namespace = ""; } // RegAltNameIndex - The alternate name set to use for register operands of // this register class when printing. class RegAltNameIndex { string Namespace = ""; } def NoRegAltName : RegAltNameIndex; // Register - You should define one instance of this class for each register // in the target machine. String n will become the "name" of the register. class Register<string n, list<string> altNames = []> { string Namespace = ""; string AsmName = n; list<string> AltNames = altNames; // Aliases - A list of registers that this register overlaps with. A read or // modification of this register can potentially read or modify the aliased // registers. list<Register> Aliases = []; // SubRegs - A list of registers that are parts of this register. Note these // are "immediate" sub-registers and the registers within the list do not // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], // not [AX, AH, AL]. list<Register> SubRegs = []; // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used // to address it. Sub-sub-register indices are automatically inherited from // SubRegs. list<SubRegIndex> SubRegIndices = []; // RegAltNameIndices - The alternate name indices which are valid for this // register. list<RegAltNameIndex> RegAltNameIndices = []; // CompositeIndices - Specify subreg indices that don't correspond directly to // a register in SubRegs and are not inherited. The following formats are // supported: // // (a) Identity - Reg:a == Reg // (a b) Alias - Reg:a == Reg:b // (a b,c) Composite - Reg:a == (Reg:b):c // // This can be used to disambiguate a sub-sub-register that exists in more // than one subregister and other weird stuff. list<dag> CompositeIndices = []; // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. // These values can be determined by locating the <target>.h file in the // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The // order of these names correspond to the enumeration used by gcc. A value of // -1 indicates that the gcc number is undefined and -2 that register number // is invalid for this mode/flavour. list<int> DwarfNumbers = []; // CostPerUse - Additional cost of instructions using this register compared // to other registers in its class. The register allocator will try to // minimize the number of instructions using a register with a CostPerUse. // This is used by the x86-64 and ARM Thumb targets where some registers // require larger instruction encodings. int CostPerUse = 0; } // RegisterWithSubRegs - This can be used to define instances of Register which // need to specify sub-registers. // List "subregs" specifies which registers are sub-registers to this one. This // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. // This allows the code generator to be careful not to put two values with // overlapping live ranges into registers which alias. class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { let SubRegs = subregs; } // RegisterClass - Now that all of the registers are defined, and aliases // between registers are defined, specify which registers belong to which // register classes. This also defines the default allocation order of // registers by register allocators. // class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, dag regList, RegAltNameIndex idx = NoRegAltName> { string Namespace = namespace; // RegType - Specify the list ValueType of the registers in this register // class. Note that all registers in a register class must have the same // ValueTypes. This is a list because some targets permit storing different // types in same register, for example vector values with 128-bit total size, // but different count/size of items, like SSE on x86. // list<ValueType> RegTypes = regTypes; // Size - Specify the spill size in bits of the registers. A default value of // zero lets tablgen pick an appropriate size. int Size = 0; // Alignment - Specify the alignment required of the registers when they are // stored or loaded to memory. // int Alignment = alignment; // CopyCost - This value is used to specify the cost of copying a value // between two registers in this register class. The default value is one // meaning it takes a single instruction to perform the copying. A negative // value means copying is extremely expensive or impossible. int CopyCost = 1; // MemberList - Specify which registers are in this class. If the // allocation_order_* method are not specified, this also defines the order of // allocation used by the register allocator. // dag MemberList = regList; // AltNameIndex - The alternate register name to use when printing operands // of this register class. Every register in the register class must have // a valid alternate name for the given index. RegAltNameIndex altNameIndex = idx; // SubRegClasses - Specify the register class of subregisters as a list of // dags: (RegClass SubRegIndex, SubRegindex, ...) list<dag> SubRegClasses = []; // isAllocatable - Specify that the register class can be used for virtual // registers and register allocation. Some register classes are only used to // model instruction operand constraints, and should have isAllocatable = 0. bit isAllocatable = 1; // AltOrders - List of alternative allocation orders. The default order is // MemberList itself, and that is good enough for most targets since the // register allocators automatically remove reserved registers and move // callee-saved registers to the end. list<dag> AltOrders = []; // AltOrderSelect - The body of a function that selects the allocation order // to use in a given machine function. The code will be inserted in a // function like this: // // static inline unsigned f(const MachineFunction &MF) { ... } // // The function should return 0 to select the default order defined by // MemberList, 1 to select the first AltOrders entry and so on. code AltOrderSelect = [{}]; } // The memberList in a RegisterClass is a dag of set operations. TableGen // evaluates these set operations and expand them into register lists. These // are the most common operation, see test/TableGen/SetTheory.td for more // examples of what is possible: // // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a // register class, or a sub-expression. This is also the way to simply list // registers. // // (sub GPR, SP) - Set difference. Subtract the last arguments from the first. // // (and GPR, CSR) - Set intersection. All registers from the first set that are // also in the second set. // // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of // numbered registers. // // (shl GPR, 4) - Remove the first N elements. // // (trunc GPR, 4) - Truncate after the first N elements. // // (rotl GPR, 1) - Rotate N places to the left. // // (rotr GPR, 1) - Rotate N places to the right. // // (decimate GPR, 2) - Pick every N'th element, starting with the first. // // All of these operators work on ordered sets, not lists. That means // duplicates are removed from sub-expressions. // Set operators. The rest is defined in TargetSelectionDAG.td. def sequence; def decimate; // RegisterTuples - Automatically generate super-registers by forming tuples of // sub-registers. This is useful for modeling register sequence constraints // with pseudo-registers that are larger than the architectural registers. // // The sub-register lists are zipped together: // // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; // // Generates the same registers as: // // let SubRegIndices = [sube, subo] in { // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; // } // // The generated pseudo-registers inherit super-classes and fields from their // first sub-register. Most fields from the Register class are inferred, and // the AsmName and Dwarf numbers are cleared. // // RegisterTuples instances can be used in other set operations to form // register classes and so on. This is the only way of using the generated // registers. class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> { // SubRegs - N lists of registers to be zipped up. Super-registers are // synthesized from the first element of each SubRegs list, the second // element and so on. list<dag> SubRegs = Regs; // SubRegIndices - N SubRegIndex instances. This provides the names of the // sub-registers in the synthesized super-registers. list<SubRegIndex> SubRegIndices = Indices; // Compose sub-register indices like in a normal Register. list<dag> CompositeIndices = []; } //===----------------------------------------------------------------------===// // DwarfRegNum - This class provides a mapping of the llvm register enumeration // to the register numbering used by gcc and gdb. These values are used by a // debug information writer to describe where values may be located during // execution. class DwarfRegNum<list<int> Numbers> { // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. // These values can be determined by locating the <target>.h file in the // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The // order of these names correspond to the enumeration used by gcc. A value of // -1 indicates that the gcc number is undefined and -2 that register number // is invalid for this mode/flavour. list<int> DwarfNumbers = Numbers; } // DwarfRegAlias - This class declares that a given register uses the same dwarf // numbers as another one. This is useful for making it clear that the two // registers do have the same number. It also lets us build a mapping // from dwarf register number to llvm register. class DwarfRegAlias<Register reg> { Register DwarfAlias = reg; } //===----------------------------------------------------------------------===// // Pull in the common support for scheduling // include "llvm/Target/TargetSchedule.td" class Predicate; // Forward def //===----------------------------------------------------------------------===// // Instruction set description - These classes correspond to the C++ classes in // the Target/TargetInstrInfo.h file. // class Instruction { string Namespace = ""; dag OutOperandList; // An dag containing the MI def operand list. dag InOperandList; // An dag containing the MI use operand list. string AsmString = ""; // The .s format to print the instruction with. // Pattern - Set to the DAG pattern for this instruction, if we know of one, // otherwise, uninitialized. list<dag> Pattern; // The follow state will eventually be inferred automatically from the // instruction pattern. list<Register> Uses = []; // Default to using no non-operand registers list<Register> Defs = []; // Default to modifying no non-operand registers // Predicates - List of predicates which will be turned into isel matching // code. list<Predicate> Predicates = []; // Size - Size of encoded instruction, or zero if the size cannot be determined // from the opcode. int Size = 0; // DecoderNamespace - The "namespace" in which this instruction exists, on // targets like ARM which multiple ISA namespaces exist. string DecoderNamespace = ""; // Code size, for instruction selection. // FIXME: What does this actually mean? int CodeSize = 0; // Added complexity passed onto matching pattern. int AddedComplexity = 0; // These bits capture information about the high-level semantics of the // instruction. bit isReturn = 0; // Is this instruction a return instruction? bit isBranch = 0; // Is this instruction a branch instruction? bit isIndirectBranch = 0; // Is this instruction an indirect branch? bit isCompare = 0; // Is this instruction a comparison instruction? bit isMoveImm = 0; // Is this instruction a move immediate instruction? bit isBitcast = 0; // Is this instruction a bitcast instruction? bit isBarrier = 0; // Can control flow fall through this instruction? bit isCall = 0; // Is this instruction a call instruction? bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand? bit mayLoad = 0; // Is it possible for this inst to read memory? bit mayStore = 0; // Is it possible for this inst to write memory? bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote? bit isCommutable = 0; // Is this 3 operand instruction commutable? bit isTerminator = 0; // Is this part of the terminator for a basic block? bit isReMaterializable = 0; // Is this instruction re-materializable? bit isPredicable = 0; // Is this instruction predicable? bit hasDelaySlot = 0; // Does this instruction have an delay slot? bit usesCustomInserter = 0; // Pseudo instr needing special help. bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook. bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains? bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction? bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction. bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement? bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement? bit isPseudo = 0; // Is this instruction a pseudo-instruction? // If so, won't have encoding information for // the [MC]CodeEmitter stuff. // Side effect flags - When set, the flags have these meanings: // // hasSideEffects - The instruction has side effects that are not // captured by any operands of the instruction or other flags. // // neverHasSideEffects - Set on an instruction with no pattern if it has no // side effects. bit hasSideEffects = 0; bit neverHasSideEffects = 0; // Is this instruction a "real" instruction (with a distinct machine // encoding), or is it a pseudo instruction used for codegen modeling // purposes. // FIXME: For now this is distinct from isPseudo, above, as code-gen-only // instructions can (and often do) still have encoding information // associated with them. Once we've migrated all of them over to true // pseudo-instructions that are lowered to real instructions prior to // the printer/emitter, we can remove this attribute and just use isPseudo. bit isCodeGenOnly = 0; // Is this instruction a pseudo instruction for use by the assembler parser. bit isAsmParserOnly = 0; InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. string Constraints = ""; // OperandConstraint, e.g. $src = $dst. /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not /// be encoded into the output machineinstr. string DisableEncoding = ""; string PostEncoderMethod = ""; string DecoderMethod = ""; /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. bits<64> TSFlags = 0; ///@name Assembler Parser Support ///@{ string AsmMatchConverter = ""; ///@} } /// PseudoInstExpansion - Expansion information for a pseudo-instruction. /// Which instruction it expands to and how the operands map from the /// pseudo. class PseudoInstExpansion<dag Result> { dag ResultInst = Result; // The instruction to generate. bit isPseudo = 1; } /// Predicates - These are extra conditionals which are turned into instruction /// selector matching code. Currently each predicate is just a string. class Predicate<string cond> { string CondString = cond; /// AssemblerMatcherPredicate - If this feature can be used by the assembler /// matcher, this is true. Targets should set this by inheriting their /// feature from the AssemblerPredicate class in addition to Predicate. bit AssemblerMatcherPredicate = 0; /// AssemblerCondString - Name of the subtarget feature being tested used /// as alternative condition string used for assembler matcher. /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0". /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0". /// It can also list multiple features separated by ",". /// e.g. "ModeThumb,FeatureThumb2" is translated to /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". string AssemblerCondString = ""; } /// NoHonorSignDependentRounding - This predicate is true if support for /// sign-dependent-rounding is not enabled. def NoHonorSignDependentRounding : Predicate<"!HonorSignDependentRoundingFPMath()">; class Requires<list<Predicate> preds> { list<Predicate> Predicates = preds; } /// ops definition - This is just a simple marker used to identify the operand /// list for an instruction. outs and ins are identical both syntactically and /// semanticallyr; they are used to define def operands and use operands to /// improve readibility. This should be used like this: /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. def ops; def outs; def ins; /// variable_ops definition - Mark this instruction as taking a variable number /// of operands. def variable_ops; /// PointerLikeRegClass - Values that are designed to have pointer width are /// derived from this. TableGen treats the register class as having a symbolic /// type that it doesn't know, and resolves the actual regclass to use by using /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. class PointerLikeRegClass<int Kind> { int RegClassKind = Kind; } /// ptr_rc definition - Mark this operand as being a pointer value whose /// register class is resolved dynamically via a callback to TargetInstrInfo. /// FIXME: We should probably change this to a class which contain a list of /// flags. But currently we have but one flag. def ptr_rc : PointerLikeRegClass<0>; /// unknown definition - Mark this operand as being of unknown type, causing /// it to be resolved by inference in the context it is used. def unknown; /// AsmOperandClass - Representation for the kinds of operands which the target /// specific parser can create and the assembly matcher may need to distinguish. /// /// Operand classes are used to define the order in which instructions are /// matched, to ensure that the instruction which gets matched for any /// particular list of operands is deterministic. /// /// The target specific parser must be able to classify a parsed operand into a /// unique class which does not partially overlap with any other classes. It can /// match a subset of some other class, in which case the super class field /// should be defined. class AsmOperandClass { /// The name to use for this class, which should be usable as an enum value. string Name = ?; /// The super classes of this operand. list<AsmOperandClass> SuperClasses = []; /// The name of the method on the target specific operand to call to test /// whether the operand is an instance of this class. If not set, this will /// default to "isFoo", where Foo is the AsmOperandClass name. The method /// signature should be: /// bool isFoo() const; string PredicateMethod = ?; /// The name of the method on the target specific operand to call to add the /// target specific operand to an MCInst. If not set, this will default to /// "addFooOperands", where Foo is the AsmOperandClass name. The method /// signature should be: /// void addFooOperands(MCInst &Inst, unsigned N) const; string RenderMethod = ?; /// The name of the method on the target specific operand to call to custom /// handle the operand parsing. This is useful when the operands do not relate /// to immediates or registers and are very instruction specific (as flags to /// set in a processor register, coprocessor number, ...). string ParserMethod = ?; } def ImmAsmOperand : AsmOperandClass { let Name = "Imm"; } /// Operand Types - These provide the built-in operand types that may be used /// by a target. Targets can optionally provide their own operand types as /// needed, though this should not be needed for RISC targets. class Operand<ValueType ty> { ValueType Type = ty; string PrintMethod = "printOperand"; string EncoderMethod = ""; string DecoderMethod = ""; string AsmOperandLowerMethod = ?; string OperandType = "OPERAND_UNKNOWN"; dag MIOperandInfo = (ops); // ParserMatchClass - The "match class" that operands of this type fit // in. Match classes are used to define the order in which instructions are // match, to ensure that which instructions gets matched is deterministic. // // The target specific parser must be able to classify an parsed operand into // a unique class, which does not partially overlap with any other classes. It // can match a subset of some other class, in which case the AsmOperandClass // should declare the other operand as one of its super classes. AsmOperandClass ParserMatchClass = ImmAsmOperand; } class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> { // RegClass - The register class of the operand. RegisterClass RegClass = regclass; // PrintMethod - The target method to call to print register operands of // this type. The method normally will just use an alt-name index to look // up the name to print. Default to the generic printOperand(). string PrintMethod = pm; // ParserMatchClass - The "match class" that operands of this type fit // in. Match classes are used to define the order in which instructions are // match, to ensure that which instructions gets matched is deterministic. // // The target specific parser must be able to classify an parsed operand into // a unique class, which does not partially overlap with any other classes. It // can match a subset of some other class, in which case the AsmOperandClass // should declare the other operand as one of its super classes. AsmOperandClass ParserMatchClass; } let OperandType = "OPERAND_IMMEDIATE" in { def i1imm : Operand<i1>; def i8imm : Operand<i8>; def i16imm : Operand<i16>; def i32imm : Operand<i32>; def i64imm : Operand<i64>; def f32imm : Operand<f32>; def f64imm : Operand<f64>; } /// zero_reg definition - Special node to stand for the zero register. /// def zero_reg; /// PredicateOperand - This can be used to define a predicate operand for an /// instruction. OpTypes specifies the MIOperandInfo for the operand, and /// AlwaysVal specifies the value of this predicate when set to "always /// execute". class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> : Operand<ty> { let MIOperandInfo = OpTypes; dag DefaultOps = AlwaysVal; } /// OptionalDefOperand - This is used to define a optional definition operand /// for an instruction. DefaultOps is the register the operand represents if /// none is supplied, e.g. zero_reg. class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> : Operand<ty> { let MIOperandInfo = OpTypes; dag DefaultOps = defaultops; } // InstrInfo - This class should only be instantiated once to provide parameters // which are global to the target machine. // class InstrInfo { // Target can specify its instructions in either big or little-endian formats. // For instance, while both Sparc and PowerPC are big-endian platforms, the // Sparc manual specifies its instructions in the format [31..0] (big), while // PowerPC specifies them using the format [0..31] (little). bit isLittleEndianEncoding = 0; } // Standard Pseudo Instructions. // This list must match TargetOpcodes.h and CodeGenTarget.cpp. // Only these instructions are allowed in the TargetOpcode namespace. let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in { def PHI : Instruction { let OutOperandList = (outs); let InOperandList = (ins variable_ops); let AsmString = "PHINODE"; } def INLINEASM : Instruction { let OutOperandList = (outs); let InOperandList = (ins variable_ops); let AsmString = ""; let neverHasSideEffects = 1; // Note side effect is encoded in an operand. } def PROLOG_LABEL : Instruction { let OutOperandList = (outs); let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; let isNotDuplicable = 1; } def EH_LABEL : Instruction { let OutOperandList = (outs); let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; let isNotDuplicable = 1; } def GC_LABEL : Instruction { let OutOperandList = (outs); let InOperandList = (ins i32imm:$id); let AsmString = ""; let hasCtrlDep = 1; let isNotDuplicable = 1; } def KILL : Instruction { let OutOperandList = (outs); let InOperandList = (ins variable_ops); let AsmString = ""; let neverHasSideEffects = 1; } def EXTRACT_SUBREG : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); let AsmString = ""; let neverHasSideEffects = 1; } def INSERT_SUBREG : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); let AsmString = ""; let neverHasSideEffects = 1; let Constraints = "$supersrc = $dst"; } def IMPLICIT_DEF : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins); let AsmString = ""; let neverHasSideEffects = 1; let isReMaterializable = 1; let isAsCheapAsAMove = 1; } def SUBREG_TO_REG : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); let AsmString = ""; let neverHasSideEffects = 1; } def COPY_TO_REGCLASS : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins unknown:$src, i32imm:$regclass); let AsmString = ""; let neverHasSideEffects = 1; let isAsCheapAsAMove = 1; } def DBG_VALUE : Instruction { let OutOperandList = (outs); let InOperandList = (ins variable_ops); let AsmString = "DBG_VALUE"; let neverHasSideEffects = 1; } def REG_SEQUENCE : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins variable_ops); let AsmString = ""; let neverHasSideEffects = 1; let isAsCheapAsAMove = 1; } def COPY : Instruction { let OutOperandList = (outs unknown:$dst); let InOperandList = (ins unknown:$src); let AsmString = ""; let neverHasSideEffects = 1; let isAsCheapAsAMove = 1; } } //===----------------------------------------------------------------------===// // AsmParser - This class can be implemented by targets that wish to implement // .s file parsing. // // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel // syntax on X86 for example). // class AsmParser { // AsmParserClassName - This specifies the suffix to use for the asmparser // class. Generated AsmParser classes are always prefixed with the target // name. string AsmParserClassName = "AsmParser"; // AsmParserInstCleanup - If non-empty, this is the name of a custom member // function of the AsmParser class to call on every matched instruction. // This can be used to perform target specific instruction post-processing. string AsmParserInstCleanup = ""; // Variant - AsmParsers can be of multiple different variants. Variants are // used to support targets that need to parser multiple formats for the // assembly language. int Variant = 0; // CommentDelimiter - If given, the delimiter string used to recognize // comments which are hard coded in the .td assembler strings for individual // instructions. string CommentDelimiter = ""; // RegisterPrefix - If given, the token prefix which indicates a register // token. This is used by the matcher to automatically recognize hard coded // register tokens as constrained registers, instead of tokens, for the // purposes of matching. string RegisterPrefix = ""; } def DefaultAsmParser : AsmParser; /// AssemblerPredicate - This is a Predicate that can be used when the assembler /// matches instructions and aliases. class AssemblerPredicate<string cond> { bit AssemblerMatcherPredicate = 1; string AssemblerCondString = cond; } /// MnemonicAlias - This class allows targets to define assembler mnemonic /// aliases. This should be used when all forms of one mnemonic are accepted /// with a different mnemonic. For example, X86 allows: /// sal %al, 1 -> shl %al, 1 /// sal %ax, %cl -> shl %ax, %cl /// sal %eax, %cl -> shl %eax, %cl /// etc. Though "sal" is accepted with many forms, all of them are directly /// translated to a shl, so it can be handled with (in the case of X86, it /// actually has one for each suffix as well): /// def : MnemonicAlias<"sal", "shl">; /// /// Mnemonic aliases are mapped before any other translation in the match phase, /// and do allow Requires predicates, e.g.: /// /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; /// class MnemonicAlias<string From, string To> { string FromMnemonic = From; string ToMnemonic = To; // Predicates - Predicates that must be true for this remapping to happen. list<Predicate> Predicates = []; } /// InstAlias - This defines an alternate assembly syntax that is allowed to /// match an instruction that has a different (more canonical) assembly /// representation. class InstAlias<string Asm, dag Result, bit Emit = 0b1> { string AsmString = Asm; // The .s format to match the instruction with. dag ResultInst = Result; // The MCInst to generate. bit EmitAlias = Emit; // Emit the alias instead of what's aliased. // Predicates - Predicates that must be true for this to match. list<Predicate> Predicates = []; } //===----------------------------------------------------------------------===// // AsmWriter - This class can be implemented by targets that need to customize // the format of the .s file writer. // // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax // on X86 for example). // class AsmWriter { // AsmWriterClassName - This specifies the suffix to use for the asmwriter // class. Generated AsmWriter classes are always prefixed with the target // name. string AsmWriterClassName = "AsmPrinter"; // Variant - AsmWriters can be of multiple different variants. Variants are // used to support targets that need to emit assembly code in ways that are // mostly the same for different targets, but have minor differences in // syntax. If the asmstring contains {|} characters in them, this integer // will specify which alternative to use. For example "{x|y|z}" with Variant // == 1, will expand to "y". int Variant = 0; // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar // layout, the asmwriter can actually generate output in this columns (in // verbose-asm mode). These two values indicate the width of the first column // (the "opcode" area) and the width to reserve for subsequent operands. When // verbose asm mode is enabled, operands will be indented to respect this. int FirstOperandColumn = -1; // OperandSpacing - Space between operand columns. int OperandSpacing = -1; // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls // generation of the printInstruction() method. For MC printers, it takes // an MCInstr* operand, otherwise it takes a MachineInstr*. bit isMCAsmWriter = 0; } def DefaultAsmWriter : AsmWriter; //===----------------------------------------------------------------------===// // Target - This class contains the "global" target information // class Target { // InstructionSet - Instruction set description for this target. InstrInfo InstructionSet; // AssemblyParsers - The AsmParser instances available for this target. list<AsmParser> AssemblyParsers = [DefaultAsmParser]; // AssemblyWriters - The AsmWriter instances available for this target. list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; } //===----------------------------------------------------------------------===// // SubtargetFeature - A characteristic of the chip set. // class SubtargetFeature<string n, string a, string v, string d, list<SubtargetFeature> i = []> { // Name - Feature name. Used by command line (-mattr=) to determine the // appropriate target chip. // string Name = n; // Attribute - Attribute to be set by feature. // string Attribute = a; // Value - Value the attribute to be set to by feature. // string Value = v; // Desc - Feature description. Used by command line (-mattr=) to display help // information. // string Desc = d; // Implies - Features that this feature implies are present. If one of those // features isn't set, then this one shouldn't be set either. // list<SubtargetFeature> Implies = i; } //===----------------------------------------------------------------------===// // Processor chip sets - These values represent each of the chip sets supported // by the scheduler. Each Processor definition requires corresponding // instruction itineraries. // class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> { // Name - Chip set name. Used by command line (-mcpu=) to determine the // appropriate target chip. // string Name = n; // ProcItin - The scheduling information for the target processor. // ProcessorItineraries ProcItin = pi; // Features - list of list<SubtargetFeature> Features = f; } //===----------------------------------------------------------------------===// // Pull in the common support for calling conventions. // include "llvm/Target/TargetCallingConv.td" //===----------------------------------------------------------------------===// // Pull in the common support for DAG isel generation. // include "llvm/Target/TargetSelectionDAG.td"